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Abstract. Many experiments in recent years have reported that, when
exposed to their corresponding substrate, catalytic enzymes undergo
enhanced diffusion as well as chemotaxis (biased motion in the direc-
tion of a substrate gradient). Among other possible mechanisms, in a
number of recent works we have explored several passive mechanisms
for enhanced diffusion and chemotaxis, in the sense that they require
only binding and unbinding of the enzyme to the substrate rather than
the catalytic reaction itself. These mechanisms rely on conformational
changes of the enzyme due to binding, as well as on phoresis due to
non-contact interactions between enzyme and substrate. Here, after
reviewing and generalizing our previous findings, we extend them in
two different ways. In the case of enhanced diffusion, we show that an
exact result for the long-time diffusion coefficient of the enzyme can be
obtained using generalized Taylor dispersion theory, which results in
much simpler and transparent analytical expressions for the diffusion
enhancement. In the case of chemotaxis, we show that the competition
between phoresis and binding-induced changes in diffusion results in
non-trivial steady state distributions for the enzyme, which can either
accumulate in or be depleted from regions with a specific substrate
concentration.

1 Introduction

Enzymes have attracted much attention in recent years as biocompatible nanoma-
chines that may perform work and undergo directed motion, with many biomedical
and nanoengineering applications [1–4]. In particular, much work has been devoted to
understanding and further exploring experimental observations of enhanced diffusion
[5–22] and chemotaxis [6,13,14,23–30] of enzymes in the presence of their substrate.
Chemotaxis, in particular, may have important implications in the self-organization
of enzymes that participate in a common catalytic pathway [28,31–33].
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The mechanism, or more appropriately mechanisms, underlying enhanced diffu-
sion and chemotaxis are still far from being fully understood [34]. Early attempts at
an explanation focused on active mechanisms, involving the non-equilibrium activity
arising from the (typically exothermic) catalytic step in which the enzyme transforms
a substrate molecule into a product molecule [7,8,10]. However, a systematic investi-
gation [9] of several active mechanisms, including self-phoresis [1], reaction-induced
boost in kinetic energy [7], stochastic swimming [9,10,35–39], and collective heating
of the enzyme [9], showed that none of them is strong enough to account for the
observed values of diffusion enhancement, which range from about ∼20% to as high
as 200% [19]. Recent experimental observations of ballistic motion for urease and
acetylcholinesterase [13,14], however, do seem to suggest the existence of an active
mechanism, but it is still unclear what kind of effect could account for such directed
motion [1,17].

The observation of enhanced diffusion for aldolase, a slow and endothermic
enzyme, which moreover was observed not only in the presence of its substrate
but also in the presence of an inhibitor (which binds to the enzyme but does not
induce a catalytic step) [11], demanded a change of paradigm from active to pas-
sive mechanisms. In this context, we have shown that conformational changes of the
enzyme induced by specific binding to the substrate (or inhibitor) may be sufficient to
account for enhanced diffusion [12,21]. These conformational changes include not only
changes in the average shape of the enzyme, but also changes in its shape fluctuations.
Furthermore, we have shown that, in the presence of a substrate gradient, binding-
induced conformational changes and phoresis compete against each other and pull
the enzyme in opposite directions [27], a mechanism which may explain conflicting
observations in the direction of urease chemotaxis [6,13]. Anisotropic enzymes may
also undergo alignment in the presence of gradients of substrate or of the enzyme itself
[30].

In this paper, we will extend and refine these results in several ways. In Section 2,
we recapitulate our previous work [12,21,27,30], and generalize it to an arbitrary
choice of tracking point on the enzyme for which the overall translational diffusion
and drift of the enzyme are calculated. In Section 3, we use generalized Taylor disper-
sion theory [40–42] to obtain exact and explicit expressions for the long-time diffusion
coefficient and binding-induced changes of enzyme diffusion. We also show that the
long-time diffusion coefficient is independent of the choice of tracking point, and is
always smaller than the short-time diffusion coefficient, which does depend on the
choice of tracking point. Lastly, in Section 4 we calculate the steady state distribution
of enzymes in the presence of a substrate gradient, and show that the competition
between phoresis and binding-induced conformational changes may cause accumula-
tion or depletion of the enzyme from specific regions in space.

2 Diffusion-drift of a dumbbell enzyme in the presence
of a substrate gradient

2.1 Theory and closure approximation

As a minimal model of an enzyme with internal structure and anisotropic shape,
let us consider a flexible dumbbell with two spherical subunits, which may have
different sizes and surface properties, in a gradient of solute particles, see Figure 1.
The location of the dumbbell subunits is denoted by R1 and R2, and the location of
the substrate particles by Xi with i = 1, . . . , N . The full N + 2-particle distribution
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Fig. 1. We use a flexible, asymmetric dumbbell as a minimal model for an enzyme which is
composed of two subunits and can undergo conformational fluctuations. The two subunits
interact with the substrate via non-contact interactions (van der Waals, electrostatic. . .)
and hydrodynamic interactions. Moreover, the substrate molecules can bind specifically to
the enzyme, in which case the enzyme may undergo conformational changes that affect its
average length or its rigidity.

for the dumbbell in contact with the substrate particles is

∂tρN+2(R1,R2,X1, . . . ,XN ; t)

=
2∑

i,j=1

∇Ri ·
(
µij · [kBT∇RjρN+2 + (∇Rjφ

N+2)ρN+2]
)

+
N∑
k=1

{
2∑
j=1

[
∇Rj ·

(
µjs · [kBT∇Xk

ρN+2 + (∇Xk
φN+2)ρN+2]

)
+∇Xk

·
(
µsj · [kBT∇RjρN+2 + (∇Rjφ

N+2)ρN+2]
) ]

+∇Xk
·
(
µss · [kBT∇Xk

ρN+2 + (∇Xk
φN+2)ρN+2]

)}
(1)

where µmn with m,n = 1, 2, s are hydrodynamic mobilities, and the interaction
potential for the full system is

φN+2(R1,R2,X1, . . . ,XN ) = U(R1 −R2) +
2∑
j=1

N∑
k=1

φjs(Rj −Xk) (2)

where U is the pair potential between the two dumbbell subunits, and φjs is the pair
potential between subunit j and a substrate particle.

We can define the two-particle distribution describing the dumbbell, by integrat-
ing out all the degrees of freedom corresponding to the substrate particles

ρ12(R1,R2) =
∫

dX1 . . . dXN ρN+2(R1,R2,X1, . . . ,XN ). (3)

Taking this integral in the equation for the full distribution above, one would obtain
an equation for the two-particle distribution that depends on the three-particle distri-
bution for the two dumbbell subunits and a substrate molecule ρ12s(R1,R2,X). The
equation for the three-particle distribution would in turn depend on the four-particle
distribution, and so on. In reference [30], we showed how this infinite hierarchy of
equations can be truncated using the closure approximation

ρ12s(R1,R2,X) ' ρ12(R1,R2)
ρs(X)
N

e−
φ1s+φ2s

kBT (4)
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where ρs represents the externally imposed substrate concentration profile. Using the
closure we obtain a closed evolution equation for the two-particle distribution

∂tρ12(R1,R2; t) =
2∑

i,j=1

∇Ri
·
{
µij ·

[
kBT∇Rj

ρ12 + (∇Rj
U)ρ12

]}
(5)

−∇R1 · {ρ12σ1 · ∇R1ρs} − ∇R2 · {ρ12σ2 · ∇R2ρs}

with

σ1 ≡
kBT

η

[
A11 +

a3
2

l3

(
B2 −

3
2
A1

)(
n̂n̂− 1

3

)]
(6)

σ2 ≡
kBT

η

[
A21 +

a3
1

l3

(
B1 −

3
2
A2

)(
n̂n̂− 1

3

)]
(7)

corresponding to the phoretic mobilities of subunits 1 and 2, respectively. The phoretic
mobilities arise from the interactions between the subunits and the substrate via the
potentials φjs. The first term in the phoretic mobilities is due to the individual
response of each subunit to the gradient, with the coefficient Ai given by

Ai ≡
1

6ai

∫ ∞
ai

dri r2
i (e−

φis

kBT − 1)
(

4− 4
ai
ri

+
a4
i

r4
i

− a6
i

r6
i

)
(8)

where ai is the radius of subunit i, and ri is the distance from its center. For particles
that are much larger than the range of the interaction, we can use ri = ai + δ with
δ � ai. The terms inside the rightmost parenthesis in the integral become 6δ/ai to
lowest order, giving

Ai ≈
∫ ∞

0

dδδ(e−φ
is(δ)/kBT − 1) ≡ λ2

i (9)

which shows that the coefficient Ai is a generalization of the usual Derjaguin length
λi used to describe phoresis [27,43,44], to the case in which the particle is not neces-
sarily larger than the interaction range. The second term in the phoretic mobilities,
proportional to a3

i /l
3 where l is the distance between the centers of the two subunits,

represents corrections to the phoretic mobility due to the presence of the nearby
subunit. The coefficients Bi are given by

Bi ≡
1
10

∫ ∞
ai

dri ri

(
e−

φis

kBT − 1
)(

1− 5
ri
ai

+ 5
r3
i

a3
i

)
(10)

which, considering very short ranged interactions when ri = ai + δ with δ � ai,
becomes

Bi ≈
ai
10

∫ ∞
0

dδ
(

e−
φis

kBT − 1
)
≡ ai

10
γi (11)

where we have defined γi, which is a lengthscale of the order of the interaction range,
but distinct from the Derjaguin length λi.

2.2 Separation into position and internal degrees of freedom

Because we are mainly interested in the long-time diffusion and drift of the dumbbell
enzyme as a whole, ignoring its internal degrees of freedom (elongation and ori-
entation of the dumbbell), it is convenient to transform equation (5) to coordinates
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representing the overall position of the dumbbell, and the state of its internal degrees
of freedom. The internal degrees of freedom are most approprately represented by the
elongation vector l ≡ R2 −R1, which in turn can be decomposed into an elongation
scalar l and a unit orientation vector n̂, so that l = ln̂. To identify the location of
the dumbbell, we choose an arbitrary tracking point along the line connecting the
two subunits, given by R = R1 + g(l)l, where g(l) is an arbitrary function of the
elongation. For example, the choice g(l) = 1/2, which was used in our previous works
[12,21,30], would correspond to tracking the midpoint between the two subunits.
Some subtleties related to the choice of tracking point will be discussed in Section 3.

With such a general choice of tracking point as determined by the choice of g(l),
the diffusion-drift equation (5) can be written as

∂tρ12(R, l; t) = ∇R · (M · kBT∇Rρ12) +∇l · (Γ · kBT∇Rρ12)
+∇R · [Γ · (kBT∇lρ12 + (∇lU)ρ12)]
+∇l · [W · (kBT∇lρ12 + (∇lU)ρ12)]
−∇R · [ρ12Λv∇Rρs]−∇l · [ρ12Λω∇Rρs] (12)

with the translation tensor

M = MI1 +MDn̂n̂ (13)

with components

MI = (1− g)2µ11
I + g2µ22

I + 2g(1− g)µ12
I (14)

MD = (1− g)2µ11
D + g2µ22

D + 2g(1− g)µ12
D

+ 2g′l
[
g
(
µ22
I + µ22

D

)
− (1− g)

(
µ11
I + µ11

D

)
+ (1− 2g)

(
µ12
I + µ12

D

)]
+ (g′l)2

[
µ11
I + µ11

D + µ22
I + µ22

D − 2
(
µ12
I + µ12

D

)]
(15)

the rotation tensor
W = µ11 + µ22 − 2µ12 (16)

the translation-rotation coupling tensor

Γ = ΓI1 + ΓDn̂n̂ (17)

with components

ΓI = gµ22
I − (1− g)µ11

I + (1− 2g)µ12
I (18)

ΓD = gµ22
D − (1− g)µ11

D + (1− 2g)µ12
D

+ g′l
[
µ11
I + µ11

D + µ22
I + µ22

D − 2(µ12
I + µ12

D )
]

(19)

the translational phoretic mobility

Λv = (1− g)σ1 + gσ2 + g′ln̂n̂(σ2 − σ1) (20)

and the internal (elongation-orientation) phoretic mobility

Λω = σ2 − σ1. (21)

Importantly, we note that, while the internal phoretic mobility Λω and the rota-
tion tensor W are independent of the choice of tracking point as given by g(l); the
translational phoretic mobility Λv, the translation tensor M, and the translation-
rotation coupling tensor Γ do depend on this choice.
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2.3 Long-time diffusion-drift: Moment expansion

We are interested in the long-time behaviour of the dumbbell enzyme. One can iden-
tify a hierarchy of timescales in which relaxation along the elongation coordinate l is
fastest, relaxation in orientation space n̂ via rotational diffusion is slower, and trans-
lational diffusion of the position coordinate R is slowest [12,21,30]. Therefore, in the
following, when we say “long-time behaviour” we refer to times t� τr well beyond the
rotational diffusion time τr ∼ 1/Dr, where Dr is the rotational diffusion coefficient.
For an enzyme of the order of ∼10 nm in size, one expects τr ∼ 10µs. The equations
can be pre-averaged assuming instantaneous equilibrium of the elongation l, and the
orientation n̂ can be dealt with using an expansion in the moments of the orientation
field [30]. Following such a procedure, one can show that the enzyme tends to align
with gradients of the substrate via phoresis, and with gradients of the concentration
of the enzyme itself via hydrodynamic interactions [30]. Moreover, one can write an
evolution equation for the position probability distribution ρ(R; t) =

∫
dl ρ12(R, l; t)

at long times, which reads

∂tρ(R; t) = ∇ · [Deff∇ρ− ρΛeff∇ρs] (22)

where, here and in the following, gradients and divergences are implied to be over
position, i.e. ∇ ≡ ∇R. The effective diffusion coefficient is given by

Deff

kBT
= 〈MI〉+

1
3
〈MD〉 −

2
3
〈ΓI/l〉2

〈WI/l2〉
(23)

which was also found in references [12,21], and the effective phoretic mobility is given
by

Λeff = 〈ΛvI 〉+
1
3
〈ΛvD〉 −

2
3
〈ΓI/l〉
〈WI/l2〉

〈ΛωI 〉 . (24)

Here and in the following, the average 〈A〉 of any quantity A is defined over a Bolz-
mann distribution of elongations, i.e. 〈A〉 ≡ N−1

∫∞
a1+a2

dl l2A e−U(l)/kBT with nor-
malization constant N ≡

∫∞
a1+a2

dl l2e−U(l)/kBT , where the lower bound of the inte-
grals arises due to the hard sphere interactions between the subunits, which limits the
values of the elongation to l > a1+a2. The values of all these averages thus depend on
the specific form of the potential U(l) which holds the two subunits of the dumbbell
together, e.g. on the rest length and on the rigidity or softness of this potential. We
note that both the effective diffusion coefficient and the effective phoretic mobility
have a similar structure, consisting of the first two terms, which correspond to the
average of the contributions due to the translational modes, plus a third term which
represents a fluctuation-induced correction [12,21,30].

It is important to note that the pre-averaging and moment expansion procedures
used to derive (23) and (24) imply several approximations. Unfortunately, it is not
possible to obtain an exact result for the long-time diffusion coefficient and phoretic
mobility in the presence of an arbitrary substrate gradient ρs(R). However, we will
show in Section 3 that in the absence of a gradient one can obtain an exact result
for the long-time diffusion coefficient, which turns out to be similar but not exactly
identical to the moment expansion result (23).

2.4 Binding-unbinding kinetics of the enzyme

We have shown above that the long-time diffusion coefficient and phoretic mobility
of a flexible dumbbell-like object depends on the form of the potential U(l) holding
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the two subunits together. Moreover, the phoretic mobility will also depend on the
surface properties of the subunits, in particular on the non-contact interactions φis
between each subunit i = 1, 2 and the substrate molecules, which enter into the
definition of the coefficients Ai and Bi, see equations (8) and (10). However, enzymes
do not interact with their substrate only through hydrodynamic and non-contact
interactions: substrate molecules may also bind specifically to a binding pocket within
the enzyme, a process which is typically accompanied by conformational changes
of the enzyme itself. In the context of the dumbbell model, these conformational
changes will involve changes in the potential U(l) holding the two subunits together.
Moreover, the surface properties of the subunits may also be affected by binding, in
which case we would have different phoretic coefficients Ai and Bi in the free state
and in the enzyme-substrate complex state.

As a consequence of these binding-induced changes, the effective diffusion coeffi-
cients of the free enzyme and the complex (denoted as De and Dc), which are given by
(23) where the averages are taken using either the potential of the free enzyme Ue(l)
or that of the complex Uc(l), will in general be different from each other, i.e. De 6= Dc.
The same is true for the phoretic mobilities of the free enzyme and the complex as
given by (24), that is, we will have a different mobility for each state Λe 6= Λc. Includ-
ing the specific binding and unbinding of the enzyme to the substrate thus requires
us to consider the two coupled diffusion-drift equations [27]

∂tρe(R; t) = ∇ · [De∇ρe − ρeΛe∇ρs]− konρeρs + koffρc (25)
∂tρc(R; t) = ∇ · [Dc∇ρc − ρcΛc∇ρs] + konρeρs − koffρc (26)

where kon and koff are the binding and unbinding rates of the substrate to the enzyme,
respectively. In the limit in which binding-unbinding occurs much faster than the
time it takes to diffuse into regions of space with significantly different substrate
concentration, we can assume local equilibration with konρeρs ≈ koffρc at every point.
Under this assumption, one can obtain an expression for the evolution of the total
enzyme concentration (in both the free and complex states) ρtot

e ≡ ρe + ρc, which
reads [27]

∂tρ
tot
e (R; t) = ∇ ·

{
D(R) · ∇ρtot

e − [V ph(R) + V bi(R)]ρtot
e

}
(27)

with the substrate-dependent diffusion coefficient

D(R) = De + (Dc −De)
ρs(R)

K + ρs(R)
(28)

the substrate-dependent phoretic drift velocity

V ph(R) =
[
Λe + (Λc − Λe)

ρs(R)
K + ρs(R)

]
∇ρs (29)

and the binding-induced drift velocity

V bi(R) = −(Dc −De)
K

[K + ρs(R)]2
∇ρs (30)

where K ≡ koff/kon is the dissociation constant of the substrate.
With increasing substrate concentration ρs, both the diffusion coefficient (28)

as well as the phoretic velocity (29) vary smoothly, with a Michaelis–Menten-type
dependence, from the value corresponding to the free state in the absence of substrate
(ρs = 0) to the value for the complex state at saturating substrate concentration



2798 The European Physical Journal Special Topics

(ρs � K). The binding-induced velocity (30) points towards decreasing substrate
concentrations in the case of binding-induced enhanced diffusion (Dc > De), and
towards increasing substrate concentrations for inhibited diffusion (Dc < De). As
will be shown in Section 4, the phoretic and binding-induced velocities can pull
the enzyme in opposing directions, leading to non-trivial steady state profiles for
the enzyme, which may accumulate in or be depleted from regions with a specific
substrate concentration.

3 Long-time diffusion coefficient in the absence of a gradient:
Generalized Taylor dispersion theory

3.1 General expression for the diffusion coefficient

In Section 2.3, we discussed the long time diffusion coefficient for a flexible dumb-
bell as calculated using an approximate method, which involves pre-averaging over
the elongation degree of freedom l of the enzyme, and using a moment expansion
scheme to deal with the orientation degree of freedom n̂ [12,21,30]. However, in the
absence of a substrate gradient, it is also possible to obtain the exact long-time dif-
fusion coefficient without recurring to any approximations by means of generalized
Taylor dispersion theory (GTDT) [40–42]. GTDT applies to systems in which the
phase space is divided into two orthogonal subspaces consisiting of local and global
coordinates, which are bounded and unbounded respectively: in our particular case,
the local coordinate is l, which includes both orientation and elongation, while the
global coordinate is the position R. Particularized to the evolution equation (12) for
the dumbbell probability distribution, in the absence of a gradient ∇ρs = 0, GTDT
implies the long time diffusion coefficient1

Deff

kBT
= N ′−1

∫
dl e−U(l)/kBT (M− Γ ·W−1 · Γ) (31)

where N ′ ≡
∫

dle−U(l)/kBT is a normalization constant. Introducing the expressions
for M, Γ, and W above, and performing the integral over orientations, we finally
obtain the result

Deff

kBT
= 〈MI〉+

1
3
〈MD〉 −

2
3

〈
(ΓI)2

WI

〉
− 1

3

〈
(ΓI + ΓD)2

WI +WD

〉
. (32)

This result bears strong similarities to the result obtained using moment expansion
(23). In particular, both results include the first two terms, which correspond to the
average of the contributions due to the translational modes MI + 1

3MD, plus negative
fluctuation-induced corrections [12,21]. However, the two results also show some key
differences: (i) the averaging structure of the third term is different (the elongation l
does not appear explicitly in the GTDT result, and we take an average of the square
rather than a square of the average, which further highlights the fluctuation-induced
origin of the corrections), and (ii) there is an extra term in the GTDT result, which
goes with ΓI +ΓD. These differences can be traced back to the use of a pre-averaging
approximation over the elongation l in the moment expansion method, and have some
important consequences, as described below.

1 In particular, see equation (5.13) in reference [41].
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3.2 Independence of the choice of tracking point and non-existence
of a “center of diffusion”

Firstly, we can substitute the explicit expressions (13)–(19) for the mobility tensors
as a function of the particular choice of tracking point g(l) into expressions (23) and
(32) for the long time diffusion coefficient. It is straightforward to check that the
approximate expression (23) still depends on g(l). One would however expect that,
in the long time limit, the diffusion of a finite sized object such as the dumbbell
under consideration would become independent of the choice of tracking point. This
is indeed true for the exact expression (32), for which the dependence on g(l) cancels
out, proving that indeed the long time diffusion coefficient is independent of the
choice of tracking point. This implies that, while at short times the enzyme will
diffuse with a diffusion coefficient kBT [〈MI〉+ 1

3 〈MD〉] which depends on the choice
of tracking point g(l), at long times this diffusion coefficient will decrease and cross
over into a choice-independent diffusion coefficient given by (32).

One may wonder whether there is a particular choice of tracking point which
would diffuse at all times with a time-independent diffusion coefficient as given by
(32), i.e. a “center of diffusion” [45,46]. This would be possible only if the two cor-
rection terms in (32) were identically zero for some choice of g(l). However, because
each of the two terms is the average of a nonnegative quantity, the total correction
can only be zero if both ΓI = 0 and ΓD = 0. Noting the form of ΓI and ΓD in (18)
and (19), we see that such a choice of g(l) does not exist in general, and thus no
center of diffusion exists in general for such a flexible object. A center of diffusion
does exist in the particular case in which the dumbbell is symmetric, with µ11 = µ22,
in which case we have ΓI = ΓD = 0 if the tracking point is chosen as the midpoint
between subunits, i.e. g(l) = 1/2. A second particular (limiting) case for which a
center of diffusion exists is that of a very long dumbbell for which hydrodynamic
interactions between subunits become negligible, i.e. when we have µ12 = 0 and
µii = (6πηai)−11. In this case, the location of the center of diffusion is given by

g(l) =
1
2

+
1
2
µ11 − µ22

µ11 + µ22
=

1
2

+
1
2
a2 − a1

a1 + a2
· (33)

3.3 Explicit expansion for the diffusion coefficient

Secondly, we can use the mobility tensors in the Oseen approximation

µii =
1

6πηai
1 +O(a3/ηl4) (34)

µ12 =
1

8πηl
(1 + n̂n̂) +O(a2/ηl3) (35)

and introduce them into (32). Expanding everything in powers of 1/l, we can write
the long-time diffusion coefficient as

Deff

kBT
=

1
6πη(a1 + a2)

×
[
1 + 2

a1a2

a1 + a2

〈
1
l

〉
− 9

8
a1a2(a1 − a2)2

(a1 + a2)2

〈
1
l2

〉
+O

(〈
a3
i

l3

〉)]
· (36)

Note that obtaining the third order would require us to go beyond the Oseen approx-
imation of µ12, and going to fourth order would also require the higher order terms in
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µii but, conceptually, obtaining the higher order terms is a straightforward
procedure.

The expression (36) for the long time diffusion coefficient is particularly simple
and transparent, and could not have been obtained from the approximate result (23),
due to the different averaging structure and the missing last term. One key feature
of this result is that the leading order of the long-time diffusion coefficient, i.e. the
diffusion coefficient of a very long dumbell for which hydrodynamic interactions are
negligible, goes as kBT

6πη(a1+a2) . This leading order contribution is independent of the
particular kind of potential holding the two subunits together (or how stiff of soft
this potential is) and of the hydrodynamic interactions between subunits, and, most
importantly, it is independent of the length of the dumbell. In particular, the leading
order does not go as ∼ kBT

ηl , as one may have expected, see e.g. [47]. The leading
order contribution also shows that, in the limit of one of the subunits being much
larger than the other, e.g. a1 � a2, the diffusion coefficient of the dumbbell tends to
the diffusion coefficient of the larger subunit kBT

6πηa1
.

Beyond the leading order, we find a first order term in 〈1/l〉, i.e. related to the
average shape of the dumbbell, which is always positive. More interesting is the sec-
ond order term going as

〈
1/l2

〉
, which includes the contribution due to the thermal

fluctuations about the average shape of the dumbbell. This fluctuation-induced cor-
rection is always negative, and becomes zero only in the particular case of a symmetric
dumbbell with a1 = a2, as found previously [12,21].

3.4 Changes in diffusion due to substrate binding

In Section 2.4, we mentioned how specific binding of the enzyme to a substrate
molecule is expected to modify the diffusion coefficient of the enzyme, through a
modification of the potential U(l) which holds the two subunits together. Using the
result (36) for the long time diffusion coefficient, we can now explicitly discuss these
changes. Assuming that the potentials in the free enzyme state and enzyme-substrate
complex state are given by Ue(l) and Uc(l), respectively, we can calculate the two
diffusion coefficientsDe andDc by taking the averages in (36) using the corresponding
potential. The relative change in diffusion coefficient between the free and complex
states can then be calculated as

α ≡ Dc −De

De
= 2

a1a2

a1 + a2

(
1− 2

a1a2

a1 + a2

〈
1
l

〉
e

)(〈
1
l

〉
c

−
〈

1
l

〉
e

)
−9

8
a1a2(a1 − a2)2

(a1 + a2)2

(〈
1
l2

〉
c

−
〈

1
l2

〉
e

)
+O

(
a3
i

l3

)
· (37)

To lowest order, this diffusion change is governed by the changes in the aver-
age length of the dumbbell, with α ≈ 2 a1a2

a1+a2

(〈
1
l

〉
c
−
〈

1
l

〉
e

)
. This implies that the

complex will diffuse faster than the enzyme, and thus the presence of the substrate
will lead to enhanced diffusion, if the average length of the dumbbell is shorter in
the complex state than in the free state, i.e. if

〈
1
l

〉
c
>
〈

1
l

〉
e
. This will be the case

either if (i) the preferred length of the potential is shortened, or (ii) the potential
becomes more stiff, in which case the entropic tendency of thermal fluctuations to
stretch the dumbbell is more strongly counteracted. This can be checked explicitly
for a harmonic potential Ui(l) = ki(l − li)2/2 where li is the preferred length, ki
is the stiffness, and the subindex i = e, c represents the free or complex state of
the enzyme. For a sufficiently stiff potential, we can neglect the possibility of direct
subunit-subunit contact and thus ignore the lower bound in thermal averages 〈A〉
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of any quantity A, so that
∫∞
a1+a2

dl l2A e−U(l)/kBT ≈
∫∞
−∞ dl l2A e−U(l)/kBT . In this

way, we obtain the simple expression〈
1
l

〉
i

≈ 1
li

ki
kBT
l2i

+ ki
(38)

which shows explicitly that increasing the stiffness ki increases the average inverse
length

〈
1
l

〉
i

and thus increases the diffusion coefficient.
The next order, in particular the term in the second line of (37) proportional to(〈

1
l2

〉
c
−
〈

1
l2

〉
e

)
, includes the contributions due to changes in the fluctuations of the

dumbbell length. Thus, even if the average length of the dumbbell remains unchanged,
changes in fluctuations are sufficient to induce a change in the diffusion coefficient. If
we denote the variance of the inverse dumbbell length as s2

i ≡
〈

1
l2

〉
i
−
〈

1
l

〉2
i
, which is

a measure of the strength of the fluctuations, setting
〈

1
l

〉
c

=
〈

1
l

〉
e

in (37) shows that
the change in diffusion coefficient purely due to changes in the strength of fluctuations
will go as α ≈ −9

8
a1a2(a1−a2)2

(a1+a2)2

(
s2

c − s2
e

)
. Therefore, making the enzyme more rigid

(s2
c < s2

e) will increase the diffusion coefficient, even if the average length remains
unchanged.

The closed form expression (37) for the diffusion enhancement due to substrate-
induced rigidification of the enzyme agrees well with the results in reference [12].
In that work, no such simple closed form expression could be found, due to the use
of the approximate moment expansion scheme (see Eq. (23)) rather than the exact
result from generalized Taylor dispersion theory (see Eq. (32)). We note also that
the prediction of enhanced diffusion due to rigidification of the enzyme has been
quantitatively confirmed using Brownian dynamics simulations with hydrodynamic
interactions in reference [48], although it was argued in the latter work that the
required changes in average length of the enzyme arising from rigidification might be
too large to be biologically relevant.

4 Steady-state enzyme distribution in the presence of a gradient

As argued in Section 2.4 (see Eq. (27)), in the presence of an arbitrary substrate
gradient, it is expected that an enzyme will undergo diffusion with a substrate-
dependent diffusion coefficient, and moreover will experience a drift in the direction of
the gradient which arises from two distinct contributions: a phoretic contribution due
to non-contact interactions between the enzyme subunits and the substrate molecules,
and a binding-induced contribution due to conformational changes of the enzyme
when it binds to a substrate molecule to form a complex.

In reference [27] we described how, for a typical enzyme, we expect the non-
contact interactions (van der Waals, electrostatic. . .) to be attractive, while specific
binding of the substrate usually leads to enhanced diffusion (Dc > De). As a con-
sequence, the two contributions to the drift velocity point in opposite directions
(the phoretic contribution towards the substrate, the binding-induced one away from
the substrate) and compete against each other. This competition between two con-
tributions to chemotaxis can explain [27] the conflicting experimental observations
regarding whether urease chemotaxes towards [6] or away from [13] urea. For sim-
plicity, let us focus on the case in which the phoretic mobility of the enzyme is
unchanged by binding, i.e. we have Λe = Λc = Λ and thus, via equation (29), we
have V ph(R) = Λ∇ρs. The binding-induced velocity, on the other hand, is given by
equation (30). Because the binding-induced velocity becomes weaker with increasing
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substrate concentration, whereas the phoretic velocity is independent of substrate
concentration, imposing |V ph| = |V bi| we find a critical substrate concentration

ρ∗s ≡ K

(√
De|α|
|Λ|K

− 1

)
(39)

above and below which phoresis and binding-induced enhanced diffusion dominate,
respectively. As above, α ≡ (Dc −De)/De represents the relative change in diffusion
coefficient between the free and complex states of the enzyme.

More generally, besides a competition between attractive phoresis and enhanced
diffusion, we could also imagine nanoscale objects (enzymes or otherwise) which expe-
rience a competition between repulsive phoresis and inhibited diffusion. In the former
case, the enzyme will move towards higher substrate concentrations in regions with
ρs > ρ∗s (attractive phoresis dominates), or toward lower substrate concentration in
regions with ρs < ρ∗s (enhanced diffusion dominates), so that it will be depleted from
regions with the critical concentration ρ∗s . In the latter case, the enzyme will move
towards lower substrate concentrations in regions with ρs > ρ∗s (repulsive phore-
sis dominates), or toward higher substrate concentration in regions with ρs < ρ∗s
(inhibited diffusion dominates), so that it will accumulate in regions with the critical
concentration ρ∗s .

We will now demonstrate that the dynamical argument summarized in the previ-
ous paragraph is also reflected in the long time steady-state distribution of enzyme
or enzyme-like nano-objects ρtot

e (R) in the presence of a sustained spatial gradient of
substrate ρs(R). In fact, we can directly calculate this steady-state enzyme distribu-
tion from the evolution equation (27). We note that the evolution equation has the
form ∂tρ

tot
e = −∇ ·J tot

e , where J tot
e is the total flux of enzyme. Assuming that there

are no sources or sinks of enzyme, we can set J tot
e = 0 to obtain the steady-state

distribution

ρtot
e (R) = ρ0

exp
(

Λρs
De(1+α)

) [
1 + (1 + α)ρs

K

] ΛKα
De(1+α)2

1 + α ρs
K+ρs

(40)

where ρ0 is a normalization constant (corresponding to the enzyme concentration at
points where ρs = 0), which can be used to enforce a constraint on the total number
of enzymes in solution.

We note that, in the limit in which phoresis is negligible Λ → 0, or equivalently
when the substrate concentration is very small ρs � ρ∗s , the steady state distribution

becomes ρtot
e (R) = ρ0

(
1 + α ρs

K+ρs

)−1

, i.e. it is inversely proportional to the diffusion

coefficient (28), with ρtot
e (R) ∝ 1/D(R), as experimentally observed in reference [13].

This reflects the fact that, in the absence of phoresis, the evolution equation (27) can
be written as ∂tρtot

e (R; t) = ∇2 {D(R)ρtot
e }. In the opposite limit in which binding-

induced changes in diffusion are negligible, given by α → 0 or equivalently for high
substrate concentrations ρs � ρ∗s , the steady state distribution becomes ρtot

e (R) =
ρ0 exp

(
Λρs
De

)
.

Using the definition (39) of the critical substrate concentration ρ∗s , the steady-
state distribution (40) can alternatively be written in the form

ρtot
e (R) = ρ0

exp
(

α
1+α

ρsK
(K+ρ∗s )2

) [
1 + (1 + α)ρs

K

]( α
1+α

K
K+ρ∗s

)2

1 + α ρs
K+ρs

(41)
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Fig. 2. Steady state concentration of enzyme (or enzyme-like nano-object), as given by
(40) and (41), in the presence of a sustained linear gradient of substrate which reaches the
critical concentration ρ∗s at position x = L. In (a), the enzyme exhibits enhanced diffusion
and attractive phoresis, and is repelled from the point x = L. In (b), the enzyme exhibits
inhibited diffusion and repulsive phoresis and is attracted to the point x = L.

which is valid only in cases in which phoresis and binding-induced changes in diffusion
compete against each other, i.e. when Λ and α are either both positive or both
negative, but has the advantage of making the relation to the critical concentration
ρ∗s more explicit.

In Figure 2, we plot the steady state distribution of enzyme ρtot
e (x) in the presence

of a one-dimensional linear gradient of substrate given by ρs(x) = ρ∗sx/L, which would
correspond to a channel of length nL with a substrate sink with ρs = 0 at one end
(x = 0) and a substrate reservoir with concentration ρs = nρ∗s at the other end
(x = nL). In this case, the substrate concentration at x = L is exactly the critical
concentration, i.e. ρs(L) = ρ∗s . We find that, as predicted, the enzyme is depleted from
the point x = L in the case with enhanced diffusion and attractive phoresis (α,Λ > 0),
see Figure 2a, but accumulates at x = L for inhibited diffusion and repulsive phoresis
(α,Λ < 0), see Figure 2b. The strength of the depletion/accumulation effect increases
both with the magnitude of α and with ρ∗s , with the enzyme concentration reaching
minimal and maximal values of ρtot

e /ρ0 ≈ 1/(1 +α) at x = L in the limit of ρ∗s � K.
It should be noted that, although the enzyme concentration profiles given by

(40) and (41) are steady-state profiles corresponding to a zero-flux condition J tot
e =

0, they do not correspond to an equilibrium Boltzmann distribution. In fact, the
enzyme profiles are a consequence of the externally imposed substrate gradient, and
are therefore due to intrinsically non-equilibrium effects. If the substrate gradient is
not artificially sustained, the system will tend to an equilibrium distribution with
uniform substrate and enzyme concentrations. In relation to this, it should be noted
that typical enzyme chemotaxis experiments [6,23–25,28] are not performed in a
sustained non-equilibrium steady-state, but rather measure the early stages of the
transient dynamics from an initial state where enzyme and substrate are not fully
mixed towards the uniform equilibrium distribution. Detailed theoretical modelling
of such experiments therefore requires the solution of the time evolution equation
(27), or more generally (if binding-unbinding cannot be considered to be sufficiently
fast) of the coupled equations (25) and (26), with appropriate initial and boundary
conditions.

5 Conclusion

As mentioned in the introduction, the mechanisms underlying enhanced diffusion
and chemotaxis of enzymes in the presence of their substrate are still far from being
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understood. In fact, it is likely that not just one but several different mechanisms are
responsible for the observed behaviours. Each of these mechanisms may be more or
less relevant for any given enzyme, and several of them may act simultaneously and
add up to the overall enhanced diffusion or chemotaxis observed.

Besides the active mechanisms already discussed in the introduction, and the
passive mechanisms that we have described in detail here, an intriguing possibility
that has been recently proposed and investigated [14–16,20] is that of substrate-
induced dissociation of the enzymes. Indeed, many of the enzymes for which enhanced
diffusion and chemotaxis has been observed are oligomeric enzymes, composed of
monomeric subunits which may reversibly associate and dissociate. Careful experi-
ments will thus be needed to discriminate between all these different mechanisms, and
to identify which ones are relevant for any given enzyme under given experimental
conditions.

Careful theoretical work will also be needed to characterize all the active and
passive mechanisms that can contribute to enhanced diffusion and chemotaxis of
enzymes. As shown here, passive mechanisms associated to binding-induced con-
formational changes as well as phoresis of the enzyme can provide an important
contribution. Moreover, the results described here should be useful beyond under-
standing biological enzymes. In particular, the competition between phoretic effects
and conformational changes that we have described (see Fig. 2) may be harnessed in
the design of synthetic nano-vehicles that are directed towards finely-tuned regions
in space as determined by the specific concentration of a certain chemical.

Our predictions regarding the dependence of the diffusion coefficient of a flexi-
ble dumbbell on the relative size of the dumbbell subunits, as well as on the length
and rigidity of the linker, could also be tested in more detail using micron-sized col-
loids. In particular, two colloids could be linked together using, e.g., DNA linkers
and polymer spacers that allow control over the rest length and flexibility of the link
[49,50]. Another possibility would be to link a colloid to a vesicle via a flexible mem-
brane nanotube [51]. Moreover, at the micron scale, the rotational diffusion times are
expected to become of the order of 10 s, and it would therefore be easy to discrim-
inate between the short-time and long-time diffusion coefficients, and to elucidate
the dependence and independence, respectively, of these diffusion coefficients on the
choice of tracking point.
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