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3 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
4 IIASA, Schlossplatz 1, 2361 Laxenburg, Austria

Received 31 August 2019 / Received in final form 25 October 2019
Published online 12 March 2020

Abstract. Many stochastic complex systems are characterized by the
fact that their configuration space doesn’t grow exponentially as a
function of the degrees of freedom. The use of scaling expansions is
a natural way to measure the asymptotic growth of the configura-
tion space volume in terms of the scaling exponents of the system.
These scaling exponents can, in turn, be used to define universality
classes that uniquely determine the statistics of a system. Every system
belongs to one of these classes. Here we derive the information geome-
try of scaling expansions of sample spaces. In particular, we present the
deformed logarithms and the metric in a systematic and coherent way.
We observe a phase transition for the curvature. The phase transition
can be well measured by the characteristic length r, corresponding to a
ball with radius 2r having the same curvature as the statistical mani-
fold. Increasing characteristic length with respect to size of the system is
associated with sub-exponential sample space growth which is related
to strongly constrained and correlated complex systems. Decreasing
of the characteristic length corresponds to super-exponential sample
space growth that occurs for example in systems that develop struc-
ture as they evolve. Constant curvature means exponential sample
space growth that is associated with multinomial statistics, and tradi-
tional Boltzmann-Gibbs, or Shannon statistics applies. This allows us
to characterize transitions between statistical manifolds corresponding
to different families of probability distributions.

1 Introduction

Statistical physics of complex systems has turned into an increasingly important
topic with many applications. Its main aim is to come up with a unified approach
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to understand, describe, and predict the statistical properties of a plethora of differ-
ent complex systems; see, e.g., [1] for an overview. While the microscopic nature of
complex systems can be very different, their statistical properties often have common
features across various systems. Entropy is undoubtedly the key concept in statis-
tical physics that connects the statistical description of microscopic dynamics with
the macroscopic thermodynamic properties of a system. The notion of entropy has
been adopted also in other contexts, such as information theory or statistical infer-
ence, which are concepts quite different from thermodynamics [2]. One elegant and
powerful concept arising from the theory of statistical inference is that of information
geometry [3,4]. It applies ideas from differential geometry to probability theory and
statistics. In this context, the concept of entropy also plays a crucial role, since the
metric on the statistical manifold is derived from the corresponding (relative) entropy.
This, so-called Fisher-Rao metric, enables us to analyze statistical systems from a
different perspective. For example, one can study critical transitions by calculating
singularities of the metric [5].

In information geometry, most attention has focused on systems that are governed
by Shannon entropy [3,4]. However, it is well known that many complex systems,
especially strongly correlated or constrained systems, or systems with emergent com-
ponents, cannot be described within the framework of Shannon entropy [1]. For this
reason, a number of generalizations to Shannon entropy have been proposed; in con-
nection with power laws [6,7], special relativity [8], multifractal thermodynamics [9],
or black holes [10,11].

To classify entropies for stochastic systems of various kinds, it is natural to
start with the information-theoretic foundations of Shannon entropy, i.e., the so-
called Shannon-Khinchin (SK) axioms [12–14]. The first three SK axioms are usually
formulated as:

– (SK1) Entropy is a continuous function of the probabilities pi only.1

– (SK2) Entropy is maximal for the uniform distribution, pi = 1/W .

– (SK3) Adding a state W + 1 to a system with pW+1 = 0 does not change the
entropy of the system.

The fourth axiom is called the composability axiom and determines the entropy
functional uniquely:

– (SK4) H(A+B) = H(A) +H(B|A), where H(B|A) =
∑
pAkH(B|Ak)

where H(B|Ak) is the entropy of the conditional probability, pB|Ak . In this for-
mulation, the unique solution that is compatible with SK1-4 is Shannon entropy
H(P ) = −

∑
i pi log pi. When the fourth axiom is relaxed, one can obtain a wider

class of entropic functionals. First generalizations of the fourth axiom were intro-
duced in connection with generalized additivity [15,16] group laws [17] or statistical
inference [18]. These approaches are somewhat limited in scope since they all lead to
a class of entropies, which can be expressed as a function of Tsallis entropy [6].

The relaxation of SK4 also naturally leads to a classification scheme of complex
systems [19,20]. The main idea of this approach is to study the asymptotic scaling
exponents of the entropy functional that are associated with a particular system’s
configuration space. These systems are associated with systems that have a sub-
exponentially growing configuration space, when seen as a function of degrees of

1In several cases, entropies incorporate external parameters such as q for Tsallis entropy or c
and d for (c,d)-entropies. However, these parameters are constants that characterize the universality
class of the process. They are not parameters subject to variation in entropy maximization.
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freedom. This classification scheme is based on mathematical analysis of the asymp-
totic scaling of the entropic functionals that are governed by the first three SK
axioms.2

Since the configuration space of most complex systems does not grow exponen-
tially (as for the case of Shannon entropy), but polynomially [7], as a stretched
exponential [21], or even super-exponentially [22], the appropriate scaling behavior
of the entropic functional is crucial for a proper thermodynamic interpretation. For
this end, we use recently developed scaling expansion [23], which is a special case of
Poincaré asymptotic series [24], whose coefficients are the scaling exponents of the
system.

The aim of this paper is to define a generalization of Shannon entropy that matches
the appropriate asymptotic scaling of a given system, and use it to derive the asso-
ciated generalized Fisher-Rao metric of the underlying statistical manifold. For this
end, we use the framework of deformed logarithms [26,36]. It has been shown recently
[27] that one can naturally obtain two types of information metric within that frame-
work, one, corresponding to the maximum entropy principle with linear constraints,
and the other, corresponding to the maximum entropy principle when used with
so-called escort constraints, instead of ordinary (linear) constraint terms.

Escort distributions appeared in connection with chaotic systems [28], and were
discussed in the context of superstatistics [29,30]. Later it became possible to relate
them to linear constraints through a log-duality [31]. Interestingly, escort distribu-
tions also appear as a canonical coordinate in information geometry [32,33]. In this
paper, we use both linear and escort approaches and compare their corresponding
metric tensor and its invariants. We focus particularly on the microcanonical ensem-
ble in the thermodynamic limit, since the metric should correspond to the system’s
asymptotic properties, given by its characteristic structure. Some partial results for
the curvature of escort metric were recently obtained in this direction [35]. However,
no systematic and analytically expressible results for metric tensor and its scalar
curvature have been obtained so far. We show that the curvature of the statisti-
cal manifold naturally distinguishes between three types of systems: systems with
sub-exponentially growing configuration or sample space (correlated and constrained
systems), exponentially growing sample space (equivalent to ordinary multinomial
statistics), and super-exponentially growing sample space (e.g. systems that develop
emergent structures as they evolve). The vector of scaling exponents plays the role
of a set of order parameters, i.e., the distance from the phase transition between
sub-exponential and super-exponential phases.

The paper is organized as follows: Section 2 introduces the scaling expansion and
how to calculate corresponding scaling exponents. We discuss several systems with
non-trivial scaling exponents. In the last part of the section, we establish a represen-
tation of universality classes for complex systems, by introducing scaling vectors and
their basic operations. In Section 3, we briefly revisit the results of information geom-
etry in the framework of φ-deformed logarithms. We focus on information geometry
with both linear and escort constraints. The main results of the paper are derived
in Section 4, where we define the appropriate generalized logarithm by combining
the φ-deformation framework and the requirement of asymptotic scaling. The prop-
erties of corresponding entropic functionals are discussed. We exemplify the whole
approach by the simple, yet very general, class of entropies with one correction term
from the scaling expansion and calculate the asymptotic behavior of scalar curvature
of the microcanonical ensemble in the thermodynamic limit. The last section draws
conclusions. The paper has several appendices that contain several technical details.

2This does not mean that actual distribution functions that are, say, obtained from the maximum
entropy principle must be equi-distributed since the form of the distribution is determined not only
by the entropic functional, but also by the constraints.
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2 Scaling expansion of the volume of configuration space

The scaling expansion [23] is a method to investigate of the asymptotic scaling
behavior of a sample space volume, W (N). Here W is the number of accessi-
ble states in a system, and N indicates size of a system.3 The scaling expansion
is a special case of the Poincaré asymptotic series, where the coefficients corre-
spond to the scaling exponents of the system. We introduce the notation for the
iterated use of functions, f (n)(x) = f(. . . f(f(x)) . . . )︸ ︷︷ ︸

n times

, to define a set of re-scaling

operations, r
(n)
λ (x) = exp(n)(λ log(n)(x)). This set of re-scaling operations contains

the well-known multiplicative re-scaling, x 7→ λx (n = 0), power rescaling x 7→ xλ

(n = 1), and the additive rescaling x 7→ x + log λ (n = −1). For each n, r(n) is a

representation of the multiplicative group (R+, ×), i.e., r
(n)
λ ◦ r(n)λ′ = r

(n)
λλ′ . We now

investigate how a function, W (N), scales with re-scaling of N 7→ r
(n)
λ (N). Note that

due to a simple theorem (see Appendix A2 in [23]) the function z(λ), defined as

z(λ) = limN→∞
g(r

(n)
λ (N))

g(N) , must have the form z(λ) = λc for c ∈ R∪{±∞} whenever

the limit exists. We start with multiplicative scaling (n = 0): The expression W (λN)
W (N) is,

according to the theorem, equal to λc0 . We assume that W (N) is a strictly increasing
function, then it follows that c0 ≥ 0.4 It can happen that c0 = +∞. In that case, the
expression grows faster than any polynomial. This problem can be resolved by using

log(l)(W (N)) instead of W (N), for an appropriate choice of l. The parameter l is cho-

sen such that c
(l)
0 , corresponding to log(l)W (λN)

log(l)W (N)
∼ λc

(l)
0 , is finite. We call l the order

of the process. We get that W (N) ∼ exp(l)(N c
(l)
0 ), for N � 1. To get the corrections

to the leading order, we use the fact that log(l)W (λN)

log(l)W (N)
Nc0

(λN)c0 ∼ 1. When we use the

re-scaling for n = 1, we get the second scaling exponent: log(l)W (Nλ)

log(l)W (N)
Nc

(l)
0

(Nλ)c
(l)
0

∼ λc
(l)
1 .

Therefore, W (N) ∼ exp(l)(N c
(l)
0 (logN)c

(l)
1 ). One can continue along the same lines

to obtain the asymptotic expansion of W (N), which reads

W (N) ∼ exp(l)

 n∏
j=0

(log(j)N)c
(l)
j

 for N →∞, (1)

where c
(l)
j are the characteristic scaling exponents. The scaling expansion of

log(l)W (N) can be written

log(log(l)W (N)) =
n∑
j=0

c
(l)
j log(j+1)N +O(logn+1(N)). (2)

It can be shown that the scaling exponents can be calculated from W (N) as

c
(l)
k = lim

N→∞
log

(k)
(N)

(
log

(k−1)
(N)

(
. . .

(
log(N)

(
N

d log(l)(W (N))

dN
− c(l)0

)
− c(l)1

)
. . .

)
− c(l)k−1

)
.

(3)

3For example, think of N as the number of particles in a system, or the number of throws in a
coin tossing experiment.

4Details about processes with reducing sample space can be found e.g., in references [41–44].
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As a next step, we apply the scaling expansion to obtain the corresponding exten-
sive entropy functionals. It is well-known that for complex systems (with sub- or
super-exponential phase space growth) the Shannon-Boltzman-Gibbs entropy is not
an extensive quantity. To obtain an extensive expression for such systems, one can
introduce an appropriate generalization of the entropy functional [1]. A natural way
how to characterize thermodynamic entropy is to define the entropy functional S(W )
which is extensive. This requirement can be expressed for the microcanonical ensem-
ble as S(W (N)) ∼ N for N → ∞. For the purpose of thermodynamics, we do not
have to require exact extensivity (with equality sign), but only its weaker asymptotic
version. We consider the general trace-form entropy functional

S(P ) =
W∑
i=1

g(pi). (4)

The scaling expansion of the extensive entropy in the microcanonical ensemble can
be expressed as

S(W ) ∼
n∏
j=0

log(j+l)(W (N))d
(l)
j for N →∞, (5)

and the scaling expansion of g(x) is

g(x) ∼ x
n∏
j=0

log(j+l)

(
1

x

)d(l)j
. (6)

The scaling coefficients d
(l)
j can be obtained by

d
(l)
k = lim

N→∞
log

(l+k)
(W )

(
log

(l+k−1)
(W )

(
. . .

(
log

(l)
(W )

((
N

d log(l)W (N)

dN

)−1)
−d(l)0

)
. . .

)
−d(l)k−1

)
.

(7)

The requirement of extensivity determines the relation between scaling exponents

c
(l)
j and d

(l)
j as

d
(l)
0 =

1

c
(l)
0

d
(l)
k = −

c
(l)
k

c
(l)
0

k = 1, 2, . . . (8)

Examples of systems with different scaling exponents. The first example is a ran-
dom walk (RW) on the discrete one-dimensional lattice with two possible steps: left or
right. The space of all possible paths grows exponentially, WRW (N) = 2N ∼ exp(N),
and we obtain the formula for Boltzmann entropy SRW = logWRW (kB = 1).
Now consider an aging random walk (ARW) [20], where the walker takes one
step in a random direction, followed by two steps into a random direction, fol-
lowed by three steps, etc. In this case, the sample space grows sub-exponentially,

WARW ∼ 2
√
N/2, and SARW = (logWARW )2. The next example is the magnetic
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Fig. 1. Parametric space of scaling expansion universality classes with scaling exponents
of Random walk (RW), Aging random walk (ARW) Magnetic coin model (MC), Random
networks (RN), Random walk cascade (RWC) and processes with compact support distri-
bution (CS). (a) 2D parametric space of scaling expansion universality classes for the first
two exponents (as in [19]). We see that some super-exponential systems are not properly
represented. (b) Extension to three dimensions by adding the third scaling exponent, d2. All
mentioned examples can be described with the first three scaling exponents.

coin model (MC) [22], where each coin can be in two states: head or tail, how-
ever, two coins can also stick together and create a bond state. It can be shown that

the corresponding sample space grows super-exponentially, WMC ∼ NN/2e2
√
N . One

can conclude that the corresponding extensive entropy is asymptotically equivalent
to SMC = logWMC/ log logWMC . Another example of super-exponential processes

are random networks (RN), whose sample spaces grow as WRN = 2(N2 ), and thus,
SRN = (logWRN )1/2. The final example is the double-exponential growth of random
walk cascade (RWC), where the walker can take a step to the right, to the left, or

split into two independent walkers [23]. For this, we get that WRWC = 22
N − 1, and,

SRWC = log logWRWC . In Figure 1 we show the parameter space of entropies given
by three scaling exponents (d0, d1, d2). The above examples are indicated as points.
In Figure 1a the plane for the first two scaling exponents is shown, as presented in
[19]. We see that if one uses only the first two exponents, some super-exponential pro-
cesses are not properly represented. By adding a third scaling exponent this problem
is solved Figure 1b. So far, we have not yet found simple examples that need more
than three scaling exponents.

2.1 Universality classes for scaling expansions

Scaling expansions define universality classes of statistical complex systems according
to set of the scaling exponents of their sample space [23]. The representation of the
sample space volume,W (N), by its scaling expansion can be used to uniquely describe
the statistical properties in the thermodynamic limit.

Consider a function c(x) represented by its scaling expansion

c(x) ∼ exp(l)

 n∏
j=0

(
log(j)(x)

)c(l)j  . (9)

Its scaling exponents can be collected in the scaling vector

C = {l; c(l)0 , c
(l)
1 , . . . , c(l)n } . (10)
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In principle, the scaling vector can be infinite, however, typically, after several
terms the corrections are either zero, or do not contribute significantly. The parameter
n denotes the number of corrections.

Let a(x) and b(x) be two functions with its respective scaling expansion
determined by the two vectors of scaling exponents

A = {la; a0, a1, . . . , an} (11)

B = {lb; b0, b1, . . . , bn}. (12)

Without loss of generality, n can be the same for both vectors because one can
always append zeros to the shorter vector. We can now define the equivalence relation

a(x) ∼ b(x) if A ≡ B, (13)

as well as natural ordering

a(x) ≺ b(x) if A < B , (14)

where the symbol < is used in the lexicographic meaning, i.e.,

A < B if


la < lb
la = lb, a0 < b0
la = lb, a0 = b0, a1 < b1
. . .

(15)

For every vector C we define the corresponding entropy scaling vector D, denoted
by D = C−1, that is obtained from equation (8) by requirement of extensivity. One
can define analogous relations for D through the relations for corresponding vectors
C. Thus, for entropy scaling vectors E and F , we can say that

E < F if


le < lf
le = lf , e0 < f0
le = lf , e0 = f0, e1>f1
. . .

(16)

Note that for sub-leading scaling exponents the inequality is reversed, which is
the result of equation (8). Additionally, one can define basic algebraic operations on
the scaling vectors, such as generalized addition or derivative operator. More details
can be found in Appendix A. Let us make an important note. As discussed in [23],
the SK axioms set requirements on the admissible set of scaling exponents. From SK2

we get that dl ≡ d
(l)
0 > 0 and from SK3 that d0 < 1. Note that the vector D can be

also represented as

D = {l; d(l)0 , d
(l)
1 , . . . , d(l)n } = {0, . . . , 0︸ ︷︷ ︸

l times

, dl, dl+1, . . . , dl+n} . (17)

This means that one can use the representation without specifying l with an
appropriate number of zeros at the beginning. This is useful for example for the plots
in the parametric space, where it is possible to plot processes of different order l (as
e.g., in Fig. 1). However, one has to keep in mind that this representation can be
misleading in the sense that the limit dl → 0 does not have a clear meaning, since it
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changes the order of the process. This can be nicely seen in the example of Tsallis
entropy [6], where

lim
q→1−

∑W
i=1 p

q
i − 1

1− q
= −

W∑
i=1

pi log pi , (18)

which can be formulated in terms of entropy scaling vectors for as

lim
q→1−

D = lim
q→1−

(1− q, 0) = (0, 1). (19)

Interestingly, the limit from above, q → 1+, is even more pathological.
In this case the scaling vector corresponding to Sq(P ) for q > 1 is (0,0),
because Sq(N) ∼ N1−q + 1 ∼ N0. These pathologies have their origin in the non-
commutativity of limits, limN→∞ limdl→0 6= limdl→0 limN→∞. The limit dl → 0
depends on the particular representation of the extensive entropy.

3 Information geometry of φ-deformations

Information geometry plays a central role in the theory of information as well as in
statistical inference. It allows one to study the structure of the statistical manifold by
means of differential geometry. We derive the information-geometric properties of the
scaling expansion in the framework of φ-deformed logarithms introduced in [26,36].
The φ-deformation is a generalization of logarithmic functions. It can be subsequently
used to establish a connection with information theory, where the logarithm plays
the role of a natural information measure (Hartley information). The φ-deformed
logarithm is defined by a positive, strictly increasing function φ(x), on (0,+∞) as

logφ(x) =

∫ x

1

dy

φ(y)
. (20)

Hence, logφ is an increasing concave function with logφ(1) = 0. For φ(x) = x, we
obtain the ordinary logarithm. Naturally,

d logφ(x)

dx
=

1

φ(x)
. (21)

The inverse function of logφ, the so-called φ-exponential, is an increasing and
convex function. This enables one to define the parametric φ-exponential family of
probability distributions as

p(x; θ) = expφ

(
Ψ(θ) +

∑
i

xiθi

)
, (22)

where the function Ψ(θ) is called the Massieu function and normalizes the distribu-
tion. As discussed in [27], there are two natural ways how to make a connection with
the theory of information through the maximum entropy principle. The first is based
on the maximization of the entropy functional under the linear (thermodynamic) con-
straints, the latter is based on a maximization under so-called escort (or geometric)
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constraints. Both approaches lead to the φ-exponential family. The former approach
defines the φ-deformed entropy as [26]

SNφ (p) =
W∑
i=1

∫ pi

0

dx logφ(x) (23)

which is maximized by the φ-exponential family for linear constraints, i.e., constraints
of the type

W∑
i=1

piEi = 〈E〉. (24)

In information geometry, escort distributions play a special role of dual coordinates
on statistical manifolds [34]. They can be defined by φ-deformations as

Pφi =
φ(pi)∑
k φ(pk)

=
φ(pi)

hφ(P )
. (25)

It can be shown that the entropy maximized by the φ-exponential family for escort
constraints, i.e., for constraints of the type

W∑
i=1

Pφi Ei = 〈E〉φ , (26)

can be expressed as

SAφ (p) =
W∑
i=1

Pφi logφ(pi) =

∑W
i=1 φ(pi) logφ(pi)∑W

j=1 φ(pj)
. (27)

For both approaches it is possible to establish a link to information geometry, i.e.,
to derive a generalization of a Fisher information metric, which can be done through
a divergence (or relative entropy) of Bregmann type, which is defined as

Df (p||q) = f(p)− f(q)− 〈∇f(q), p− q〉 , (28)

where 〈·, ·〉 denotes the inner product. Alternatively, one can use the divergence
of Csiszár type, but its information geometry is trivial, because it is conformal to
ordinary Fisher information geometry, see, e.g., references [27,36].

Let us consider a parametric family of distributions p(θ). The Fisher information
metric of this family at point θ0 can be calculated as

gfij(θ0) =
∂2Df (p(θ0)||p(θ))

∂θi∂θj
|θ=θ0 . (29)

Let us consider a discrete probability distribution {pi}ni=0. The normalization
is given by

∑n
i=0 pi = 1, so we consider pi, . . . , pn as independent variables, while

p0 is determined from p0 = 1 −
∑n
i=1 pi. We parameterize this probability sim-

plex by a φ-deformed exponential family.5 For the entropy SNφ , we have fNφ (p) =

5Note that this parametric family typically constitutes a smooth manifold [34].
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∑
i

∫ pi
0

logφ(x) dx while for SAφ (p) we end with f(p) =
∑
i P

θ
i logφ(pi). After a

straightforward calculation, we obtain that [27]

gNφ,ij(P ) = log′φ(pi)δij + log′φ(p0) =
1

φ(pi)
δij +

1

φ(p0)
, (30)

and

gAφ,ij(P ) = − 1

hφ(p)

(
log′′φ(pi)

log′φ(pi)
δij +

log′′φ(p0)

log′φ(p0)

)
=

1

hφ(p)

(
φ′(pj)

φ(pj)
δij +

φ′(p0)

φ(p0)

)
,

(31)
respectively. As a result, for a given φ-deformation there are two types of metric
on the information manifold. Note that it is natural to consider a one-parametric
class of affine connections for which we obtain the so-called dually-flat structure for
which the corresponding Christoffel coefficients vanish [34]. This structure is useful
in information geometry, however, we stick to the well-known Levi-Civita connection
(which can be obtained as a special case of a dually-flat connection, since the Levi-
Civita connection is the only self-dual connection [4]), because the metric is non-
vanishing. Thus, the corresponding invariants, such as scalar curvature, are non-trivial
and reveal some information about the statistical manifold.

Let us now focus on the scalar curvature of corresponding to the metric tensor,

Rφ = gikφ g
lj
φ Rφ,ilkj , in the thermodynamic limit N → ∞. We focus on the micro-

canonical ensemble, i.e., we consider pi = 1/W . We assume no prior information
about the system or its dynamics, so all states are equally probable.

It is possible to show in a technical but straightforward calculation that the scalar
curvature can be expressed as (see also [39,40])

Rφ(W ) =
W (W − 1)

(2rφ(W + 1))2
, (32)

which corresponds to the scalar curvature of a W -dimensional ball of radius 2rφ. The
function rφ depends only on the form of the φ-deformation. We call the function rφ
characteristic length. For the case of the Amari metric, it can be expressed as

(rAφ (W ))2 = −
log′φ

(
1
W

)2
log′′φ

(
1
W

)3(
log′′′φ

(
1
W

)
log′φ

(
1
W

)
− 3 log′′φ

(
1
W

)2)2 , (33)

while for the metric of Naudts type we obtain

(rNφ (W ))2 =
W (log′φ

(
1
W

)
)3

(log′′φ
(

1
W

)
)2

. (34)

4 Information geometry of scaling expansions

Let us now consider an arbitrary φ-deformed logarithm. We show how to introduce
a generalization of the logarithm with a given asymptotic scaling. In contrast to φ-
deformations, we do not start with the definition of φ, but focus on the definition of
the logarithm. We denote the desired logarithmic function as ΛD. Let us state the
requirements that ΛD should fulfil:
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1. Domain: ΛD : R+ → R,

2. Monotonicity : Λ′D(x) > 0,

3. Concavity : Λ′′D(x) < 0,

4. Normalization: Λ′D(1) = 1,

5. Self-duality : ΛD(1/x) = −ΛD(x),

6. Scaling expansion: ΛD(x) ∼
∏k
j=0

[
log(j+l)(x)

]d(l)j
for x→∞.

The requirements follow the properties of the ordinary logarithm. Particularly
convenient is the self-duality requirement, from which we can directly calculate
the asymptotic expansion around 0+. A direct consequence of self-duality is that
ΛD(1) = 0. Next, we want to find a representation that is simple, analytically
expressible, and universal for any set of scaling exponents. Due to the self-duality
requirement, we can focus only on the interval (1,+∞), while on the interval (0, 1)
the logarithm is defined by the self-duality. To find an appropriate representation,
we start from the scaling expansion itself. Unfortunately, the scaling expansion,∏k
j=0

[
log(j+l)(x)

]d(l)j
, is not generally defined on the whole interval (1,∞), since

the domain of log(l)(x) is (exp(l−2)(1),∞). We can overcome this issue by adjusting
the nested logarithm by replacing log 7→ 1 + log. Further, to be able to fulfil the nor-
malization condition, we add a multiplicative constant to the first nesting, so that for
each order the corresponding term can be expressed as (1 + rj log([1 + log](j−1)(x)).
Thus, the generalized logarithm can be expressed as

ΛD(x) = R

 n∏
j=0

(
1 + rj log[1 + log](j+l−1)(x)

)d(l)j − 1

 . (35)

The logarithm automatically fulfils the condition ΛD(1) = 0. The parameters rn
define the set of scale parameters that influence the behavior at finite values, while
the asymptotic properties are preserved. Because

Λ′D(1) = R
n∑
j=0

rjd
(l)
j (36)

we can obtain normalization of the derivative in several ways. For this we define the
“calibration”

r0 = ρ
1− r

∑n
j=1 d

(l)
j

rd
(l)
0

(37)

rk = ρ (38)

R = r/ρ , (39)

where r and ρ are free parameters. The parameter ρ can be determined by additional
requirements. The first option is to require that ΛD is smooth enough, at least it
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has continuous second derivative. From the second derivative of the self-duality con-
dition together with the normalization condition, we get Λ′′D(1) = −1. Following a
straightforward calculation, we find

Λ′′D(1) = R

2
∑
i<j

rirjd
(l)
i d

(l)
j +

n∑
j=0

(
r2jd

(l)
j .
(
d
(l)
j − 1

)
− (j + l)rjd

(l)
j

) . (40)

Using equation (37) in equation (40), we get an expression for ρC , i.e., the scale
parameter in the smooth calibration

ρC =
r
∑
j d

(l)
j + l − 1

d
(l)
0 −1
d
(l)
0 r

(
1− r

∑
j d

(l)
j

)2
+ (2− r)

∑
j d

(l)
j − 2r

∑
j≤i d

(l)
i d

(l)
j + r

∑
j

(
d
(l)
j

)2 .
(41)

The free parameter r can be used to ensure that ρ is positive. Alternatively, we
can simply consider r0 = 1, which is useful for several applications. In this case we
get that ρL scale parameter in the leading-order calibration is simply

ρL =
rd

(l)
0

1− r
∑n
j=1 d

(l)
j

. (42)

Note that after a proper normalization, this calibration corresponds to the cali-
bration used in [19,20]. Unless a continuous second derivative is explicitly required,
it is more convenient to work with this simpler calibration.

We now turn our attention to the information geometry of ΛD-deformations and
introduce a notation for the nested logarithm

µk(x) = [1 + log](k)(x). (43)

We sketch the results on for the scaling expansion with one correction. All tech-
nical details can be found in Appendix B. In Appendix C we show the calculation
for arbitrary scaling vectors and calibrations, which is technically more difficult, but
leads to the same results. We now denote the scaling vector as D = (l; c, d). Note
that this entropy has been studied for l = 0 in [19]. This inspires us to define the
generalized logarithm as

log(l;c,d)(x) = r

(
µl(x)c

(
1 +

1− cr
dr

logµl(x)

)d
− 1

)
= log(c,d) (µl(x)) . (44)

This definition corresponds to the choice of ρ in equation (42).6 The logarithms
are depicted in Figure 2a for various scaling exponents. The inverse function, the
deformed exponential, can be obtained in terms of the Lambert W-function7

exp(l;c,d)(x) = νl

(
exp

(
−d
c

[
W
(
B(1− x/r)1/d

)
−W (B)

]))
, (45)

6Note that the original (c, d)-logarithm (as appearing in the rightmost part of Eq. (44)) was
introduced in [19] for l = 0 and c 7→ 1 − c. Nevertheless, that choice of parametrization is not so
convenient for l > 0.

7The Lambert-W function is defined as the solution of the equation W (z)eW (z) = z.
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Fig. 2. (a) Generalized logarithms corresponding to scaling exponents of the aforementioned
models. (b) Escort distributions corresponding to the generalized logarithms. The scaling
exponents (l; c, d) for the models are: Random walk (RW): (1; 1, 0), Ageing random walk
(ARW): (1; 2, 0), Magnetic coin model (MC): (1; 1,−1), Random network (RN): (1; 1/2, 0),
Random walk cascade (RWC): (2; 1, 0).

where B = cr
1−cr exp

(
cr

1−cr

)
and νl is the inverse function of µl, i.e.,

νl(x) = exp(exp(. . . (exp(x− 1)− 1) . . . ))︸ ︷︷ ︸
l times

. (46)

Note that depending on the values of c and d this deformed exponential contains
the exponential, power laws, and stretched exponentials, respectively [1]. It is easy
to see that the corresponding scaling vector of the exponential is C = (l; 1/c,−d/c).
The function φ(l;c,d)(x) can be expressed as

φ(l;c,d)(x) = φ(0;c,d)(µl(x)) · µl(x)−1

=
µl(x)

log(c,d)−r

dr + (1− cr) logµl(x)

d+ c (1− cr) logµl(x)

l−1∏
j=0

µk(x) . (47)

The escort distribution, ρ(l;c,d)(p) = φ(l;c,d)(p)/(φ(l;c,d)(p) + φ(l;c,d)(1 − p)), cor-
responding to the two-event distribution (p, 1 − p) is depicted in Figure 2b for
various scaling exponents. Interestingly, for D < (1; 1), i.e., for entropies correspond-
ing to sub-exponential sample space growth, the distribution shows high probabilities
(generally p > 1/N), while forD > (1; 1), i.e., for super-exponential growth, the distri-
bution shows low probabilities (p < 1/N). Let us finally show the asymptotic behavior
of the curvature that corresponds to the deformed logarithm. It can be easily calcu-
lated if one keeps only dominant contributions from each term in the equations (33)
and (34). In this case we have

dn log(l;c)(x)

dxn
≈ (µl(x))c−1µ′l(x)x1−n for x→∞, (48)

and therefore

r(l;c)(W ) ≈ 1/Wµc−1l (W )µ′l(W ) for W →∞, (49)

for both curvatures, calculated from both types of metric, as shown in Appendix B.
From this we deduce that

lim
W→∞

r(W ) =

{
+∞, l = 0 or l = 1, c > 1
0, l ≥ 2 or l = 1, c < 1 .

(50)
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Fig. 3. Characteristic length corresponding to the curvature of the statistical manifold for
equiprobable distribution corresponding to different scaling exponents. (a) Corresponds to
length of Amari type, (b) corresponds to length of Naudts type, respectively.

For the case l = 1 and c = 1, we can make a similar approximation

dn log(1;1,d)(x)

dxn
≈ x−n log(1 + log(x))d , (51)

to get

r(1;1,d) ≈ log(1 + log(W ))d N →∞. (52)

Similar results can be obtained for higher-order corrections. The behavior of r for
different scaling vectors is depicted in Figure 3. We see that the asymptotic behavior
is similar for both types of curvature, the only difference is for smaller N .

Similarly, we obtain the same behavior also for higher-order corrections (see
Appendix C). In conclusion, we find three distinct regimes for the statistical manifold
with respect to the scaling vector

– D < (1; 1) ⇔ rD(W )→∞ for W →∞,

– D = (1; 1) ⇔ rD(W ) = 1 for W > 0,

– D > (1; 1) ⇔ rD(W )→ 0 for W →∞.

As a result, the curvature exhibits a phase transition — the statistical mani-
fold in thermodynamic limit is flattening for sub-exponential processes, has constant
section curvature for exponential processes, and is curving for super-exponential pro-
cesses. While processes with exponentially growing sample space have (practically)
independent sub-systems, sub-exponential processes impose some restrictions and
constaints on the sample space. Super-exponential processes are characterized by
emergent structures of its sample space. The scaling vector plays the natural role of
the set of order parameters. Let us finally note that the limit W →∞ is performed
for rD(W ). The “limit space” obtained in the limit of the statistical manifolds, for
W → ∞, might not be a smooth manifold and the curvature might not correspond
to the limit limW→∞RD(W ).

5 Conclusions and perspectives

In this paper, we have defined a class of deformed logarithms with a given scaling
expansion in the framework of φ-deformed logarithms. The corresponding entropy
can be used to define the statistical manifold with generalized Fisher-Rao metric.
We have shown that for the microcanonical ensemble in the thermodynamic limit,
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the scalar curvature exhibits a phase transition where the critical point is repre-
sented by the class of phenomena that are characterized by exponentially growing
phase spaces. These include weakly interacting systems that are correctly described
by Shannon entropy. The scaling vector of a given system naturally defines a set
of order parameters. A possible explanation for this phenomenon is that the num-
ber of independent degrees of freedom grows slower than the size of the system for
sub-exponential processes and faster for the super-exponential processes. This classi-
fication, however, does not appear for the case of the Fisher metric of Csiszár type,
since the characteristic length is constant for every φ-deformation.

Contrary to common approach in information geometry, where the statistical man-
ifold corresponds to one functional family of distributions (e.g., exponential family of
distributions), this paper presents a parametric way how to switch between different
functional families of distributions (e.g., from power-laws to stretched exponentials).
This opens a novel connection between parametric and non-parametric information
geometry and enables to classify different types of statistical manifolds related to
various classes of deformed exponential families.

It will be natural to extend these results to generalizations of Bregmann diver-
gence enabling gauge invariance [45]. Moreover, we will focus on application of the
results to the canonical ensemble and use the well-known results using Fisher informa-
tion metric on the thermodynamic manifold [46,47] for the case of complex systems,
where we need to use the generalized form of the Boltzmann factor [48]. Moreover,
it should also be possible to go beyond equilibrium statistical mechanics and extend
the generalized Fisher metric to non-equilibrium scenarios [49].

Open access funding provided by Medical University of Vienna. We acknowledge support
from the Austrian Science Fund FWF project I 3073.

Appendix A: Basic algebra of scaling vectors

Let us discuss some definitions of ordinary operations on the space of scaling expo-
nents. First, let us introduce a truncated vector of the scaling vector defined in
equation (10) as

Ck = {l; c(l)0 , c
(l)
1 , . . . , c

(l)
k } (A.1)

where k ≤ n. Then, we can introduce

– Truncated equivalence relation: a(x) ∼(k) b(x) if Ak ≡ Bk

– Truncated inequality relation: a(x) ≺(k) b(x) if Ak < Bk.

Let us also add one set of inequality relations, and particularly for the case, when
even the order l is not equal. For this we define

– Strong inequality relation: a(x)� b(x) if la < lb.

Let us investigate representations of basic operations on the space of scal-
ing exponents. Before that let us define the rescaling of the general operator O :
R
m 7→ R as

O(l)(x1, x2, . . . , xm) = exp(l)
[
O(log(l) x1, log(l) x2, . . . , log(l) xm)

]
. (A.2)
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Let us now denote the generalized addition as a(x)⊕(l) b(x) and multiplication as
a(x)⊗(l) b(x). It is easy to show that

a(x)⊗(l) b(x) = a(x)⊕(l+1) b(x). (A.3)

Let us now consider, without loss of generality, that a(x) ≺ b(x). The scaling
vector C of c(x) = a(x)⊗(l) b(x) can be expressed as follows:

C =

{A+ B = (l, a0 + b0, a1 + b1, . . . ), for la = lb = l;
B, for l < la ≤ lb or l = la < lb;
undefined, for l > la.

(A.4)

The scaling vector C of the generalized composition c(x) = exp(l) b(log(l) a(x)) can
be expressed as

C =

b
(lb)
0 A = (la + lb; a0b0, a1b0, a2b0, . . . , anb0), for la = l;

1(lb)A = (la + lb; a0, a1, a2, . . . , an), for l < la;
undefined, for l > la.

(A.5)

Finally, let us focus on the derivative of the scaling expansion. Let us denote the
rescaled derivative operator as

(l)Dx[f ] = exp(l)

(
d(log(l) f(x))

dx

)
. (A.6)

The scaling vector corresponding to the rescaled derivative is

(l)A′ =


(la; a0 − 1, a1, a2, . . . , an), for la = l;
A, for la > l;
(l;−1, . . . ,−1︸ ︷︷ ︸

l−la

, 0, . . . ), for la < l. (A.7)

Appendix B: Asymptotic curvature of (l; c, d)-logarithm

In this Appendix, we calculate asymptotic properties of the (l; c, d) logarithm. Let us
first express the derivatives of (l; c, d) logarithm in terms of (c, d) logarithm and µl:

log′(l;c,d)(x) = log′(c,d)(µl(x))µ′l(x), (B.1)

log′′(l;c,d)(x) = log′′(c,d)(x)(µ′l(x))2 + log′(c,d)(µl(x))µ′′l (x), (B.2)

log′′′(l;c,d)(x) = log′′′(c,d)(µ
′
l(x))3 + 3 log′′(c,d)(µl(x))µ′l(x)µ′′l (x)

+ log′(c,d)(µl(x))µ′′′l (x). (B.3)

The derivatives of the nested logarithm µl(x) = [1 + log](l)(x) can be expressed
as:

µ′l(x) =
1∏l−1

k=0 µk(x)
, (B.4)
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µ′′l (x) = −µ′l(x)
l−1∑
k=0

µ′k(x) = − 1∏l−1
k=0 µk(x)

(
l−1∑
k=0

1∏k
j=0 µj(x)

)
, (B.5)

µ′′′l (x) = −µ′′l (x)
l−1∑
k=0

µ′k(x)− µ′l(x)
l−1∑
k=0

µ′′k(x)

= µ′l(x)
l−1∑
j=0

µ′j(x)
l−1∑
k=0

µ′k(x) + µ′l(x)
l−1∑
k=0

µ′k(x)
k−1∑
j=0

µ′j(x)

= 2µ′l(x)

l−1∑
k=0

µ′k(x)

k−1∑
j=0

µ′j(x) + µ′l(x)

l−1∑
k=0

µ′k(x)

l−1∑
j=k

µ′j(x). (B.6)

Let us first denote l(c,d)(x) = log(c,d)(x) + r. Then the derivatives of log(c,d) can

be expressed as (see also Ref. [27]):

log′
(c,d)(x) =

lc,d(x)

x(dr + (1− cr) log x)
[d + c (1− cr) log x] , (B.7)

log′′
(c,d)(x) =

lc,d(x)

x2(dr + (1− cr) log x)2

[
d
(
d− dr − (cr − 1)2

)
+ d

(
c2(r − 2)r + 2c− 1

)
log x + (c− 1)c(cr − 1)2 log2 x

]
, (B.8)

log′′′
(c,d)(x) =

lc,d(x)

x3(dr + (1− cr) log x)3

[
d
(
3d(r − 1)(cr − 1)2 − 2(cr − 1)3 + d2

(
2r2 − 3r + 1

))
+ d(cr − 1)

(
3c3r2 − 3c2r(r + 2) + c

(
d
(
−2r2 + 6r − 3

)
+ 6r + 3

)
+ d(3− 4r)− 3

)
log x

− d
(
3c2(r − 1) + c(6− 4r)− 2

)
(cr − 1)2 log2 x

− c
(
c2 − 3c + 2

)
(cr − 1)3 log3 x

]
. (B.9)

In the asymptotic limit, only dominant contributions are relevant. Thus, let us
consider only dominant scaling c (i.e., take d = 0) and we get

log′(l;c,d)(x) = log′(c,d)(µl(x))µ′l(x) ≈ (µl(x))c−1µ′l(x), (B.10)

log′′(l;c,d)(x) ≈ log′(c,d)(µl(x))µ′′l (x) ≈ − (µl(x))c−1µ′l(x)

x
(B.11)

log′′′(l;c,d)(x) ≈ log′(c,d)(µl(x))µ′′′l (x) ≈ (µl(x))c−1µ′l(x)

x2
. (B.12)

Thus, we plugged in equations (33), (34) then we get

rA(l;c) ≈

(
µc−1
l (x)(µ′l(x))

x

) (
µc−1l (x)(µ′l(x))

)2[(
µc−1l (x)(µ′l(x))

) (µc−1
l (x)(µ′l(x))

x2

)
− 3

(
µc−1
l (x)(µ′l(x))

x

)2]2 ≈ xµc−1l (x)µ′l(x),

(B.13)
and

rN(l;c) ≈
(
µc−1l (x)(µ′l(x))

)3
x
(
µc−1
l (x)(µ′l(x))

x

)2 ≈ xµc−1l (x)µ′l(x). (B.14)
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Let us then focus on the situation l = 1, c = 1. In this case the leading order
terms cancel and we have to look at the first correction given by the scaling exponent
d. In this case

log′(1;1,d)(x) ≈ log(1 + log(x))d

x
, (B.15)

log′′(1;1,d)(x) ≈ log(1 + log(x))d

x2
, (B.16)

log′′′(1;1,d)(x) ≈ log(1 + log(x))d

x3
. (B.17)

So the curvature of both Amari and Naudts type can be asymptotically expressed
as

r(1;1,d) ≈ log(1 + log(x))d. (B.18)

Appendix C: Fisher metric and scalar curvature corresponding
to general logarithm

Let us now show the full calculation of the scalar curvature corresponding to the
ΛD-logarithm with arbitrary scaling vector D and constants rj . Let us first recall the
product rule for higher derivatives. The first three derivatives of a function ΛD(x) =

R
(∏n

j=0 λj(x)− 1
)

:

Λ′D(x) = R

 n∏
j=0

λj(x)

 n∑
j=0

λ′j(x)

λj(x)

 , (C.1)

Λ′′D(x) = R

 n∏
j=0

λj(x)

2
∑
i<j

λ′i(x)λ′j(x)

λi(x)λj(x)
+

n∑
j=0

λ′′j (x)

λj(x)

 , (C.2)

Λ′′′D (x) = R

 n∏
j=0

λj(x)

6
∑
i<j<k

λ′i(x)λ′j(x)λ′k(x)

λi(x)λj(x)λk(x)

+3
∑
i<j

λ′′i (x)λ′j(x) + λ′i(x)λ′′j (x)

λi(x)λj(x)
+
∑
i

λ′′′i (x)

λi(x)

 . (C.3)

The derivatives of λj can be expressed by defining function L

Lj(x) =
1

(1 + rj logµj+l−1(x))
∏j+l−1
k=0 µk(x)

=
µ′j+l(x)

(1 + rj logµj+l−1(x))
. (C.4)

Then we can express

λ′j(x) = λj(x) (rjdjLj(x)) , (C.5)

λ′′j (x) = λj(x)
(
r2jd

2
jL2

j (x) + rjdjL′j(x)
)
, (C.6)

λ′′′j (x) = λj(x)
(
r3jd

3
jL3

j (x) + 3r2jd
2
jL′j(x)Lj(x) + rjdjL′′j (x)

)
. (C.7)
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The derivatives of Lj(x) can be expressed as

L′j(x) = −L2
j (x)

(
rj + (1 + rj logµj+l−1(x))

l+j−1∑
k=0

j+l−1∏
m=k+1

µm(x)

)
, (C.8)

L′′j (x) = −2L3
j (x)

(
rj + (1 + rj logµj+l−1(x))

l+j−1∑
k=0

j+l−1∏
m=k+1

µm(x)

)2

−L2
j (x)

(
rj

l+j−1∑
k=0

j+l−1∏
m=k+1

µm(x)

+(1 + rj logµj+l−1(x))

j+l−1∑
k=0

j+l−1∑
m=k+1

∏j+l−1
p=k+1 µp(x)∏m
p′=0 µp′(x)

)
. (C.9)

We can finally rewrite the derivatives of ΛD as

d

dx
(ΛD(x)) = R

 n∏
j=0

λj(x)

 n∑
j=0

C1j (x)Lj(x)

 , (C.10)

d2

dx2
(ΛD(x)) = R

 n∏
j=0

λj(x)

 n∑
i=1

n∑
j=1

C2ij(x)Li(x)Lj(x)

 , (C.11)

d3

dx3
(ΛD(x)) = R

 n∏
j=0

λj(x)

 n∑
i=1

n∑
j=1

n∑
k=1

C3ijk(x)Li(x)Lj(x)Lk(x)

 , (C.12)

where the coefficients C can be expressed as

C1i (x) = ridi, (C.13)

C2ij(x) = ridi [rjdj − δijAj(x)] , (C.14)

C3ijk(x) = ridi [rjdjrkdk − (δijrjdjAj(x) + δikrkdkAk(x)

+ δjkrjdjAj(x))− δijkBi(x)] , (C.15)

where

Ai(x) =

(
(ri + (1 + ri logµi+l−1(x)))

i+l−1∑
k=0

i+l−1∏
m=k+1

µm(x)

)
, (C.16)
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Bi(x) = 2Ai(x)2 + Li(x)

(
ri

l+j−1∑
k=0

i+l−1∏
m=k+1

µm(x)

+(1 + ri logµi+l−1(x))
i+l−1∑
k=0

i+l−1∑
m=k+1

∏i+l−1
p=k+1 µp(x)∏m
p′=0 µp′(x)

)
. (C.17)

Finally, we plug the expressions for ΛD and its derivatives into equations (33),
(34), and we end with

rAD(x) =

(∑
i C1i Li(x)

)2 (∑
kl C2kl(x)Lk(x)Ll(x)

)3(∑
ijkl

([
C1i (x)C3jkl(x)− 3C2ij(x)C2kl(x)

]
Li(x)Lj(x)Lk(x)Ll(x)

))2 , (C.18)

and

rND (x) =

(∑
i C

1
i (x)Li(x)

)3
x
(∑

ij C
2
ij(x)Li(x)Lj(x)

)2 , (C.19)

for x = 1/W , respectively.

Open Access This is an open access article distributed under the terms of the Creative Com-
mons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.
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