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Abstract. We examine the temperature dependence of the shear vis-
cosity η to electrical conductivity σ ratio, as well as the specific shear
viscosity and the scaled electrical conductivity in QCD with light and
strange quarks. Our calculations are performed in kinetic theory under
the relaxation time approximation combined with the quasiparticle
model. We compute all transport parameters using the isotropic and
transport cross sections and compare our results to a class of quasipar-
ticle models for the QGP with Nf = 2 + 1. The results depending on
different schemes are examined. The ratio (η/s)/(σ/T ) quantifies the
relation between the relaxation times of gluons and quarks and specifies
their comparative role in the evolution of the QGP. We find an excel-
lent agreement with the (η/s)/(σ/T ) ratio deduced from the dynamical
quasiparticle model in which the quasiparticles are characterized not
only by their effective masses but also by finite widths.

1 Introduction

Intensive studies of the experimental data obtained in ultrarelativistic heavy ion
collisions confirmed that deconfined QCD matter, the quark-gluon plasma (QGP),
behaves as a strongly-coupled system [1–4]. Its evolution is described by the ideal [5,6]
and viscous [7–10] hydrodynamics. The latter includes the dissipative phenomena
occurring in the medium, whose dynamical properties are encoded in the particular
transport coefficients.

One of these parameters is the shear viscosity η. It corresponds to the shear stress
produced in the non-equilibrated system and quantifies the reaction of the medium
to the exchange of a momentum between its elements. The shear viscosity enters the
fluid dynamical simulations as a dimensionless quantity η/s, where it is scaled by
the entropy density s. The η/s ratio in first-principles lattice QCD (lQCD) calcu-
lations is currently available in the pure SU(3) theory only [11–15]. Gauge/gravity
duality yields the well-known Kovtun-Son-Starinets (KSS) bound 1/4π [16] for the
specific shear viscosity. Different theoretical and phenomenological approaches have
been used to examine transport properties of deconfined matter in pure Yang-Mills
theory [17,18], and in the presence of two light quarks [19–21]. The results consistently
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show that the η/s ratio exhibits a minimum at the phase transition temperature,
being larger than the KSS bound.

The recent studies of the specific shear viscosity of the QGP with Nf = 2 + 1
are performed in the phenomenological models, describing QCD matter in terms of
the quasiparticle excitations [22–26]. In these models, the essential physics of strong
interactions is accommodated into the thermodynamics via an effective coupling and
dynamically generated masses depending on temperature T and chemical potential µ.
The validity and efficiency of the quasiparticle model (QPM) are supported by the
lQCD equation of state.

Another valuable transport parameter is the longitudinal electrical conductivity σ,
which quantifies the response of the QGP to the electric field produced in ultrarel-
ativistic heavy ion collisions. The dimensionless ratio σ/T reflects the ability of the
system to conduct the longitudinal component of the electric charge current, i.e. the
electric charge itself. The electrical conductivity has been evaluated in lQCD simu-
lations [27–31], as well as by using the Green-Kubo formalism [23,32], the AdS/CFT
framework [33] and a class of quasiparticle approaches [23,24,26,32,34].

The ratio of (η/s)/(σ/T ) also reveals important information about the inter-
actions between the medium constituents. It was shown in [23] that (η/s)/(σ/T )
complements the ratio of gluon to quark scattering rates and appears to be inde-
pendent from the effective coupling. At Tc, the (η/s)/(σ/T ) ratio was predicted to
rapidly grow, reaching the value ≈20, and become approximately constant at higher
temperatures, ≈4. Along with the studies of the flavor dependence of η/s [25,26]
and σ/T [35], the relation between these quantities may help us to understand the
comparative role of gluons to quarks in the evolution of the QGP.

In this work, using the quasiparticle description in the relaxation time approxi-
mation, we compute the specific shear viscosity η/s, the scaled electrical conductiv-
ity σ/T and the shear viscosity to electrical conductivity ratio, (η/s)/(σ/T ). We col-
lect the corresponding results from other available quasiparticle models [23,24,26] and
discuss their main features, which result in quantitative differences of the computed
transport parameters.

2 Transport parameters in the quasiparticle model

We evaluate transport parameters of the QGP from the expressions derived in kinetic
theory under the relaxation time approximation [36,37]. For Nf = 2 + 1, the shear
viscosity at µ = 0 reads [25]

η =
2

15T

∑
i=l,s,g

∫
d3p

(2π)3

p4

E2
i

diτif
0
i (1± f0

i ), (1)

where the prefactor 2 accounts for the anti-particle contributions and di are the
degeneracy factors: dl = 2NcNl = 12 for two light quarks, ds = 2Nc = 6 for strange
quarks and dg = 2(N2

c − 1) = 16 for gluons. Further, for each quasiparticle species,
τi is the relaxation time and f0

i = (exp(Ei/T ) ± 1)−1 is the corresponding statisti-
cal distribution function. The dispersion relation for massive on-shell quasiparticles
reads Ei =

√
p2 +m2

i , with dynamically generated temperature-dependent masses
m2

i (T ) = (m0
i )2 + Πi(T ). We include the bare masses of light and strange quarks as

m0
l = 5 MeV and m0

s = 95 MeV, respectively. For Πi(T ) we use the asymptotic forms
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of the gauge-independent hard thermal loop (HTL) self-energies [38,39],

Πg(T ) =

(
3 +

Nf

2

)
G(T )2

6
T 2, (2)

Πl,s(T ) = 2

(
m0

l,s

√
G(T )2

6
T 2 +

G(T )2

6
T 2

)
, (3)

where the perturbative running coupling has been replaced with an effective cou-
pling G(T ) deduced from the lQCD entropy density [40,41]. The numerical results
for the coupling and masses have been presented in [25].

In the relaxation time approximation, the electrical conductivity at µ = 0 is
expressed as [24]

σ =
2

3T

∑
i=u,d,s

∫
d3p

(2π)3

p2

E2
i

q2
i diτif

0
i (1− f0

i ). (4)

Here, all quark contributions are evaluated separately due to the different electric
charges qi. Explicitly, qu = 2e/3 for up quarks and qd,s = −e/3 for down and strange

quarks. The electron charge e = (4πα)1/2 is expressed through the fine structure
constant, α ' 1/137. For gluons, qg = 0, therefore they do not contribute to the
electrical conductivity. Note that, for each term of the sum, the degeneracy factor is
taken as du,d,s = 6, which differs from our convention for the shear viscosity given in
equation (1).

2.1 Relaxation time

The relaxation time τi is a parameter of the approximate solution to the Boltzmann
equation [42,43], and is defined as

τi = (niσ̄i)
−1, (5)

where ni is the equilibrium number density and σ̄i is the energy-averaged total cross
section. It includes the averaged cross sections of the considered two-body elementary
scatterings among the quasiparticles.

Following [19,44], we calculate the individual thermal-averaged transport cross
section using

σtr(T ) =

∫
ds

∫
dt
dσij→i′j′

dt
sin2 θ(s, t,mi,j,i′,j′(T ))(1± f0

i′)(1± f0
j′)P (s;T ), (6)

where the differential cross section dσij→i′j′/dt is evaluated at tree level using the
standard prescription in the center-of-mass frame, s and t are Mandelstam variables.
The (1 ± f0

i′,j′) is the Pauli blocking (+) or Bose enhancement (−) factor which

corresponds to the medium effects and P (s;T ) denotes the probability of obtaining
the final-state particles with the total energy s. In equation (6), each component
includes the effective masses of the quasiparticles. More details on the transport cross
sections are found in [25]. Now we would like to focus on the phenomenological scaling
factor sin2 θ(s, t,mi,j,i′,j′(T )) derived from the kinematics of the processes [19,44–46].
Here, θ is the scattering angle between the two initial particles, and mi,j,i′,j′(T ) are
the effective masses of the scattering participants.
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The weight factor sin2 θ(s, t,mi,j,i′,j′(T )) is introduced to exclude the scatter-
ing processes with the small initial angle, leading to the processes with the large
angle θ prevailing in the momentum transfer between the medium constituents.
Thus, σtr(T ) brings the major impact to the transport coefficients of the QCD
medium.

Nevertheless, we additionally evaluate the transport parameters without the large
angle scattering approximation, by setting sin2 θ(s, t,mi,j,i′,j′(T )) = 1 in equation (6).
In this way, we get the total energy-averaged cross section in the isotropic limit,
σiso(T ). The cross sections are approximately σiso(T ) ≈ 2σtr(T )/3. The numerical
results for the shear viscosity and electrical conductivity using different types of the
cross sections are presented in Sections 3.1, 3.2, and 3.3.

3 Discussion and numerical results

Before we compare our outcomes to the other approaches, let us briefly highlight
their key elements: a variety of definitions for the effective coupling and masses as
well as different treatments of the cross sections lead to somewhat different behaviors
of the transport parameters.

In the pioneering work presenting the (η/s)/(σ/T ) ratio [23], the shear viscosity
and the electrical conductivity were obtained from the Green-Kubo formulas. The
thermodynamics of that quasiparticle model is based on the lQCD data as in our
QPM [40,41], although their effective coupling was determined by fitting the energy
density in lQCD, whereas in our QPM by the entropy density, to avoid a compli-
cation of the bag function. In addition, while gluon effective masses share the same
expression, equation (2), the effective quark mass obeys a different form and does
not depend on the current mass m0

i , m2
q = G2(T )T 2/3. The relaxation times are

evaluated using the parametric transport cross sections of the form [23]

σij
tr(s) = βij πα

2
s

m2
D

s

s+m2
D

h(a), (7)

where βij is the coefficient referring to the different interactions between quarks and
gluons, βqq = 16/9, βqq′ = 8/9, βqg = 2, βgg = 9. The Debye mass m2

D = G2(T )T 2

is originated from the HTL approach, while αs = G2/4π is the strong coupling and
h(a) = 4a(1 + a)[(2a + 1) ln(1 + 1/a) − 2] with a = m2

D/s represents anisotropy of
the scatterings [23].

The (η/s)/(σ/T ) ratio is also studied in a slightly different quasiparticle
model [24], employing equations (1) and (4) for η and σ, respectively, while the
relaxation times for massless quarks and gluons were used [36],

τq(q̄) = [5.1(1 + 0.12(2Nf + 1))αs logα−1
s ]−1, (8)

τg = [22.5(1 + 0.06Nf )αs logα−1
s ]−1. (9)

At µ = 0, the effective masses read m2
i = (m0

i )2 +m0
iG(T )T/

√
3 +G2(T )T 2/6, with

the bare masses m0
l = 8 MeV for light quark, m0

s = 80 MeV for strange quark and
m0

g = 0 for gluons. The QCD running coupling G(T ) is expanded up to the two-loop
order using the lQCD data from [47].

Finally, we briefly comment on the dynamical quasiparticle model (DQPM) [26]
and its thermodynamics based on [40,41]. In this approach, for vanishing chemical
potential, the transport parameters are evaluated using equations (1) and (4). The
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effective coupling is then determined by the lQCD entropy density [40,41], as done
for our effective coupling. The dynamical masses of quarks and gluons obey

M2
q (T ) =

N2
c − 1

8Nc
G2(T )T 2, (10)

M2
g (T ) =

(
Nc +

1

2
Nf

)G2(T )

6
T 2. (11)

The heavier strange quarks are distinguished from the light quarks through the rela-
tion Ms(T ) = Mu + ∆M = Md + ∆M with ∆M = 30 MeV. Additionally, the DQPM
incorporates the finite widths of the quasiparticles [26]. The relaxation time is defined
as an inverse of the momentum-dependent interaction rate Γon

i (pi, T ) [48],

Γon
i (pi, T ) =

∑
j=q,q̄,g

∫
d3pj
(2π)3

djfjvrel

∫
dσon

ij→i′j′(1± fi′)(1± fj′), (12)

where the superscript on stands for the on-shell quasiparticles. The relative veloc-
ity vrel between the colliding particles in our expression is inserted into the probability
P (s;T ), see equation (6). One may notice that the phenomenological weight factor
sin2 θ(s, t,mi,j,i′,j′(T )) is not included in equation (12).

In the following subsections, we present the specific shear viscosity η/s, the scaled
electrical conductivity σ/T and the shear viscosity to electrical conductivity ratio
(η/s)/(σ/T ) obtained at µ = 0 in the current quasiparticle model and the approaches
discussed above.

3.1 Specific shear viscosity

Figure 1 shows the shear viscosity to entropy density ratio η/s of the QGP for
Nf = 2 + 1 computed in various quasiparticle models. In all approaches, the specific
shear viscosity exhibits a shallow minimum around the pseudo-critical temperature
and increases monotonically at higher temperatures. We observe that in the quasi-
particle models, for the QGP with massive quarks, the ratio does not reach the lower
bound η/s = 1/4π ' 0.08, conjectured in [16] in the gravity dual to conformal gauge
theories, unless the relaxation time is tuned so that η/s approaches the limit, as done
in [22]. For temperatures above 1.5 Tc, the curves seem to evolve with approximately
equal slopes shifted by different constants, so that the possible values of η/s vary
within one order of magnitude.

In comparison to the specific shear viscosity obtained from the transport cross sec-
tions σ̄tr, one finds an overall downward shift of the ratio calculated in the isotropic
limit employing σ̄iso. The almost constant difference between the cross sections,
σ̄iso ≈ 2 σ̄tr/3, leads to the discrepancy between the η/s curves.

Further, despite the different definitions of the cross sections, we observe a qual-
itative agreement between our results and other quasiparticle models. The specific
shear viscosity based on the transport cross sections is consistent with η/s found
within the QPM by Puglisi et al. [23]. When the isotropic cross sections are imple-
mented into the shear viscosity, our QPM result is in good agreement with that in
the DQPM [26]. Additionally, at Tc, our isotropic result is close to η/s computed
in the QPM by Thakur et al. [24], where the relaxation times for massless quarks
and gluons were used, although at high T , the outcome of this assumption reaches
noticeably smaller values when compared to the other curves.
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Fig. 1. Shear viscosity to entropy density ratio as a function of T/Tc in various quasiparticle
approaches. Our results are obtained with the transport cross sections (full squares), as well
as in the isotropic limit (open squares). For comparison, we present the η/s ratio obtained
in other QPM [23] (dashed line), DQPM [26] (solid line) and QPM with the relaxation
times for massless particles [24] (dash-dotted line). The horizontal dashed line indicates the
KSS-bound of 1/(4π) ≈ 0.08.

Fig. 2. Electrical conductivity to temperature ratio as a function of T/Tc calculated in
the current QPM with transport cross sections (full squares) and isotropic cross sections
(open squares). Additionally, the results presented in [23] (dashed line), [24] (dash-dotted
line), and in [26] (solid line) are shown along with the lQCD data from [28] (dia-
monds), [29] (triangles) and [30,31] (circles). The horizontal dashed line indicates the value
σ/T = e2N2

c /(16π) ≈ 0.017 found in AdS/CFT approach [33].

3.2 Electrical conductivity

In Figure 2, we compare the electrical conductivity to temperature ratio σ/T com-
puted in various quasiparticle approaches. Additionally, we present the AdS/CFT
result, σ/T = e2N2

c /(16π) ≈ 0.017 [33], and the available lQCD data for Nf = 2 + 1.
In the isotropic limit, our result is consistent with the electrical conductivity

obtained in the DQPM [26] and in the QPM by Thakur et al. [24] (at T ≥ 1.5 Tc).
Also, near Tc, our isotropic result coincides within the errors with the lQCD
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Fig. 3. The ratio of the shear viscosity to the electrical conductivity as a function of T/Tc

obtained in different QPM approaches. The results from our quasiparticle model with trans-
port (full squares) and isotropic (open squares) cross sections are presented along with the
DQPM [26] and the quasiparticle models by [24] (dash-dotted line) and [23] (dashed curve).
The horizontal dashed line indicates the value (η/s)/(σ/T ) = 4/(e2N2

c ) ≈ 4.85 obtained
from the AdS/CFT results [16,33].

data [28–31]. The electrical conductivity calculated from the transport cross sections
also agrees with the lQCD data [28] and around Tc appears quite close to the isotropic
result and to the DQPM [26]. In the studied temperature range, σ/T evaluated in
the QPM by Puglisi et al. [23] reaches much higher values than in any other effective
approaches. It appears to be nearly two times bigger than σ/T calculated in our
QPM using transport cross sections. This observation differs from the specific shear
viscosity, with which we have a nice agreement between the approach in [23] and ours
based on the transport cross sections.

As discussed earlier in this section, the QPM by Puglisi et al. [23] and the
DQPM [26] are based on the common lQCD equation of state [40,41], same as in
the current QPM. However, the setup by Thakur et al. [24] is completely different
and strongly affects the behavior of σ/T near Tc. All the other curves grow with the
temperature, while σ/T presented in [24] exhibits a mild minimum at T = 1.5 Tc,
same as the specific shear viscosity evaluated in their model, see Figure 1.

3.3 Shear viscosity to electrical conductivity ratio

Figure 3 exhibits the temperature dependence of the (η/s)/(σ/T ) ratio, obtained
from η/s presented in Figure 1 and σ/T shown in Figure 2.

We find an excellent agreement between and the DQPM [26] and the current QPM
with either transport or isotropic cross sections applied. The discrepancies in η/s and
σ/T computed in these models are now canceled out. From equations (1) and (4)
it follows that the electrical conductivity depends on the relaxation times of quarks,
while the shear viscosity contains an additional term created by the presence of gluons.
Therefore, the quantity (η/s)/(σ/T ) depends on the ratio of the gluon relaxation
times to the relaxation times of light and strange quarks. The shear viscosity also
differs from the electrical conductivity by its temperature dependence, which among
other terms, is encoded in the ratio p4/E2

i in equation (1), and p2/E2
i in equation (4).

Since η and σ equivalently depend on the effective coupling and masses, we expect



3494 The European Physical Journal Special Topics

that the influence of these details to a large extent cancels in the (η/s)/(σ/T ) ratio.
As a result, the shear viscosity to electrical conductivity remains sensitive only to the
ratio τg/(τl + τs). This observation agrees with the conclusion in [23], although the
same relaxation times for all types of quarks were assumed, unlike in our approach
to distinguish the strange from light quarks.

Our explicit study justifies that the influence of the effective coupling and masses
is compensated. We also find a similar cancellation mechanism of the finite widths of
quasiparticles in the (η/s)/(σ/T ) ratio. The observed agreement can be traced back
to the relaxation times, modeled in a very similar fashion and depending on the same
types of the two-body scattering processes [25,48]. Thus, both approaches equivalently
maintain the microscopic interactions between the constituents of deconfined QCD
matter.

On the other hand, the (η/s)/(σ/T ) ratio calculated in the quasiparticle model
by Puglisi et al. [23] depends on the pQCD-type cross sections, see equation (7), and
the same relaxation times for all quark flavors. At the pseudo-critical temperature,
the ratio amounts to about 20, while our result, together with the DQPM, yields at
Tc more than two times bigger value, (η/s)/(σ/T ) ≈ 50. We recall that our specific
shear viscosity based on the transport cross sections appears close to the one found
in [23], yet their larger value of σ/T significantly diminishes the (η/s)/(σ/T ) ratio
evaluated in that method.

The shear viscosity to electrical conductivity ratio obtained in the model by
Thakur et al. [24] is the least sensitive to the temperature changes. Compared to the
other approaches, it remains approximately constant in the explored temperature
range, exhibiting a slight increase near Tc.

In general, the (η/s)/(σ/T ) ratio in the quasiparticle models shows a pronounced
increase toward the pseudo-critical temperature and is expected to reach an approx-
imately constant value at higher temperatures. In contrast, from the AdS/CFT
predictions for η/s [16] and σ/T [33], one obtains (η/s)/(σ/T ) = 4/(e2N2

c ) ≈ 4.85
at any temperature.

4 Conclusions

In this work, we investigated the realistic strongly interacting system with Nf = 2 + 1
quark flavors and analyzed its transport parameters using the isotropic and effec-
tive cross sections. While it is expected that the cross sections with the large
angle scattering approximation dominate the transport properties of the medium,
in the isotropic limit, we found a considerable suppression of the shear viscosity and
electrical conductivity.

We compared our results to the coefficients evaluated in various quasiparticle
models, and carefully examined the potential origins of qualitative and quantitative
differences among them.

We observed that the shear viscosity to electrical conductivity ratio compensates
the details of the effective coupling and masses, but preserves the overall depen-
dence on the relation between the relaxation times of gluons and quarks. Therefore,
the (η/s)/(σ/T ) ratio is a valuable quantity to compare the role of quarks and glu-
ons in various effective models. In fact, we found a remarkable agreement with the
(η/s)/(σ/T ) ratio deduced from the results of the DQPM. The observed consistency
justifies that both approaches identically accommodate the microscopic interactions
between the QGP constituents, despite somewhat different treatments of modeling
the details.

This work was done in collaboration with Chihiro Sasaki, Krzysztof Redlich, and Marcus
Bluhm. I also acknowledge helpful comments from Pok Man Lo and Micha l Marczenko. The
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