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Abstract

Cyclotron resonance is now applied as one of the important means for heating plasma in
a fusion reactor. We examined this phenomenon from the viewpoint of electron gyration
orbits through a solution of the linearized relativistic equation of motion. We found a
powerful term that accelerates a relativistic charged particle largely at a resonance point
when a magnetic field strength is very large. In this study, aiming an effect of this term,
we consider applying a resonance phenomenon to reducing the number of charged
particles that escape from a magnetic mirror reactor. We install a long supplemental
device at the exit of a main magnetic bottle and make a cyclotron resonance space
within the device, as shown in Fig. 7. If velocities (perpendicular to a magnetic field)
of charged particles are accelerated largely within the cyclotron resonance space, the
reflection efficiency of a magnetic mirror behind the resonance space ought to be
improved. Based on this idea, we discuss such a supplemental device for recovering
the maximum number of escaping charged particles.

Keywords: Magnetic mirror reactor, Cyclotron resonance, Acceleration of a relativistic
charged particle, Suppression of escaping particles loss

Introduction
In the early days of cyclotrons, the study of cyclotron resonance served to determine gas

plasma condition from the characteristics of electromagnetic waves having passed through

the plasma [1] But large quantities of wave energy are absorbed by charged particles when

the wave frequency is nearly equal to the particles’ cyclotron frequency. This phenomenon

is now an important means to heat charged particles in a gas plasma [2–7]. We examined

cyclotron resonance from a viewpoint of gyration orbits of an electron in a plane perpen-

dicular to a static magnetic field, using a solution of the linearized relativistic equation of

motion which was obtained under the condition given in Eq. (5) later. In this examination,

we found a term that accelerates a relativistic charged particle rapidly, when a magnetic

field strength is very large, at a resonance point where an electric field frequency is equal

to a charged particle’s cyclotron frequency. The term is given as second part in Eq. (18).

Aiming an effect of this term, we consider improving a reflection efficiency of a magnetic

mirror by installing a resonance space within the magnetic mirror. Plasma confinement by

a magnetic mirror was greatly expected in the early stages of fusion research [8–10]. This

is because adiabatic theory with respect to a motion of a charged particle (a particle moves

as it winds around one magnetic flux) gave a clear theoretical prediction for plasma con-

finement. But magnetic mirror-type reactors had the drawback that too many charged
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particles are lost along the magnetic field line. Both the open magnetic (mirror-type) and

the closed magnetic (toroidal-type) systems still have instability problems that obstruct the

way to a controlled fusion reactor. Mirror-type research continues in mirror hybrid reac-

tors [11–13]. In hybrid reactor research, plasma confinement demands can be relaxed if

the fission reaction induces strong energy multiplication. However, research reports that

shortcomings still exist, such as the charged particle loss from the loss cone and associated

low electron temperature.

To counter these two shortcomings, we consider a means of installing a supplemental de-

vice (which has a cyclotron resonance space within) at the exit of a main magnetic bottle.

Rapidly accelerating charged particles within the cyclotron resonance space greatly reduces

the half-vertical angle of the loss cone in a magnetic mirror behind the resonance space.

Thus, in Section 2, we first derive a solution of the linearized relativistic equation of motion

for an electron and the powerful term that appears in the resonance point. In Section 3, we

discuss an effect of a long magnetic field configuration that extends outside a main bottle

(shown in Fig. 7). That device has cyclotron resonance spaces (electric fields) within and is

designed to reflect the maximum number of escaping charged particles.

Gyration orbits of electrons
We first complement the previous work [14] with respect to the linearization of the rela-

tivistic equation of motion:

∂
∂t

me

1− υ t;t0ð Þ2
c2

� �1
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υ t; t0ð Þ
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CA ¼ −qE tð Þ−qυ t; t0ð Þ � B: ð1Þ

Here, me is the rest mass of an electron, −q is the electron charge, c is the speed of light,

E(t) is an electric field, B is a magnetic field, and υ (t, t0) is the velocity of the electron at time

t after scattering with an initial velocity υ0 (= x̂υ0x þ ŷυ0y þ ẑυ0z ) from a heavy neutral atom

at time t0. Based on Eqs. (14)–(22) of the previous work [14]*, Eq. (1) can be transformed into
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The physical meanings of the terms on the left-hand side of Eq. (2) are as follows:

(i) In the curly brackets {}, the quantity me / (1-υ20 /c
2)1/2 is the electron mass at time

t0. The integral
R t
t0
−qE (t)∙υ (t, t0) dt/c

2 is the inertial-mass increment from t to t0. The

terms in the curly brackets sum to give the inertia mass at time t.

* The quantity α′′ in Eq. (21) of the previous work [14] should have been defined asR t
t0
−qEðtÞ∙υ ðt; t0Þ dt; because it precedes the linearization.

(ii) The quantity −qE(t) ∙ υ (t, t0)/c
2 of the second term is the inertial-mass increment

per unit time at time t.

(iii) The first term is the momentum increment per unit time coming from the incre-

ment in velocity ∂υ (t, t0)/∂t. The second term is the momentum increment per unit

time coming from the increment in inertial mass.
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Now, under the condition

υ t; t0ð Þ−υtj j
υtj j ≪ � 1 � �⋯⋯⋯ υt ¼ υ t; t0ð Þ E tð Þ¼0ð Þ

� �
; ð3Þ

Eq. (2) can be linearized as

me

1− υ20
c2

� �1
2
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c2

dt
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We solve Eq. (4) for ẑ∙υ ðt; t0Þ under the following external force fields:

E tð Þ ¼ −ẑ E cos ωt:
B ¼ ŷ B:

ð5Þ

To simplify, we use the following symbols:

υ0 ¼ x̂ υ0x þ ŷ υ0y þ ẑ υ0z ≡ x̂ x0 þ ŷ y0 þ ẑ z0 (The case where x0 = 0 is treated

hearafter),

meffiffiffiffiffiffiffiffiffiffiffiffi
1−

υ20
c}

r ≡m;
qB
me

ffiffiffiffiffiffiffiffiffiffiffiffi
1−

υ20
c}

r
¼ qB

m
≡ ωc;

υ t; t0ð Þ ¼ x̂ υx t; t0ð Þ þ ŷ υy t; t0ð Þ þ ẑ υz t; t0ð Þ ≡ x̂ υ0x þ ŷ υ0y þ ẑ υ0z ≡ υ0;

cosωc t−t0ð Þ ¼ C; sinωc t−t0ð Þ ¼ S; cosωt ¼ c; sinωt ¼ s: ð6Þ

In (6), note that m is independent of time (but it is not the rest mass) and that c is

not the speed of light. As seen in the symbol m, the speed of light c always appears in

such forms as υ20=c
2 . To avoid confusion between the speed of light c and the symbol

c = cos ωt, from now we use c” for the square of the speed of light. The four symbols

(C, S, c, s) are trigonometrical function, from now.

By using the following two relationships:

υt ¼ υ t; t0ð Þ E tð Þ¼0ð Þ ¼ x̂ z0Sð Þ þ ŷ y0 þ ẑ z0Cð Þ; ð7Þ
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Eq. (4) takes the form

m
∂υ0
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� �h i
:

ð9Þ

After eliminating υ′x from Eq. (9), we obtain the following second-order differential

equation for υ′z:
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where,

A ¼ qE
mc}

1
ω2
c−ω2

:

Solving Eq. (10) for υ0z under two initial conditions at t = t0 which are given by

υ
0
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0
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we have

υ
0
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We now examine electron orbits under the following simple condition:

t0 ¼ 0 ðThen; the symbols S and C defined in Eq: ð6Þ become sinωct and

cosωct; respectively: For these sinωct and cosωct; we continue to

use the same symbols S and C; respectivelyÞ
ð13Þ

In this case, we have
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Also, under condition (13), we obtain from Eqs. (9) and (12)
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Both υ0z and υ0x contain the factor ω2
c−ω

2 in their denominators, so we find their

values in the limit ω→ ωc (It should be noted that ωc is independent of time):

υzr ≡ lim
ω→ωc

υz tð Þ ¼ z0C þ qE
m

1−
z20
c}

� �
1
ωc

S þ qE
m

1
−2ωc

S−ωctCð Þ
� �

þ qE
m

z20
c}

� 1
8ω2

c
2ω3

c t
2S−4ω2

c tC þ 4ωcS þ 6ωcS
3

� �� �

¼ z0C þ 1
2

qE
mωc

1−
z20
c}

� �
S þ 1

2
qE
m

t 1−
z20
c}

� �
C þ 1

4
qE
mωc

z20
c}

ω2
c t

2 þ 3S2
� �

S:

ð16Þ
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-

(18)

Furthermore, in the limit ωc→ 0, υzr and υxr become, respectively

lim
ωc→0

υzr ¼ z0 þ qE
m

t 1−
z20
c}

� �
lim

ωc→0
υxr ¼ 0:

ð19Þ

When an electric field is weak, as seen in Eq. (17) of ref. [14], only the terms of the

zero-order and the first-order with respect to an electric field are commonly held

theoretically. In Eq. (18), however, the new term (the second part) of the second-order

with respect to an electric field has appeared. From the examination of the characteris-

tics shown in “from Figs. 1a–d, 2, 3, 4, 5, 6, 8, 9, 10, 11 and 12 (except Fig. 7)” which

are drawn based on Eqs. (12), (20) and (21), the second part works clearly to increase a

velocity-magnitude (perpendicular to a magnetic field) of a relativistic electron, when

ωct≫ 1. Asking for a limit at the resonance point from Eq. (17) of ref. [14], under the

following initial condition:

At t = t0 = 0, an initial velocity υ0 ¼ ẑ υ0z (|υ0| = υ0 ),

we have

lim
ω→ωcrðυ0Þ

(Eq. (17) of ref. [14]) ¼ υ0z þ γrðυ0Þ3 qE0z

2me
ðt þ sin ωcrðυ0Þt

ωcrðυ0Þ cos ωcrðυ0Þt).

(we have now used the same symbols with in ref. [14]).

When ωcr(υ0) t≫ 1, (where ωcr(υ0) is the same quantity with ωc given in Eq. (6)), the

above expression is the same one with Eq. (18) without the second part.
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We now ask for the coordinates (z(t), x(t)) of an electron based on Eqs. (14) and (15).

The electron starts at the origin (x = z = 0) with an initial velocity of ẑ z0ð¼ ẑ υ0z ) at

time t = 0. The results are:
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Fig. 1 a-d Dependence of a velocity υ′z (z - component) of a relativistic electron on the phase of an electric field,
based on Eq. (12). The physical conditions are: an initial velocity z0 ¼ jẑ 108j m/s at time t0 (written in each of

(a)-(d)), E (t) =−ẑ 103 cosωt V=m; ωc ¼ q jŷ Bjð1−z20=c}Þ
1=2

=me ¼ 108 ð1−z20=c}Þ
1=2

sec−1; and ωc/ω =1.0001.
The flight time t = t0~t0 + 12 (2π/ωc) sec
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In the case where ωc / ω = 1.0001, we examine dependences of Eq. (12) on the phase of

an electric field. The results are shown in Figs. 1a-d and 2a-d. An electron starts at the

origin with an initial velocity + ẑ 108 m/s at four different phases of time t0 (0, (−1/4) (2 π

/ ωc), (−2/4) (2π / ωc), (−3/4) (2 π / ωc), where 2 π / ωc (≃2 π / ω) is almost the period of the

Fig. 2 a-d Dependence of a velocity υ′z (z - component) of a nonrelativistic electron on the phase of an electric
field. The conditions are the same with in Fig. 1a-d, except for the following two changes:

c} ¼ ð3� 108 m= secÞ2→ð3� 108 � 106 m= secÞ2
t ¼ t0 � t0 þ 12 ð2π=ωcÞ→ t ¼ t0 � t0 þ 24 ð2π=ωcÞ sec


Every relativistic effect in Eq. (12) is acompanied

by the factor z20=c
} . So, we obtain nonrelativistic characteristics by setting c" to (3 × 108 × 106 m/sec)2, from now
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electric field). We set flight times t as “from t0 to t0 + 12 (2π/ωc)” for a relativistic electron

and “from t0 to t0 + 24 (2π/ωc)” for a nonrelativistic electron. In the cases where t0 = 0 and

t0 = (−2/4) (2π / ωc), or in Fig. 1a and c, electrons are accelerated very rapidly when ωct≫ 1.

On the other hand, in the cases of Fig. 1b and d, electrons are hardly accelerated. From

points Q1, Q2, Q3 and Q4 in Fig. 1a-d, we can obtain approximate values of velocities near

t = 0. Since a gyration period of an electron is about 2 π / ωc, each velocity at points Q1, Q2,

Q3 and Q4 is given nearly by

Fig. 3 The gyration orbit of a relativistic electron based on Eqs. (20) and (21). The initial velocity ẑ z0 ¼ ẑ 108 m/s

at ( t= 0), E (t) = −ẑ 103 cosωt V=m, ωc ¼ q jŷ Bjð1−z20=c}Þ
1=2

=me ¼ 108 ð1−z20=c}Þ1=2 sec−1. The flight time
t = 0~6 (2π/ωc ) sec. An electron rotates about six times. The dots mark each time increment of 2π/ωc sec. This
figure is related with Fig. 1a

Fig. 4 The gyration orbit of a relativistic electron. The conditions are the same with in Fig. 3, except for the
following change of the initial velocity at ( t = 0): ẑ z0 ¼ ẑ 108 →−ẑ 108 m/s. This figure is related with Fig. 1c
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ẑ 108 þ x̂ 0
� �

m=s at Q1 t ¼ 0ð Þ the exact value only at Q1ð Þ;
ẑ 0þ x̂ 108

� �
m=s at Q2 t≃0ð Þ;

ẑ −108
� �þ x̂ 0

� �
m=s at Q3 t≃0ð Þ;

ẑ 0þ x̂ ð−108� �Þ m=s at Q4 t≃0ð Þ:

Accordingly, electrons starting with �ẑ 108 m/s into the electric field space at t ≃ 0

are largely accelerated, but electrons starting with �x̂ 108 m/s at t ≃ 0 are hardly accel-

erated. In the nonrelativistic cases of Fig. 2a–d, it is seen that electrons are accelerated

Fig. 5 The gyration orbit of a nonrelativistic electron. The conditions are the same with in Fig. 3, except for
the following change: c" = (3 × 108 m/sec)2→ (3 × 108 × 106 m/sec)2 This figure is related with Fig. 2a

Fig. 6 The gyration orbit of a nonrelativistic electron. The conditions are the same with in Fig. 3, except for the

following two changes: c} ¼ ð3� 108 m= secÞ2→ð3� 108 � 106 m= secÞ2
The initial velocity at ð t ¼ 0Þ ẑ z0 ¼ ẑ 108→−ẑ 108 m=s:


This figure is related

with Fig. 2(c)
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slowly by the electric field, but the acceleration pace is very slow compared with the

relativistic cases of Fig. 1a and c.

According to the variation in Fig. 1a, an electron seems to be able to obtain a

velocity-magnitude over the speed of light after longer flight time. Such is due to break

of the linearization condition in Eq. (3). If an exact speed of the electron in Fig. 1a in-

creases as a function of time through most of its flight time, the mass increment per

unit time −qE(t) · υt/c
” based on Eq. 3 is less than the exact increment –qE (t) · υ (t, t0)

/ c”. When an electron gyrates as it grows heavier than is in the case in Fig. 1a, the rela-

tivistic effect increasing the speed will be reduced compared with that in Fig. 1a. The

rate of increase of the velocity-magnitude in Fig. 1a ought to reduce to zero before the

speed of the electron goes beyond the speed of light.

Next, we show in Figs. 3, 4, 5 and 6 gyration orbits which are drawn based on Eqs.

(20) and (21). A resonance point is set to ωc / ω = 1.0001. We described numerical con-

ditions in Figs. 3, 4, 5 and 6. The orbit for a nonrelativistic electron in Fig. 6 seems to

contract according to the first part −|z0| + qEt / (2me) of Eq. (18). Conversely, the orbit

for a relativistic electron in Fig. 4 initially contracts, but soon begins a rapid expansion.

We consider that the cause of this reversal is due to the second part of Eq. (18). In

Section 3, based on Eq. (18), we try devising a supplemental magnetic mirror having

electric fields within to reflect escaping relativistic electrons to an old magnetic bottle.

Discussion of a supplemental device in a mirror type reactor
We now discuss a supplemental device for reducing the rate at which charged particles

escape a magnetic mirror reactor. We consider a magnetic field configuration such as

shown in Fig. 7, at the exit of a magnetic bottle. The magnetic field tail is divided into

four sections by five planes labeled (a), (b), (c), (d) and (e) in Fig. 7. We define the x, y,

z coordinate-system as shown in Fig. 7. The y–coordinate and magnetic field B at each

plane are also given in Fig. 7. We regard the magnetic field B to be only in + y–direc-

tion. An electric field + ẑ Ei cos ωit (ωi; ion cyclotron frequency) between planes (a) –

(b), and – ẑ 400 cos ωct between planes (c) – (d) are supplied.

We assume that a plasma density in the magnetic field tail is considerably more tenu-

ous than plasma densities within magnetic mirror bottles or tokamak reactors [15–20]

Fig. 7 A magnetic field configuration in the left-hand side of the exit of a main magnetic bottle, for reclaiming
charged particles to escape from the exit (plane (a)). We first assumed the value of the magnetic field in plane
(a) and the magnetic field configuration. After that we set the length and the value of the electric field between
planes (c) and (d), based on Eq. (26). With respect to the magnitude 0.5 T of B in plane (a), we assumed the
value so that the gyration radius of a D+ ion with the mean thermal velocity 2×106 m/s may be nearly 0.1 m
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and so the influence of Coulomb forces on the orbits of charged particles is negligible

within the magnetic field tail.

The condition [21, 22] for a continuous D – D reaction (D = 12H) is commonly estimated

to be that the D+ temperature exceeds 4 × 108 K. The thermal velocity of an electron at 4 ×

108 K is about 1.2 × 108 m/s (= υ). To simplify the discussion from now, we assume that

every electron escaping through plane (a) from the main bottle has the velocity υ . We de-

note an initial velocity of an electron when passing plane (j) (j = a, b, ..., e) by

x̂x0 jð Þ þ ŷy0 jð Þ þ ẑz0 jð Þ

and denote by υr(j) a velocity-magnitude perpendicular to B of an electron when passing

plane (j) . Also, for an incident angle with which a charged particle passes plane (j), we

denote an angle from + y-axis in the y-z plane by θj (− 90° ≦θj ≦ 90°) and a mere inclin-

ation from + y-axis by |θ|j (0
° ≦ |θ|j ≦ 90°).

Now, let us aim electrons passing plane (c) at time t = 0 with four kinds of velocities,

�ẑ z0ðcÞ þ ŷ y0ðcÞ and �x̂ x0ðcÞ þ ŷ y0ðcÞ (where z0(c) =x0(c), and these electrons are called

e�z , e
�
x , respectively). It is mentioned later that y0(c) hardly change within space (c) –

(d). From the characteristics in Figs. 1a–d and 8a–d shown later, it is expected that e�z
are largely accelerated by the electric field −ẑ 400 cosωt (ωc/ω =1.0001) within space (c)

– (d) but e�x are hardly accelerated. Then, we first consider increasing the velocity-

magnitude perpendicular to B of e−z within space (c) – (d) so that e−z may be reflected

by mirror (d) – (e). We call e−z the test electron.

Here, we calculate υ0y ð¼ υyðt; t0ÞÞ from the y-component of Eq.(9):

υ
0
y ¼ υy t; t0ð Þ
¼ y0 þ y0z0

qE
mc}

sin ωc þ ωð Þ t−t0ð Þ½ �
2 ωc þ ωð Þ þ sin ωc−ωð Þ t−t0ð Þ½ �

2 ωc−ωð Þ
 �

:
ð22Þ

Also, when t0 = 0, we have

lim
ω→ωc

υ
0
y ¼ y0 þ y0z0

qEt
2mc}

1þ sin2ωct
2ωct

 �
: ð23Þ

The second term of Eq. (23) is compared with y0 later. In the case where there is no

electric field in the supplemental device of Fig. 7, let us ask for a half-vertical angle of

the loss cone (the loss angle) in mirror (c)–(e) with respect to the test electron. The

condition ratio for the test electron to be reflected is given by

υr cð Þ

υ2r cð Þ þ y20 cð Þ
� �1=2 > 2� 2Ba

4� 4Ba

� �1=2

or υr cð Þ > 0:58y0 cð Þ; ð24Þ

where, 2 × 2 Ba and 4 × 4 Ba are the magnetic fields in planes (c), (e), respectively,

υrðcÞ ¼ jz0ðcÞj ¼ jυ sinθcj; y0ðcÞ ¼ υ cosθc and θc < 0. When θc = − 30∘,

υr cð Þ ¼ z0 cð Þ
�� �� ¼ 0:6� 108m=s;

0:58 y0 cð Þ ¼ 0:6� 108m=s:

Accordingly, the loss angle of mirror (c)–(e) for the test electron is 30°.
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Now, we decrease the loss angle of mirror (c)–(e) for the test electron from 30° to 15°

by using an electric field –ẑ 400 cos ωct between planes (c) and (d). Let us recover by

mirror (d)–(e) the test electron passing plane (c) at t = 0 with

θc ¼ –15° ;
z0 cð Þ ¼ 1:2� 108 sin –15°

� � ¼ –0:31� 108m=s;
y0 cð Þ ¼ 1:2� 108 cos –15°

� � ¼ 1:16� 108m=s;
x0 cð Þ ¼ 0:

8>><
>>:

Then, a velocity-magnitude υr(d) perpendicular to the magnetic field B of the test

electron when passing plane (d) must satisfy

Fig. 8 a-d Dependence of a velocity υ′z of a relativistic electron on the phase of an electric field, based
on Eq. (12). The figures are drawn under the same physical conditions with for Eq. (27): an initial velocity

z0 ¼ jẑ ð−0:31� 108Þj m/s at time t0, E (t) = −ẑ 400 cosωt V=m; ωc ¼ jŷ qB=mejð1−z20=c}Þ
1=2 ¼ jŷ 3:5

�1011j sec−1, ωc/ω =1.0001. The flight time t = t0~t0 + (2π/ωc) n = t0 + 3 × 10−8 sec when n = 1670. The
dots mark the last velocity points after the flight
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υr dð Þ > 0:58y0 cð Þ ¼ 0:67� 108m=s; ð25Þ

because a reflection condition of mirror (d) – (e) is given by the replacement υr (c)→

υr (d) in Eq. (24). The electric field – ẑ 400 cos ωct must accelerate the velocity-

magnitude perpendicular to B of the test electron from | z0(c)| = 0.31 × 108 m/s to

υr(d)=0.67 ×108 m/s as shown in Eq. (25). We estimate υr(d) using the following approxi-

mation of Eq. (18):

υr≃ z0 þ qEt
2me

� �2
þ qEt

me

z20
c”

ωct
4

� �2( )1
2

ωct≃qBt=me≫1ð Þ: ð26Þ

Substituting

q
me

¼ 1:76� 1011 C=kg; E ¼ 400 V=m; B ¼ 0:5� 4 ¼ 2 T; t ¼ 3:5
y0 cð Þ

≃3� 10−8 s

z0 ¼ z0 cð Þ ¼ –0:31� 108 m=s

into Eq. (26), we have

υr ¼ 0:67� 108m=s ωct ¼ 1:06� 104≫1
� �

: ð27Þ

This υr satisfies the condition of Eq. (25). We have also tried drawing an electron’s

gyration orbit based on Eqs. (20) and (21) under the same numerical conditions as for

Eq. (27). The result is shown in Fig. 9. When the gyration number n is 1670, or when

the gyration time is ( 2π/ωc) × 1670 (= 3×10−8 sec), the gyration radius is approximately

two times compared with the one of the initial circle. We estimate that the velocity-

magnitude perpendicular to B has also grown by about a factor of two. If the exact rate

of increase of a velocity-magnitude in a relativistic orbit of an electron is smaller than

the rate of increase shown in Fig. 9, then, the necessary gyration time to obtain υr =

0.67 ×108 m/s of Eq. (25) becomes longer. In an actual design, however, this point can

be solved by adjusting the value of E or t. We also note that, as qE t / 2 me≃ 1.06 ×106

m/s in Fig. 9, the second term of Eq. (23) is negligible compared with y0 (=y0(c)). We

add also three Figs. 10, 11 and 12 in which a part of the numerical conditions in Fig. 9

are changed. We see that the pace at which an electron gains energy is very slow in a

nonrelativistic condition.

Now, even if we had decreased the loss angle only for the test electron from 30° to

15° as mentioned above, more than a half of electrons having |θ|c equal to 15° pass

through mirror (d) – (e), which is presumed from the characteristics of Fig. 8a–d. How-

ever, since magnitudes of υ0z in Fig. 8a–d still continue to increase with time, let us ad-

just the value Et2 in the second part of Eq. (26) so that mirror (c) – (e) may reflect 74%

of electrons with |θ|c between 30°~15°. Then, since the loss rate of electrons is nearly

proportional to the square of the loss angle (small angle), the loss angle of mirror (c) –

(e) becomes 20° from the estimation of the ratio (302 – 202) / (302 – 152). If mirror (c) –

(e) can reflect 79.9% of electrons with |θ|c between 30°~15°, then, the loss angle of

mirror (c) – (e) becomes 19°.

Under the above design, we consider the loss angle of mirror (a) – (e). An electron or

a D+ ion actually interacts only with the electric field having ωc or ωi,respectively. The

loss angles for electrons of mirror (d) – (e), mirror (b) – (c) and mirror (a) – (e)
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Fig. 9 The gyration orbit of a relativistic electron in the x - z plane, based on Eqs. (20) and (21). The initial
velocity ẑ z0 ¼ −ẑ 0:31� 108 m/s at (t = 0), E (t) = −ẑ 400 cosωt , B = 2.0 T, ωc ¼ jŷ 3:5� 1011j sec−1 and
the flight time t = 0~(2π/ωc) n =3 × 10−8 sec when n = 1670. This figure is related with Fig. 8c

Fig. 10 The gyration orbit of a relativistic electron in the x - z plane. The physical conditions are the same
with in Fig. 9, except for the following change of an initial velocity at (t = 0): ẑ z0 ¼ −ẑ 0:31� 108 → þẑ 0:3
1� 108 m/s. This figure is related with Fig. 8a
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(without the electric field) are 30°, 30° and 15°, respectively. Accordingly, with respect

to electrons, dependences of |θ|j on |θ|a become as follows:

(i) without the help of the electric field between planes (c) and (d),

For |θ|a = 30°; |θ|c = 90°.

For |θ|a = 15°; |θ|c = 30°, |θ|e = 90°.

Fig. 11 The gyration orbit of a nonrelativistic electron. The physical conditions are the same with in Fig. 9,
except for the following change: c " = (3 × 108 m/sec)2→ (3 × 108 × 106 m/sec)2

Fig. 12 The gyration orbit of a nonrelativistic electron. The physical conditions are the same with in Fig. 9,

except for the following two changes: f ẑ z0 ¼ −ẑ 0:31� 108→þ ẑ 0:31� 108 m=s
c} ¼ ð3� 108 m= secÞ2→ð3� 108 � 106 m= secÞ2
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(ii) with the help of the electric field between planes (c) and (d) (the loss angle 19° of

mirror (c) – (e)),

For |θ|a = 15°; |θ|c = 30°, |θ|between d − e = 90°.

For |θ|a ≃ 10°; |θ|c = 19°, |θ|e = 90°.

The supplemental device reflects escaping electrons whose angles |θ|a are between

90° and about 10°. The electric field improves the loss angle by about 5°. In order to de-

crease furthermore the loss angle of the supplemental device from 10° to 10° – δ°, it is

considered to set a new resonance space just in the right-hand side of plane (b). A new

space must be devised so that electrons escaping with ( |θ|a = (10° – δ°)) in plane (a)

may have ( |θ|b = 10°) in plane (b).

Next, we ask for the loss angle of mirror (a)–(e) for D+ ions (mass mi = 3680 me). A

mean thermal velocity of D+ ions at 4×108 K is about

1:2� 108 me=mið Þ1=2 ¼ 2� 106m=s ≡ υi: ð28Þ

Since υi2 / c
” = 4.4 ×10−5, a D+ ion is a nonrelativistic particle and the relativistic term

for a D+ ion corresponding to the second part of Eq. (26) can be neglected compared

to the term for a D+ ion corresponding to the first term of Eq. (26). In the same man-

ner as the treatment of electrons, we assume that every D+ ions escaping from the main

bottle has the velocity υi . We aim a D+ ion passing plane (a) with a negative angle in

the y - z plane (called the test ion). From the characteristics in Fig. 2a–d for an elec-

tron, if we can make the test ion reflect by mirror (a) – (e) having ẑ Ei cos ωit between

planes (a) and (b), we presume that mirror (a) – (e) reflects most of D+ ions having the

same inclination with |θ|a of the test ion in plane (a). An initial velocity of the test ion

when passing plane (a) is given by

ŷ υi cosθa þ ẑ υi sinθa þ x̂0 where−90∘ < θa < 0∘ð Þ:

In the case of no electric field, a reflection condition of mirror (a) – (e) for the test ion is

υri

υri2 þ υi cosθa½ �2� �1
2

>
Ba

4� 4Ba

� �1
2

or υri > 0:26υi cosθa; ð29Þ

where υri is a velocity-magnitude perpendicular to B of the test ion when passing plane

(b). Now, in the case of θa = –15°, inserting.

ẑ υi sin (−15°) = 2 ×106 × (−0.259) = − 0.52 × 106 m/s.

(υri is j ẑ υi sin ð−15°Þj in the case of no electric field),

ŷ υi cos (−15°) = 2 ×106 × 0.966 = 1.92 × 106 m/s.

into Eq. (29), we have.

υri (= j υi sin ð−15°Þj ¼ 0:52� 106) > 0.26 υi cos (−15
°) =0.5 × 106 m/s.

Accordingly, the loss angle of mirror (a)–(e) for the test ion is regarded to be about

15°. Now, supplying electric field + ẑ Ei cos ωit between planes (a) and (b), we consider

decreasing the loss angle for the test ion from 15° to 10°. The test ion passing plane (a)

with the angle of θa = –10° has the velocity.

ẑ υi sin (−10°) + ŷ υi cos (−10°) + x̂ 0 = ẑ (−0.35 × 106) + ŷ 1:97� 106 m/s.

Accordingly, the electric field must accelerate the velocity j ẑ υi sinð−10°Þj to 0.26 υi
cos (−10°) ( = 0.51 × 106 m/s, from Eq. (29)). We estimate υri from the following expres-

sion for D+ ions corresponding to the first part of Eq. (26):
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υri≃ υi sinθa þ qEit
2mi

����
���� ωit ¼ qBt=mi≫1ð Þ ; ð30Þ

where t ¼ ℓ= υi cosθa and q / mi = 4.8 × 107 C/kg.

The condition (29), υri> 0.26 υi cos θa ðθa = –10°), is written as

−0:35� 106 þ 4:8� 107

2
Eit

����
���� > 0:51� 106 or Eit > 0:036: ð31Þ

Thus, we obtain

1ð Þ For Ei ¼ 103 V=m; t ¼ 3:6� 10−5s; ℓ ¼ 71m; ωit ¼ 864ð Þ :
2ð Þ For Ei ¼ 104 V=m; t ¼ 3:6� 10−6s; ℓ ¼ 7:1 m; ωit ¼ 86:4ð Þ :

ð32Þ

We consider it possible to suppress the escaping number of electrons to a sufficiently

small level. However, when the second part of Eq. (18) is ineffective by the reason that

a particle is a nonrelativistic one, it has become clear that, in order to control massive

and nonrelativistic D+ ion by such a magnetic mirror as shown in Fig. 7, an extremely

powerful electric field is necessary.

Conclusion
For stable confinement of a gas plasma, it is important to keep electrical neutrality of a

gas. Therefore, such a supplemental magnetic mirror as in Fig. 7 must have the same

value of loss angle both for electrons and for ions. However, from the examination in

Section 3, confining D+ ions will be the more difficult challenge. As a more realistic

approach than producing an extremely powerful high-frequency electric field, we con-

sider the following: (1) We first suppress the escaping number of D+ ions as much as

possible. (2) For the loss of still uncontrolled D+ ions, we replenish D+ ions from an ex-

ternal plasma source into the space between planes (d) and (e). In magnetic mirror

experiments, a general method for plasma production is to create a weakly ionized

plasma in advance and inject high energy charged particles from outside. The DCX de-

vice at Oak Ridge National Laboratory [10] created a gas plasma by injecting a 600-keV

beam of Hþ
2 ions. We could apply that technical method as a means for replenishing

escaping D+ ions.

Finally, we note that the supplemental device heats the plasma in the main bottle be-

cause both electrons and D+ ions, which return to plane (a) after having approached

plane (e), gain energy twice unrelated to the phases of the electric fields.
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