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Abstract. The dynamics of the ring of unidirectionally coupled single-
well Duffing oscillators is analyzed in numerical simulation for identical
nodal oscillators. The research is concentrated on the existence of the
stable 3D torus attractor in this system. It is shown that 3-frequency
quasi-periodicity can be robustly stable in wide range of parameters
of the system under consideration. As an explanation of this stability,
the conjecture on the coexistence and superposition of two indepen-
dent effects characterized with irrational frequencies, i.e., the classical
Newhouse, Ruelle and Takens scenario and rotating wave flow, is
formulated.

1 Introduction

One of typical routes to chaotic motion of nonlinear dynamical systems is a transition
via quasi-periodic solutions appearing as a result of consecutive Hopf bifurcations
introducing new mode with incommensurate frequency. First time such a scenario
of dimensionally increasing quasiperiodicity has been proposed by Landau [1] and
Hopf [2] as an explanation of transition to the turbulence. However, later work by
Newhouse, Ruelle and Takens [3] had demonstrated that just after third step of this
bifurcational scenario there appear chaotic strange attractor as an effect of arbitrar-
ily small perturbation of the 3D torus (NRT scenario). On the other hand, other
researchers have shown numerical [4] and experimental results that confirm the pos-
sibility of the stable 3D [5–10] or even 4D [11] torus existence. The 4D torus has been
also detected for three coupled circle maps [12]. The NRT theorem has been chal-
lenged by Grebogi et al. a few years after its publication [13,14]. They have performed
a numerical experiment which confirmed that smooth nonlinear perturbations do not
destroy the stability of the three-frequency quasi-periodicity, what is important from
physical applications point of view. The analysis of the 3D-torus stability has been
continued in the last decade of the 20th century and in the current century [15–33].
Here, especially noteworthy are works by Feudel et al. [20,21] and Anischenko et al.
[22]. Their justification for this phenomenon refers to the symmetry of the analyzed
system. The high-dimensional quasiperiodicity (i.e. N ≥ 3) has been reported also
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in sets of coupled systems [12,15–19,23–29] and self or externally driven oscillators
[30–33]. Other notable cases of such solutions (four- and five-frequency torus) have
been recently demonstrated in systems of chains or globally coupled phase oscillators
with frequency detuning [34,35] and in system of linked delayed logistic maps [36].

In this paper the subject of the research is a ring of unidirectionally coupled
single-well Duffing oscillators. The existence of robustly stable 3D torus attractor in
this system, which usually appears as a result of the transition from periodic (PRW)
to chaotic rotating waves (CRW), is analyzed [27–29]. This article refers directly to
our previous publication on the experimental observation of the 3-frequency quasi-
periodic solution in a ring of seven coupled Duffing oscillators [9] and indirectly to
other related works [37–39].

At present, there are several theories regarding the problem of disagreement with
NRT theorem in rings of coupled oscillators. One of them refers to a property of
spatio-temporal symmetry of the invariant ring of identical oscillators under the
cyclic group [17,27]. Other one is connected with the rotational symmetry and the
suppression of lockings in modulated rotating waves [40]. Another yet is based on
some discrepancy in frequencies of the torus [29] diminishing an effect of frequency
resonance which is destroying for the torus.

Our experimental and numerical study proves that this solution is kept on, in spite
of some symmetry breaking caused by parameters mismatch [9]. Thus, this paper
focuses on the study of identical coupled oscillators. Main purpose of this study is to
identify the mechanism of the 3D torus stability. We propose, as an explanation of this
phenomenon, the conjecture on the coexistence and superposition of two independent
effects characterized with irrational frequencies, i.e., the classical NRT scenario and
rotating wave flow.

2 Investigated system

In general, the dynamics of a closed ring of N unidirectionally coupled identical
oscillators can be described in the block form:

ẋ = F(x) + [σ(G-I)⊗H]x, (1)

where x = (x1, . . . , xN )T , xj ∈ Rm (j = 1, 2, . . . , N ), F(x) = diag[f(x1), . . . , f(xN )]
is a block matrix of uncoupled node systems, G is the N × N connectivity matrix
representing the topology of connections between the ring nodes, I is the N × N unit
matrix, H : Rm → Rm is an output function of each oscillator’s variables that is used
in the coupling (it is the same for all nodes), σ is overall coupling coefficient and ⊗ is
a direct (Kronecker) product of two matrices. For the unidirectional ring the matrix
G has a following structure

G =


0 0 0 · · · 1
1 0 0 · · · 0
...

...
...

...
...

0 · · · 1 0 0
0 · · · 0 1 0

 . (2)

As a node system we take autonomous single-well Duffing oscillator described by
the following second order ODE:

ẍ+ dẋ+ ax+ bx3 = 0, (3)



Nonlinear and Complex Physics 2251

where a, b and d are real positive parameters. Introducing the substitution y = ẋ
and assuming diffusive coupling between the oscillators according to output function

H =

(
0 0
1 0

)
, (4)

where kj is the coupling coefficient for each individual oscillator, we can describe
the dynamics of each j th ring node by the following pair of 1st order dimensionless
ODEs:

ẋj = yj ,
ẏj = −axj − bx3j − dyj + σ(xj−1 − xj). (5)

When the node oscillators are uncoupled (σ = 0), then the solution of equation (5)
tends to a stable fixed point (xj = 0, yj = 0) in the phase space due to a presence of
damping (d > 0) and lack of forcing. Then we observe free damped vibrations.

3 System analysis

In this section, the results of numerical research of the system under consideration
(Eq. (5)), are demonstrated. Particular attention is paid to the observation of three-
frequency quasiperiodic solutions. Initially, our research of the system (5) was focused
on the existence of rotating waves (periodic, quasi-periodic and chaotic), the stabil-
ity of equilibrium (asymptotic continuous spectrum – ACS), so-called Eckhaus effect
[41,42] and the transition to complex dynamics for a large number of oscillators in the
ring [37,38]. These studies have shown that the 3-frequency quasiperiodicity occurs
for at least 5 oscillators in the loop (N ≥ 5). As a number of units increases, its
existence interval in the space of coupling parameter σ decreases, and then for N >
20 practically disappears. The analysis presented here corresponds to our previous
experimental and numerical (taking into account the parameters mismatch) stud-
ies [9], where a loop of seven unidirectionally coupled Duffing oscillators has been
investigated. Therefore, here also seven, but identical, node systems in equation (5)
with following values of parameters: a = 1.0, b = 10.0, d = 0.03162, have been ana-
lyzed. These dimensionless values correspond directly to nominal coefficients of the
experimental circuit [9]. The overall coupling coefficient σ is considered as the control
parameter.

3.1 Destabilization of equilibrium and onset of rotating waves

The investigation of the system (5), linearized in the neighborhood of the equilib-
rium x = [0, . . . , 0]T , allows one to determine the value of coupling strength at which
the first Hopf bifurcation initiates the rotating wave. The threshold σ1 required
for its occurrence can be determined by eigenvalues of the variational equation of
equation (1):

δẋ = [DF(x) + σ(G – I)⊗DH]δx (6)

where DF is a diagonal block matrix of linearized Jacobi matrixes Df(xj) of

uncoupled node systems (Eq. (5)), i.e., Df(xj) =

(
0 1

−a+ 3bx2 d

)
and DH = H
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Fig. 1. Graph of the real parts of the eigenvalues Reλ of the linearized system (6) as a
function of the coupling parameter σ for the ring of seven identical Duffing oscillators.

(Eq. (4)). Hence, substituting equation (5) into equation (6) and linearizing in the
neighborhood of point (xj = 0, yj = 0) we have:

δẋj = δyj ,
δẏj = −(a+ σ)δxj − dδyj + σδxj−1.

(7)

In the case of symmetric ring of identical items each pair of complex conjugate
eigenvalues of the system (7) can be calculated according to the following general
formula [37]:

λ1,2(j) = −d
2
±

√(
d

2

)2

− a− σ
(
1− ei2πj/N

)
. (8)

The Hopf bifurcation activating the PRW takes place when the increase of cou-
pling coefficient causes that the largest real part of the eigenvalue connected with
j = 2 (Eq. (8)) becomes positive at α = 0.0330, as shown in Figure 1.

3.2 Numerical simulations

Bifurcation analysis of the ring of seven identical Duffing oscillators (Eq. (5)) allows
one to follow the scenario of transition to chaos in this system. Diagrams of indi-

vidual node response xj , the sum of all oscillators responses
∑N

xj(j = 1, 2, . . . , 7)
and corresponding courses of Lyapunov exponents (LEs), calculated versus coupling
strength σ, are illustrated in Figures 2a–2c, respectively. Eigenvalue approach of the
system under consideration, presented in the previous section, shows that the PRW
begins to propagate along the ring after the first Hopf bifurcation of the equilibrium
(stationary state) at σ1 = 0.0329 (see Fig. 2c). However, this solution dominates only
in a very narrow σ-range as it is shown in Figures 2a and 2c. As a result of a fur-
ther increase of the coupling parameter, two successive bifurcations of the Hopf-type
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Fig. 2. Bifurcation diagrams of individual node variable x1 (a), sum of all variables
∑Nxj (b)

and the corresponding five largest LEs (c) for the ring of seven identical Duffing oscillators
versus coupling strength σ. Parameters: a = 1.0; b = 10.0, d = 0.3162.

lead to the appearance of the 2D torus (at σ2 = 0.0333) and then the 3D torus (at
σ3 = 0.0433). This latter is stable in a relatively wide interval – σ ∈ [0.0433, 0.0478].
After exceeding the value of σ4 = 0.0478 the largest LE becomes positive, so chaotic
and hyperchaotic solutions begins to dominate. The hyperchaotic attractor is char-
acterized by the following LEs spectrum: (+, +, 0, 0, −, ... , −). It means that
we observe an unstable 2D torus embedded inside the hyperchaotic solution. The
last Hopf-type bifurcation at σ4 destabilizes local 2D-torus and thus the 3D global
quasi-periodic solution.

In Figures 3–7 detailed numerical results that illustrate solutions occurring during
the transition from periodic (Fig. 3) to chaotic motion (Fig. 7) via a 2D-torus (Fig. 4),
a 3D-torus (Fig. 5) and its period doubling (Fig. 6), are demonstrated. Poincare
cross-sections of individual oscillators xj (Figs. 3b–7b) are juxtaposed with their
time series (Figs. 4a–7a), or all seven nodes courses in Figure 3a, and corresponding

time courses of the sum
∑N

xj of all signals (Figs. 3d–7d). Additionally, frequency
spectra (Figs. 3c–7c), reconstructed from time series and confirming identification of
attractors’ types, are presented.

In fact, the system under consideration (Eq. (5)) is of seven DoFs (degrees of
freedom). Let’s treat each of them as a local DoF because they correspond to indi-
vidual nodes in the loop. However, in the global dynamics of this system an important
role is played by rotating wave being an effect of unidirectional local DoFs coupling.
Therefore, it can be treated as an additional rotational mode. The extraction of the
local responses from global ring can allow one to understand better and identify
the mechanism of the 3D torus stability. This can be achieved by separating the
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Fig. 3. Time series of all seven oscillators (a), corresponding Poincaré map of the single
oscillator (b), the FFT spectrum (c) and time series of the sum of all signals xj (d) illustrating
the dynamics of the system (5) for σ = 0, 0332.

Fig. 4. Time series of the single oscillator (a), corresponding Poincaré map (b), the FFT
spectrum (c) and time series of the sum of all signals xj (d) illustrating the dynamics of the
system (5) for σ = 0, 0430.
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Fig. 5. Time series of the single oscillator (a), corresponding Poincaré map (b), the FFT
spectrum (c) and time series of the sum of all signals xj (d) illustrating the dynamics of the
system (5) for σ = 0, 0440.

Fig. 6. Time series of the single oscillator (a), corresponding Poincaré map (b), the FFT
spectrum (c) and time series of the sum of all signals xj (d) illustrating the dynamics of the
system (5) for σ = 0, 0470.
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Fig. 7. Time series of the single oscillator (a), corresponding Poincaré map (b), the FFT
spectrum (c) and time series of the sum of all signals xj (d) illustrating the dynamics of the
system (5) for σ = 0, 0500.

rotational forcing, represented with high-frequency PRW components (Fig. 3a), from
the registered global ring signal. The same identical periodic components are embed-
ded in the structure, as a skeleton, of quasi-periodic and chaotic solutions. Such PRW
modes can be simply eliminated from responses of identical oscillators by summing
their signals (Figs. 3d–7d). Due to the symmetry of phase distribution along the ring
their sum is equal to zero in each moment of the system evolution (see Fig. 3d).
Thus, such sum signal is representative for the local dynamics of ring oscillators. In

Figure 2b the bifurcation diagram of the sum
∑N

xj versus σ is demonstrated. This
sum remains equal to zero up to a value σ2, where its Hopf-type bifurcation takes

place. Next, the limit cycle of the sum
∑N

xj (Fig. 4d), relating to the 2D torus
solution (Figs. 4a and 4b), is observed in the range σ2 < σ < σ3. The comparison
of bifurcation graphs from Figures 2a and 2b in this σ-range clearly illustrate the
extraction effect of the local limit cycle (Fig. 2b) from the global 2D torus (Fig. 2a).
Subsequently, the Hopf-type bifurcation at σ3 leads to the appearance of the local
2D-torus (Figs. 5d and 6d) in the interval σ3 < σ < σ4, in which a 3D-torus of the
global system exists – before (Figs. 5a and 5b) and after (Figs. 6a and 6b) its period
doubling at σ = 0.0459. The last Hopf-type bifurcation at σ4 destabilizes the local
2D-torus and thus the 3D global quasi-periodic solution. Hence, a chaotic motion
becomes dominant (Figs. 7a–7d). Consequently, in the local DoF the classical NRT
transition to chaos which is clearly illustrated in Figure 2b, can be observed.

4 Summary and conclusions

Analyzing the results presented in Section 3 and taking under consideration hypothe-
ses (mentioned in Sect. 1), formulated by other authors [17,27,29,40], we can propose
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Fig. 8. Pictorial illustration of the conjecture explaining robust stability of the 3D-torus.

a conjecture explaining the observed behavior of the system (1), which is pictorially
illustrated in Figures 8a–8d for the case of identical nodes. According to this approach
global, rotational mode, being an effect of unidirectional connectivity scheme, is of
different nature than responses of individual nodes in the local DoFs. Therefore, they
can be structurally separated. Small coupling (σ < σ1) does not enable an initia-
tion of the RW and damped oscillations of each item take place (Fig. 8a), i.e., a
global equilibrium position (dotted circle in Fig. 8a) is stable. The Hopf bifurcation
at σ1 = 0.0329 activates the rotational DoF, i.e. the PRW is propagated along the
ring (see Fig. 3b), but local vibrations are still damped. In result we can observe
harmonic movement of oscillators with the frequency Ω0 and the amplitude A due
to the rotational forcing. On the symbolic plot shown in Figure 8b it is manifested
by the eccentricity of distance A between the centers of the solid line circle and the
dotted line circle. The solid line circle rotating around the center point S symbolizes
the rotational mode. Thus, revolutions of this circle demonstrate pictorially the PRW
oscillating around the global equilibrium. A small increase in the coupling strength
causes a second Hopf type bifurcation at σ2 = 0.0333, which is also the first in local
DoF. It activates local limit cycles and a new frequency Ω1 (Fig. 8c) which is dis-
proportionate to Ω0 (the PRW frequency). In result, we can see the 2D torus as a
combination of the PRW and the local limit cycle. After the next Hopf-type bifur-
cation at σ3 = 0.0433, a third incommensurate frequency Ω2 appears and a stable
3-frequency quasi-periodic solution can be observed (see Figs. 5a–5c and 6a–6c). How-
ever, according to our conjecture the third Hopf bifurcation is only the second in the
local DoF, and then the 3D torus can be considered as a superposition of the local
2D torus and the PRW (Fig. 8d). Finally, chaos dominates after crossing the limit
σ4 = 0.0478 (Figs. 2a–2c and 7a–7d). From the viewpoint of overall ring dynamics it
looks like transition to chaos after fourth Hopf-type bifurcation but from the local
DoF point of view this is a realization of the classical NRT scenario where the chaotic
attractor appears as a product of the 3D torus destruction just after third consecutive
Hopf bifurcation (compare Figs. 2a and 2b). Thus, the ring dynamics is a superposi-
tion of periodic rotational forcing and local responses of individual oscillators. In the
case of the 3D torus such high-frequency forcing (characterized by Ω0) coexists with
low-frequency local responses represented by dominant frequency differences Ω1−Ω0

and Ω1 −Ω2 (Fig. 8d). Significant disparity of these frequencies (the PRW and local
limit cycles) is illustrated on frequency spectra in Figures 5c and 6c. As we mentioned
above, such disparity of the 3D torus frequencies was postulated as the cause of its
stability [29].
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Summing up, we have demonstrated in numerical experiment the way to chaos
via four consecutive Hopf-type bifurcation and a stable 3-frequency quasi-periodic
solution in the ring of unidirectionally coupled, identical Duffing oscillators. The
presented analysis should be considered as a supplement to our previous experimen-
tal studies on this research problem [9]. In this paper we have concentrated on the
causes and mechanism of the 3D-torus stability. The mechanism of such stability
has been explained as an effect of the structural separation of rotational and local
DoFs. According to our conjecture, the existence of the stable 3D torus is a result
of synchronous correlation of the PRW and the 2-frequency quasiperiodic response
of nodal oscillators. Our research (including not yet published results) allows us to
suppose that the 3-frequency quasi-periodicity is a phenomenon more common for
loops of unidirectionally coupled oscillators, e.g., the 3D torus observed in the ring of
coupled Lorenz systems [27–29]. A verification of this hypothesis is our task for the
nearest future.
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