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Abstract. We investigate the equal-time (static) quark propagator in
Coulomb gauge within the Hamiltonian approach to QCD in d = 2
spatial dimensions. Although the underlying Clifford algebra is very dif-
ferent from its counterpart in d = 3, the gap equation for the dynamical
mass function has the same form. The additional vector kernel which
was introduced in d = 3 to cancel the linear divergence of the gap
equation and to preserve multiplicative renormalizability of the quark
propagator makes the gap equation free of divergences also in d = 2.

1 Introduction

The two most striking features of low-energy Quantum Chromodynamics (QCD) at
ordinary temperature and density are confinement and the spontaneous breaking
of chiral symmetry. In recent years the research interest has been shifted to the
investigation of thermal properties of QCD and of its phase diagram, where a central
challenge is to locate the critical end point. Experimentally, there has been progress
at the Relativistic Heavy-Ion Collider and the Large Hadron Collider; searches for the
critical end point are on-going at the FAIR and NICA facilities. On the theoretical
side, lattice calculations are hindered by the notorious sign problem at finite chemical
potential. Furthermore, simulating three or four families of light dynamical quarks
involves a high computational cost; an approach to reducing this cost is to reduce
the number of physical dimensions.

QCD in 1+ 1 dimensions has been widely studied as toy model and in fact displays
some relevant properties of real QCD, but fails to be a reliable testing ground for
QCDy, since gauge symmetries are somewhat trivial in two dimensions (unless a
compact manifold is considered). QCD in 2 + 1 dimensions is a more interesting
alternative, which moreover allows the addition of a topological Chern—Simons term.

In this paper we examine QCDj3 with one massless fermion within the Hamiltonian
approach in Coulomb gauge developed previously in d = 3 spatial dimensions [1-3].
Within this approach we will investigate how a mass is dynamically generated by the
interaction with the gluons. Our previous work in d = 3 [2-6] has shown that the
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linearly rising colour Coulomb potential is the trigger of chiral symmetry breaking,
and that a genuinely non-perturbative Dirac structure in the quark-gluon vertex
eliminates the linear divergence of the quark gap equation and makes the latter
ultraviolet (UV) finite. In the present paper we investigate whether this cancellation
of the UV divergences in the quark gap equation persists also in d = 2. This is by
far not obvious since the algebra of the Dirac matrices is different in d = 2 from the
d = 3 case and moreover the degree of divergence is different. Of course, quarks in
d = 2 have no chiral symmetry to be broken' since there is no counterpart of 7s
in d = 2. The interesting question is here how a dynamical quark mass, which in
d = 3 is a consequence of spontaneous breaking of chiral symmetry, is generated in
d = 2 without chiral symmetry breaking. We will show that within the Hamiltonian
approach to QCD in Coulomb gauge the dynamical quark mass generation is caused
in d = 2 by the confining non-abelian Coulomb interaction of the quarks, like in the
d = 3 case. So within this approach the dynamical mass generation seems to be a
universal phenomenon which is independent of the number of dimensions and not
necessarily linked to the spontaneous breaking of chiral symmetry. We will also show
that the cancellation of the leading UV divergence in the quark gap equation found in
d = 3 with our Ansatz for the quark vacuum wave functional occurs in any dimension.

The structure of the paper is as follows: In Section 2 we review the Hamiltonian
approach to QCD with the modifications for d = 2; in Section 3 we present our Ansatz
for the QCD vacuum wave functional and show that in the bare-vertex approximation,
where the full quark-gluon vertex is replaced by the bare one, the quark propagator
satisfies the same Dyson—Schwinger equation (DSE) known from d = 3 in any number
of dimensions; in Section 4 we present the evaluation of the energy density and derive
the gap equations for the variational kernels occurring in the Ansatz for the vacuum
wave functional. The numerical results are presented in Section 5 and our conclusions
are given in Section 6.

2 QCD in two space dimensions

The Hamilton operator of QCD in Coulomb gauge V - A = 0 reads [§]

Hqep = %/d% IS (x) T4 119 (x) + %/d% BY(x) B¢(x) "
1
+ /d2x PI(x)[~ia- V — ga- A(x) + Bm](x) + He,

where A = A%t% are the (transverse) spatial gauge fields with ¢t* being the hermitian
generators of the su(N.) algebra, II¢ = —i1§/6A¢ is the canonical momentum, Bf
is the chromomagnetic field, and J4 = Det G;l is the Faddeev—Popov determinant.
Furthermore, ¢ and 1" are the quark field operators, o; and /3 are the Dirac matrices
(which in d = 2 coincide with Pauli matrices), and m is the bare current quark mass.
The last term in equation (1) is the so-called Coulomb term

2
He = % / APz d?y I pt(x) Ja F3°(x,¥) P°(y),

LAlthough with an even number of fermion fields one can mimic chiral symmetry [7], and the
corresponding “chiral symmetry breaking” is in fact a flavour symmetry breaking.
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which describes the interaction of the colour charge density
P (x) = $F(x) 179 (x) + 7 A7 (x) TT§ (%)

through the Coulomb kernel

P xy) = [ 465 () (-G a.y), )

where
GLl(xy) = (=8°V3 — gf*P A{(x)0F)é(x —y)
is the Faddeev-Popov operator of Coulomb gauge with f*® being the structure
constants of the su(N.) algebra.
For the Dirac matrices we choose the “Dirac” representation where 3 is diagonal
Q=12 = 04=1,2, B =os.

They satisfy the usual Dirac algebra

{al,ozj}:&;j, {0@,,3} =0, % =1.
In two dimensions we have

[ai,aj] = 2iey; 8,
which leads to
oo = 055 + ig45 8, Ba,; = ig;0.
For comparison, in d = 3 we have
ooy = 055 + 1€i Y500 (d=3).

The crucial difference to d = 3 spatial dimensions is that in d = 2 there is no 5 and
accordingly no chiral symmetry.

3 Vacuum wave functional and quark propagator

In the variational approach developed in references [1,6,9-11] one attempts to solve
the functional Schrédinger equation

Hqep|¥) = E|P)
for the QCD vacuum state |¥) by means of the variational principle with suitable

trial Ansétze for the vacuum wave functional ¥[A] = (A|¥). Inspired by the form of
the QCD Hamiltonian the vacuum state is assumed of the form

7) = [Tynr) [Pq), (3)
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where |¥yyp) is the vacuum state of the Yang-Mills sector and |[Wq) is the vacuum
state of the quark sector, which includes also the coupling to the gluons. Further-
more it turns out that it is most convenient to use the coordinate representation
U[A &) = (A, E|¥) where A are classical gauge fields and ¢ are Grassmann variables,
the “classical coordinates” of the fermions. In accordance with equation (3) we write
the vacuum wave functional of QCD in the form

ri.el e oonp{ - 3sala] - sylel e 1) ()

where S4 and Sy define respectively the wave functional of pure Yang-Mills theory
and of the quarks interacting with the gluons. For S4 we could take a Gaussian Ansatz
[1] or a more general form involving cubic and quartic couplings [10]. However, in the
present paper we do not solve the gluon gap equation but use instead for the gluon
propagator a form which is inspired by the IR an UV analysis of the variational
equations (which besides the gluon gap equations consist also of Dyson—Schwinger-
type of equations, see Ref. [10]) and which fits the lattice data, see equation (19)
below. For Sy we make the Ansatz used already in d = 3 [3]

Sylet e, A = /51 [Bs + g(V + 8W)a- Ale
:/gTA+ [Bs+g(V + BW)a- A]A_E, (5)

where s, V', and W are variational kernels which will be determined by the min-
imization of the energy density. Due to the coupling of the quarks to the gluons
contained in Sy the wave functional equation (5) is necessarily non-Gaussian. The
vacuum expectation value of an operator O is given by the functional integral [6,11]

wiolamv.'ir) = [ DSD@DA Tae [sl,gf,A]
A, - A
<0lAigpe gt |l ©
where
n = A+ —A_
is the integration measure of the coherent fermion states, and
€00 = [ Pyasxy)€)

are spinor-valued Grassmann fields, with

[ (1, acptpu
naen) = [ e (54 S "

being the projectors onto the positive/negative eigenstates of the free Dirac Hamilton
operator a - p + Sm.

When the form equation (4) of the wave functional is inserted into equation (6)
and the functional derivatives are worked out, the expectation value of an operator
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reduces to a quantum average of field functionals reminiscent of a Euclidean field
theory with action

S=84+S;+ 57+

This formal equivalence can be exploited to derive Dyson—Schwinger-like equations
[10,11] to express the various Green’s functions in terms of the variational kernels
contained in the non-Gaussian “action” S.

The essential quantity of the quark sector is the two-point correlation function of
the Grassmann fields £

Qx.y) = (¢(x) &' (y)),

which can be parametrized in momentum space as

Q '(p)=A(p)a-p+ B(p) B.

With our Ansatz [Egs. (4) and (5)] for the vacuum wave functional the dressing
functions A and B obey the Dyson—Schwinger-like equations [6]

2
- [ Sl pluip -0 Q) Dylp - @) Ty p)).  (5)

B) = s(p) - L [ S [ T0slp.~a) Q@) D~ @) Ty(ap) . (50)

where Cr = (N2 — 1)/(2N.) is the quadratic Casimir in the fundamental represen-

tation, and

_ L (p)
20(p)’

Ppi Pj
tij(p) = 0ij — 71)2]7 9)

5Dy (x,y) = (A% (x) A?(Y)% Di;(p)
is the gluon propagator. Furthermore, I is the full quark-gluon vertex defined by [11]

(€T A;)) = -QT;Q Dy, (10)

while [y is the bare quark-gluon vertex defined by our Ansatz equation (5) for the
vacuum wave functional

Toi(p,a) = Ay (p)KiA_(—q) + A_(p) KA, (—q), (11)
where
Ki=g[V(p,q) + W (p,q)] .

In the bare-vertex approximation, where the full quark-gluon vertex equation (10) is
replaced by the bare one equation (11), equation (8) become in the chiral limit m = 0

4 :1_920F/ d’¢ A, X_(p.@)V*(p,q) + X+ (p,q) W(p,q) (122)
4 2 | @r)2 A2+ B2 Qp +4q) ’
B o— _QZCF/ g By X (p.a)V(p.a) X)W (P.a) o
P8 T Ty (2m)2 A2 + B2 Q(p+q) ’
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where we have defined the momentum overlap functions

1¥p-q_ [P (pra)la (p+a)]

2 (p+a)? (13)

X:I: (p7 q) =

In order to simplify the notation, we have denoted in equation (12) the momentum
dependence of the dressing functions by a subscript. As we will show now, these equa-
tions hold formally in any dimension. Only the overlap functions X depend on the
number d of spatial dimensions. Although the Dirac matrices depend on the number
of spatial dimensions, when the bare vertices are contracted with the (symmetric)
transverse projectors only anti-commutators, which are independent of the number
of dimensions, enter the final result. To see this, we write the bare quark-gluon vertex
equation (11) in the chiral limit as

Po.i(p,a) = ; V(p, @) [Mi(p, @) + Mi(~p, )] ~ ; W(p,a)[Mi(p, ~a) ~ Mi(~p,q)] 5,
where
My(p,a) = (1+ @ plas(l +a-q).
This quantity has the properties
a-pMi(p,q) = Mi(p,q) = Mi(p,q)a-q,  SMi(p,q) = —Mi(—p, —q)p.
Using these relations in the DSEs (8) leads then to terms of the form
M;(+p,q) M;(q, £p).
For general indices i, j this will be in general a complicated expression whose
details depend on the number of dimensions. However, in DSEs (8) these expres-

sions are always contracted with a transverse projector t;; [stemming from the gluon
propagator Eq. (9)], resulting in

t:;(p + @) Mi(+p, q) M;(q, +p) = 8(1 = a - p) XV (p, q)
with

X@ (pq) = L=1F (f;*d)f»d n [f>~(p+(;1)j]L[2)~2(p+q)].

For d = 2 this expression reproduces the previous result equation (13). Note also that
in d = 2 the equations (12) for the dressing functions are finite. (QCD in d = 2 spatial
dimensions is super renormalizable).

4 Energy density and variational equations

The calculation of the vacuum expectation values of the Hamiltonian (H) proceeds
completely analogously to the d = 3 case performed in references [6,11]. For the
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energy density e = (H)/(N.V) one finds in d = 2 the following contributions: The
single-particle Hamiltonian [first term in the second line of Eq. (1)] yields

d?q
ep = / W tr[(a -q+ Bm) Q(Q)]

~0Cr [ oz Dula+ O QT (@ 0Q(-0]. (1)

while the kinetic energy of the gluon [the term J 'TI¢J4II¢ in Eq. (1)] gives

% ;1;)12 (jﬁfz tij(a+£)tr{Toi(q, —O)QE)T;(£, —q)Q(a)  (15)
0,7

— Qo(a@)To,i(q, —£)Q(€)Qu(£)To ; (£, —q)Q(q) }-

a _ _
€p =

i~

From the Coulomb term we find

,C 2 2y 1 1 1
s (;52 (;Ty F(a— € tr{[Q(6) - $Qu(8)] [Q(a) — $Qo(q)] — 4(}1’6)

where F is the expectation value of the Coulomb kernel F4 [Eq. (2)]. Formally, these
are exactly the same expressions as in d = 3 (except for the momentum integration
measure). However, the differences arise now when taking the traces of the Dirac
matrices. In d = 2 the trace of the unit matrix yields a factor 2 instead of 4, and the
trace of one 8 and an even number of «; does not vanish like in d = 3. In particular,
we have

el ~

tr{fa; o] = 2iey;.

Although this last expression could in principle make a difference in the calculation,
it turns out that in the bare vertez-approrimation, where we replace the full quark-
gluon vertices I' [Eq. (10)] by the bare one I'g [Eq. (11)], this does not matter. The
reason is that the matrix 8 in the fermion propagator ) always occurs between two
projectors equation (7) and leads to expressions of the form

(1+a-p)B(1+a p) =Bl - a-p)(1+a-p)=0.

Therefore, in the bare-vertex approximation we recover for the energy densities
equations (14)—(16) the very same expressions found in reference [6] apart from
the dimension of the momentum integrals and an overall factor 1/2. The explicit
expressions read in d = 2

d2q |q| Aq
D= _2/ @2m)2 A,

d2q  d
2
9 OF/(%)? (27)2

% X _(q,8)V(q,£)(Ag A¢ + By Be) + X1 (q,£) W(q,£)(Ay B + By Ay)
ANy A Qg+ £) ’
(17a)

b = [X_(a,0)V*(a.€) + X1(q,0) W?(a, )], (17b)

QQCF/ d2q d2€ Aqu
2 (2m)2 (2m)2 AL
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Cp [ d2q d2¢
aq _ _ 20 F _
ec g 4 (27_[_)2 (271')2 (q E)
y AB, By + G- €[Ay(2 — Ag) — B2][Au(2 — Ag) — B
AN ’

(17¢)

where we have introduced the abbreviation
_ A2 2
Ay = Ap + Bp.

Since the energy density equation (17) differs from its three-dimensional counter-
part only by an overall factor and the DSEs (12) have the same form in d = 2 and
d = 3 (except for the explicit expression for X ), it is clear that the variational equa-
tions differ from their d = 3 counterparts only in the number of dimensions of the
momentum integrals, while all numeric factors are exactly the same. Minimization of
the vacuum energy density equation (17) with respect to the vector kernels V' and
W yields

1+ s,s
V(p (l) = - 1—s2 -
) —s242s,8 1—52+425,5, ’
Qp+aq)+ |P|f+75§pq + |Q|4f+sgp :
B Sp — Sq
W(p,q) = — 52— 25,54 1-s2 25,8, °

1—
Qp+aq)+ |P|T + a| 1452

We recall here that the vector kernel W vanishes when s, = 0 and is therefore of
purely non-perturbative nature, since the scalar kernel s, vanishes at any order in
perturbation theory for a vanishing current quark mass.

The variation of the energy density equation (17) with respect to the scalar kernel
sp yields the gap equation

g?’Cp [ d’¢ F(p—aq)
/

|p|5p = [Sq(l - 5;2;) —-p- élsp(l - 5(21)}

2 2m)2 1+ 33
2 2
9°CFp d?q s, ) ,
T /(27r)2 1+ s2 [X-(p,a) VZ(p,q) + X+ (P, q) W?(p,q)]

e [ I
2 (2m)2 (1 +s2)Q2(p +q)
x {X—(p, Q) V(p,a)[(1 - s2)sg — 25p)] + X4 (p, @) W(p,q)[1 — 55 — 25p5,]

p|
1 —&-s%

+ X1 (p,q) W2(p, ) [sp(s5 — 3) — sq(1 — 332)]]

_|_

{X— (P, ) VZ(p, ) [sp(s2 — 3) + sq(1 — 3s2)]

1 [X ) V@) (1 sy 5,00 = 3]
- X p) W) (- sy + syl1 - )]

(18)
We stress again that, like the DSEs (12), also this gap equation has the same form
as its d = 3 counterpart, however, with X1 now given by equation (13).
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Table 1. Comparison of the d = 3 and d = 2 UV divergences of the gap equation (18)
stemming from the Coulomb term, the kernel V', and the kernel W.

d=3 d=2
2
g°Cr 8 .
Coulomb term ~@n? sp |p| 3 In(A) finite
2
. . g C 4 g°C
Terms involving V (47r)F2 Sp {72A +|p| 1n(A)( 3 + T+ )} - (47r)1; spIn(A)
: . ’c 10 4 ’C
Terms involving W é(]le)z Sp |:2A + |plIn(A) <§ “ir 83):| ?47; spIn(A)

In d = 3 we had found [5] that the addition of the vector kernel W makes the gap
equation UV finite; there the Coulomb integral [first integral on the right-hand side of
Eq. (18)] is logarithmically divergent, and the integrals involving V' and W are (sep-
arately) both linearly and logarithmically divergent. The linear divergence stemming
from W cancels the one stemming from V', and the three logarithmic divergences can-
cel altogether. In d = 2 all integrals have one superficial degree of divergence lower
than in d = 3, and quite remarkably the same cancellation of divergences happens
also in this case, although the tensorial structures Xy [Eq. (13)] look quite differ-
ently. Here the Coulomb term is UV finite, and the integrals involving V' and W are
separately logarithmically divergent but in the gap equation (18) these logarithmic
divergences cancel. As in d = 3 we find also in this case that the addition of the vector
kernel W makes the gap equation finite; a summary of the UV divergent contribu-
tions is given in Table 1. In fact, we have checked that the leading-order divergence
of the gap equation (18) cancels in any number of dimensions once both V' and W
are considered.

In d = 3 the vector kernel W was crucial also to ensure multiplicative renormal-
izability of the quark propagator [6,12]; this is not the case here, since the DSEs (12)
are UV finite.

5 Numerical results

In d = 2 spatial dimensions the squared coupling constant g2 has the dimension of
energy, and we express all dimensionful quantities in terms of g2. The colour Coulomb
potential can be assumed in the form

9>  2mog

2
p?  |p?

which consists of the perturbative part (o< 1/p?) and the linearly rising, confining
part. For the gluon propagator equation (9) we use the Gribov formula [13]

_ e
p) =[P+ 5 (19)

which excellently fits the lattice data in d = 3 [14]. The infrared analysis of the ghost
propagator DSE reveals a relation between the Gribov mass m4 and the Coulomb
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Fig. 1. Results (left: linear plot, right: logarithmic plot) for the pseudo-mass function m,,
in units of g with the colour Coulomb potential alone (dashed line) and with the coupling
to the transverse gluons included (continuous line).

string tension oc. When the angular approximation is used one finds [15]

5N,

2
my = g
A 12 C»

while abandoning the angular approximation one obtains [16]

oo (e

The two values are numerically very close to each other. The Coulomb string ten-
sion o is an upper bound for the Wilson string tension o [17], and in three spatial
dimension we have o¢ ~ 40 [18]. We have no reliable data for the ratio o¢/o in d = 2.
Since we are interested mostly in a qualitative analysis we choose oc &~ o. For the
Wilson string tension we take the value [19,20]

_ JNZ—1
8t

g

For numerical stability it is convenient to reformulate the gap equation (18) in
terms of the pseudo-mass function

2ps
m(p) = 1_;.
p

The resulting gap equation can be found in references [3,5]. The results of the numer-
ical solution of this equation are shown in Figure 1. Like in the three-dimensional
case, the main contribution to the dynamical mass generation comes from the colour
Coulomb potential [first line in Eq. (18)]. The inclusion of the coupling to the
transverse gluons only slightly increases the mass function.

6 Conclusions

In this paper we have investigated the dynamical generation of mass in QCD in d = 2
spatial dimensions within the Hamiltonian approach in Coulomb gauge. Somewhat
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surprisingly, despite the fundamental differences in the representation of the Lorentz
group most results obtained in d = 3 hold also in d = 2. In particular, the inclusion
of the non-perturbative vector kernel W in the bare quark-gluon vertex I'g [Eq. (11)]
(in addition to the leading kernel V| which exists also in perturbation theory) makes
the gap equation UV finite as in d = 3. Furthermore, also like in d = 3, the cou-
pling of the quarks to the spatial gluons only slightly increases the dynamical mass
generation. Like in d = 3 this effect is absolutely dominated by the colour Coulomb
potential equation (2), which results through the elimination of the temporal gluons
Ap in the Hamiltonian approach and, in fact, represents the instantaneous part of
the propagator (AgAp).
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