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Abstract. The equations of state (EoS) and other thermodynamic
properties of plasmas of the light elements H, He, and Li, are cal-
culated using inverted fugacity expansions. Fugacity expansions are
known as an alternative to density expansions but show often an infe-
rior convergence. If, however, the inversion can be solved, the fugacity
representations may be very efficient. In particular, the contributions
of deeply bound states are included in the fugacity expansion in a very
effective way. The mathematical problems on nonlinearity connected
with the inversion of fugacities to densities are reduced to solvable
algebraic problems. The inversion of fugacities to densities is solved sep-
arately for two density regions: (i) In the low density, non-degenerate
region we consider ring contributions describing screening effects and
ladder contributions describing bound state formation. (ii) In the high
density, degenerate region the electrons are described by the Fermi–
Dirac distribution. Hartree–Fock contributions and Pauli blocking have
to be taken into account. The ions are considered as classical, strongly
correlated subsystem eventually forming a Wigner lattice. We solve
the inversion problem for each of the regions. Near the crossing point,
the separate solutions are connected to each other, either by smooth
concatenation at the crossing point or by Padé approximations.

1 Introduction

This work, dedicated to David Blaschke’s 60th birthday, on studies of hydrogen,
helium and lithium plasmas is based on several methods developed together with
David Blaschke [1–4] as well as on other recent works [5]. The light elements have
in common, that the lowest lying bound states, the hydrogen atom, the hydrogen
molecule, and the helium and lithium atoms consist of 2–4 charged particles. In
each case, the outer electrons are only loosely bound with ionization energies of

I
(1)
H = 13.59 eV for atomic hydrogen, I

(1)
He = 24.56 eV for helium and I

(1)
Li = 5.39 eV

for lithium. For hydrogen, the dissociation energy of the H2 molecule is D ' 4.5 eV.
At increasing temperatures the atoms become ionized. The ionization of the second
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electron requires I
(2)
He = 54.41 eV and I

(2)
Li = 75.62 eV for helium and lithium, respec-

tively. For the ionization of the third lithium electron an energy of I
(3)
Li = 122.42 eV

is required. For full thermal ionization of all helium or lithium electrons we need far
more than 100 eV, i.e. more than 106 K.

An alternative way to reach high ionization degrees is to increase the particle
density to regions of n > 1023 cm−3 where all atomic and molecular bound states are
destroyed by screening and Pauli blocking effects1 (pressure ionization) [8–15]. For
an estimate we consider that a bound state of a nuclear charge +Ze with one or two
electrons in an s-shell needs space corresponding to a sphere with a radius

rB(Z) = ~/(mee
2Z)

(we use Gaussian units). This way the highest density of bound states of nuclei with
charge Ze still consistent with a close packing is

nmax
i ' 3Z3

4πr3B
∼ Z3 × 1024cm−3. (1)

Earlier work to describe high density and high pressure effects was often based
on the chemical picture [13]. In contrast to the physical picture, which normally uses
perturbation expansions, the chemical picture has the advantage that it is based on
a variational principle. On the other hand, the chemical picture leads to complex
mathematical problems including coupled nonlinear equations with solutions, which
are sometimes not unique and sometimes even unstable. The aim of this work is to
describe an alternative and in many cases more simple method based on the algebraic
inversion of fugacity expansions. This method is effective for bound states which
consist just of a few charged particles, otherwise the order of the algebra becomes
too high. For the light elements H, He and Li, we have to deal with polynomials
up to the fourth order. Our approach may be of interest, e.g., for plasmas playing a
role in nuclear fusion and in stellar atmospheres because they are dominated by light
elements.

One of the so far most accurate equation of states (EOS) has been the one derived
from the activity expansion method (ACTEX) by DeWitt and Rogers [16,17]. It has
been proven to be very reliable for the sun and sun-like stars, consisting mainly
of hydrogen and helium. Closely related is the OPAL opacity project of Livermore
[18], which is based on a numerically inverted fugacity expansion with Debye screen-
ing. The method has been very successful for applications to plasma at the surface of
stars [18]. However, the OPAL equation of state is limited with respect to two aspects.
Firstly, it is only available in the form of pre-computed tables that are provided by
the Lawrence Livermore National Laboratory. Therefore, applications require inter-
polations, which always lead to loss of accuracy. Secondly, the OPAL equation of
state is proprietary and not freely available. Our method is comparable to OPAL.
However, it is an analytical inversion based on the solution of polynomials and is
open to the public. It is related to our fugacity expansion method developed earlier
[19–21] and a different approach developed more recently by Alastuey et al. [22]. In
this paper, we develop an analytic inversion of fugacity representations based on the
grand canonical ensemble [8,19,23–25].

The OPAL equation of state has to be improved investigating the ionization poten-
tial depression at high densities where electron degeneracy becomes relevant, see
references [15,26] and references given there. As pointed out by the authors in col-
laboration with David Blaschke [1–3,15], the physical properties of dense hydrogen

1Pauli blocking plays a decisive role for systems of strongly interacting particles at high densities
in destroying bound states of nucleons [6] and quarks [7].
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and other light elements is a hot topic which requires the development of specific
methods [1–3,13,23]. The basic problem was raised in the past by many authors,
starting with Wigner, Huntington, Abrikosov, and others. Of special interest is here
again the region of extremely high pressures in the Mbar region, where the transition
of hydrogen from a dielectric state to a highly conducting phase is observed, which
is considered to be a type of Mott transition. Among the main effects influencing
strongly the pressure in this region are:

(i) the strong degeneracy of electrons including Hartree–Fock effects,

(ii) the strong Wigner - like interaction of the ions,

(iii) the lowering of the bound states by screening effects,

(iv) Pauli blocking effects.

In some of our earlier works we attacked the present problem by a combination of
the chemical approach with Padé approximations, calling this PACH (Padé approxi-
mations in the chemical picture) [13]. Here we study the algebraic inversion problem
separately for high and low densities and connect the solutions to each other in the
spirit of a method proposed by Zimmermann [27], either by a smooth concatenation
at the crossing point or by Padé-like interpolations.

2 The method of fugacity inversion and Fermi–Dirac laws

Within a quantum statistical approach, we choose the grand canonical ensemble to
describe the plasma. The state of the plasma is characterized by the temperature
T or β = (kBT )−1 and the chemical potentials µc corresponding to the conserved
components, in our case electrons (c = e) and nuclei (c = i). Instead of chemical
potentials we use here fugacities defined as

zc =
2sc + 1

Λ3
c

eβµc =
2sc + 1

Λ3
c

eαc , Λc =

(
2π~2

mckBT

)1/2

(2)

with the thermal wave length Λc. From the partition function, we obtain the
grand canonical thermodynamic potential J = −pV , which defines the pressure
p = p(T, zi, ze) in the fugacity representation. Thus, the pressure in the grand canon-
ical ensemble serves as basic quantity for the description of the thermodynamics of
plasmas [16,19,24,28–30]. From this follows the expression for the densities (d 6= c)

nc = zc

(
∂p

∂zc

)
T,zd

(3)

of the species c, d in the fugacity representation, i.e.,

ni = ni(T, zi, ze), ne = ne(T, zi, ze). (4)

For practical applications, we like to characterize the state of the plasma via the
densities, besides the temperature. Expressing the fugacities by densities and in this
way also the pressure by densities is the inversion problem which is our main task
here.
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Fugacity expansions for plasmas were first given by Montroll and Ward including
only ring diagrams in 1958 [31], then by Vedenov and Larkin in 1959 [32] and by
Abrikosov et al. [33] including also ladder diagrams. In parallel, Kadanoff and Baym
[34] presented a general formalism including all quantum effects based on representa-
tions within the grand canonical ensemble. Note that the relations given above for a
two-component plasma can be generalized to a multiple-component plasma. Within a
chemical picture, we can also consider possible ionization stages of the atoms as new
components of the plasma. However, the corresponding particle numbers are not con-
served quantities of the plasma. Ionization and recombination as reaction processes
determine the chemical equilibrium which minimizes the free energy of the plasma.
We will not continue with this chemical picture which becomes problematic in dense
plasmas but start from the physical picture using only conserved quantities.

In principle, the pressure may be expressed as [8,23–25]

p = pFDe + pHF
e + pBo

i + pWi
i + pringi + pladderi + pEshift

i , (5)

where the main contributions, which will be defined later, are:

(i) the Fermi-Dirac pressure of the electrons pFDe ,

(ii) the Hartree-Fock pressure of the electrons pHF
e ,

(iii) Boltzmann and Wigner pressure of the ions,

(iv) ring contributions modeling pressure lowering by screening effects,

(v) ladder contributions modeling pressure lowering by bound state formation,

(vi) contribution due to bound state energy shifts.

Here the first two contributions connected with the names Fermi-Dirac and Hartree-
Fock are well known, at least for the limiting cases. They are stemming from diagrams
with no more than one interaction line. The most important diagrams with two or
more interaction lines are the contributions stemming from ring and ladder diagrams
pringi and pladderi . At very high densities, the contributions of rings and ladders are less
relevant since Coulomb bonds need some space to be developed and this space is not
available at very high densities, where typical distances are below the Bohr radius.
Bound states are, from a technical point of view, contributions connected with ladder
diagrams, At densities larger than the estimated maximum density for bound states
(1), these bound states disappear and we arrive at regions where only contributions
of free states and Hartree-Fock contributions still exist.

Following the idea of Zimmermann [27], we use different methods to treat the low
density, weakly degenerate plasmas (neΛ

3
e < 1) and the strongly degenerate plasmas

(neΛ
3
e > 1). In order to illustrate this, we discuss the well known inversion for the

EOS of Fermi-Dirac gases [27]. The Fermi-Dirac contributions to the EOS are exactly
given by the Fermi integrals [27,35,36]. With spin factor 2 we have

1

2
nFDe Λ3

e = I1/2(αe); αe = µe/kBT. (6)

The problem of inversion from the variable ze = 2Λ−3e eαe to the density ne can be
considered as solved in this approximation, with the expression given by

αFD
e =

[
ln(y) + 0.3536y − 0.00198y2 + 0.000124y3

]
if y < y0; y = neΛ

3
e/2,
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αFD
e =

[
1.209y2/3 − 0.6803y−2/3 + 0.45y−2

]
if y > y0; y0 ' 2.5. (7)

Zimmermann proposed to concatenate both pieces at the crossing point y0 ' 5. We
will use here a more smooth transition by means of weight functions decaying with
increasing distance from the crossing point. For a smooth interpolation between both
pieces we may use two half-side functions w(ay) and w(−ay) related to the tanh(y)
function, where y is the degeneracy parameter defined above, and a is a free parameter
[37]. Another alternative is to connect both half-sides of the functions by appropriate
Padé interpolations [37]. In a similar way, we will proceed later for all other contri-
butions. Most attention will be paid to the high-density part which is evidently less
studied by analytical methods so far.

3 Fugacity inversion for bound states

3.1 Inversion for hydrogen plasmas

After explaining our approach for an ideal Fermi-Dirac gas as a rather simple example,
we consider now the more difficult case, which is our main task here, the inversion of
relations (4) with taking into account bound state contributions. Within the general
systematics, the lowest order corrections with respect to interaction are the Hartree-
Fock terms which can be incorporated in the quasiparticle picture. This will modify
our approach given in Section 2 and also the coefficients of the expansions (7). Note
that the Hartree term for Coulomb interaction is diverging what is cured if screening is
taken into account, but for charge-neutral plasmas the Hartree term is zero. However,
this is not applicable for the plasmas we are considering because the interaction is
strong, forming bound states.

Improving the ideal Fermi-Dirac gas at low densities, we have to consider the
expansion with respect to the density, a so-called cluster expansion, where we take into
account binary collisions, three-particle collisions, etc., but in all orders of interaction.
The following consideration is fosussed on the bound state contribution and is based
on the preliminary drastic assumption, that we may omit all contributions from
ring diagrams and exchange diagrams and keep only those contributions of ladder
diagrams, representing bound states.

In order to demonstrate our method for the treatment of bound states developed
in [20] we consider atomic hydrogen first. A simplification is obtained assuming ze =
zi = z, what corresponds in a way to charge neutrality and is reasonable for regions
where degeneracy is not relevant. We obtain pressure and densities as convergent
series with respect to the fugacities

βp′′ = 2z + 2z2b′′ie(T ); b′′ie(T ) = 8πλ3ieσPBL(T ); (8)

ni = ne = z + 2z2b′′ie(T ) (9)

where we use the traditional notation

λab =
~

(2mabkBT )1/2
(10)

with the reduced mass m−1ab = m−1a + m−1b . Note that the definition of the thermal
wave length for the relative motion differs from the definition (2) for the center-of-
mass motion. The second virial coefficient b′′ie(T ) contains contributions of bound
and scattering states. The double dash denotes the subtraction of the first order
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of interaction which is already considered in the Hartree-Fock term. In standard
approximation, the convergent bound state part of the partition function appearing
in the second virial coefficient is given by the Planck-Brillouin-Larkin expression [8,24]

σPBL(T ) =
∑
s

s2[exp(−βEs)− 1 + βEs]. (11)

Using a dimensionless fugacity Z = ze/ne = zi/ni, the quadratic equation (9) reads

1 = Z + a2Z
2, a2 = 2nib

′′
ie(T ) (12)

with the solution [20]

Z = Z(nib
′′
ie(T )); Z(x) =

1

2x
[
√

1 + 4x− 1]. (13)

More convenient for calculations are Padé approximations as e.g.

Z(x) ' 1 + x/2

1 + 3x/2
(14)

valid for Z(x) > 1/2. For the pressure follows the representation

βp′′ = ne + niZ[nib
′′
ie(T )]. (15)

In the chemical picture, the pressure of hydrogen my be written as (the stars denoting
“free densities”)

βp = n∗e + n∗i = ne + αni. (16)

This writing suggests, that Z[nib
′′
ie(T )] corresponds to the degree of ionization α,

which is the ratio of the free electron density to the total electron density [8,20] (not
to be confused with the activity αc used above).

We now extend our approach and include the formation of hydrogen molecules.
Within a virial expansion, the H2 molecule appears as a contribution of the fourth
virial coefficient. Neglecting weakly bound ion states like H+

2 or H−, we have a leading
contribution of the 4th virial coefficient from the H2 molecule:

βp′′ = ze + zi + 2zezib
′′
ie(T ) + 6z2ez

2
i b
′′
ieie(T ); (17)

ne = ze + 2zezib
′′
ie(T ) + 12z2ez

2
i b
′′
ieie(T );

ni = zi + 2zezib
′′
ie(T ) + 12z2ez

2
i b
′′
ieie(T ).

The indices denote the combinations of particles in the cluster and the prefactors
are due to the total number of physically equivalent combinations. Due to ne = ni
we have again ze = zi. The inversion requires the solution of a 4th order algebraic
problem for Z. We find a fourth order polynomial in Z, with the assumption a3 ' 0,
i.e. neglecting the terms stemming from hydrogen ions, and get

βp′′ = ne + niZ(a2, a4); 1 = Z + a2Z
2 + a4Z

4. (18)

The solution depends on density and temperature through the coefficients x =
a2(ni, T ) and y = a4(ni, T ), which provide the contributions of bound states. For
y = 0 we get back to the known solution for atomic hydrogen equation (10). For
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small arguments x < 1, y < 1, the function Z(x, y) may be expressed via a Taylor
series

Z(x, y) = 1− x− y + 2x2 + 4y2 + 6xy + ... (19)

In the case that the asymptotic behaviour for one variable is finite and the other one
goes to infinity, we have a simpler asymptotic solution, as e.g.

Z(x, y)→ 1

x1/2
if x→∞; Z(x, y)→ 1

y1/4
if y →∞. (20)

A simple Padé approximation for the fugacity function reads

Z(x, y) ' 1 + 0.25x+ 0.1x2 + y + 0.003y2.5

1 + 1.25x+ 2y + 0.1x2.5 + 0.003y2.75
. (21)

Note that this is an estimate, found by using the analytical expressions of the lim-
iting cases and comparison with numerical results. For still more precise values, we
may use numerical iterations of the polynomials which may start from the given
approximation. The chemical potentials and the pressure are given by

kBTµe = ln(neZ(a2, a4)); kBTµi = ln(niZ(a2, a4)), (22)

βp′′ = ne + niZ(a2, a4) = pBo
id + ni(Z(a2, a4)− 1). (23)

3.2 Inversion for helium and lithium plasmas

Within the schema developed above we study now the formation of helium atoms in
plasmas, which consist of a doubly charged nucleus (α - particle) and two electrons.
This means that three-particle interactions play an important role and we need at
least the third virial coefficient to describe the helium atom formation in the Ruther-
ford picture. In order to have a guideline we start with a chemical picture, where
the essential contributions to the pressure of He-plasmas can be given as (the stars
denote again free densities)

βp = n∗e +n∗i +n∗He+ +n∗He, n∗He+ = n∗en
∗
iKHe+(T ), n∗He = (n∗e)

2n∗iKHe(T ). (24)

We assume, that the densities are connected via an ideal mass action law with mass
action constantsKHe+(T ) andKHe(T ) for formation of helium ions and atoms, respec-
tively. We identify corresponding terms in the fugacity expansion in the following way
[38]: electron fugacity, ion fugacity and the third virial coefficient with free electron
density, free ion density and mass action constant KHe(T ), respectively,

βp′′ = ze + zi + 2b′′ei(T )zezi + 3b′′iee(T )z2ezi . (25)

According to equation (3), we then find et expressions for the densities ni, ne:

ne = ze + 2zezib
′′
ei + 6z2ezib

′′
eei, ni = zi + 2zezib

′′
ei + 3b′′ieez

2
ezi. (26)

Taking into account the physical meaning of the contributions to ni we may introduce
the fractions of free species as was suggested in some earlier work [11,39]. Although
there is no full correspondence between the standard chemical view and the present
physical picture, we may approximate α2 ' zi/ni as corresponding to the degree of
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double ionization in the case of helium. Due to the relations between the charges
and densities ne = 2ni, it follows that ze = 2zi for Z = zi/ni = ze/ne and the cubic
equation

1 = Z + a2Z
2 + a3Z

3 (27)

with a2 = 4nib
′′
ie; a3 = 12n2i b

′′
eei. The inversion requires solving a cubic polynomial.

Neglecting the less important ions He+, i.e. a2 = 0, the quadratic order is missing,
so the problem belongs to a normal form with the Cardano solution. In our case the
discriminant is positive since b′′eei(T ) > 0 and we get one real solution

Z(a3) =
2
√

2√
3a3

sinh
(1

3
arsinh

[3a3
√

3a3

4
√

2

])
. (28)

The fugacity function Z(y) depends here only on one dimensionless variable a3. Since
the Cardano solution is a rather complex expression, we construct a simpler Padé -
like expression starting again from equation (27), based on the limits for small and
large arguments of a3, respectively,

Z(a2, a3) ' 1 + 0.25a2 + 0.5a3 + 0.1a22 + 0.03a2.663

1 + 1.25a2 + 1.5a3 + 0.1a22 + 0.1a2.52 + 0.03a33
. (29)

Better approximations may be found numerically.
The chemical potentials and the pressure of helium plasmas are then given as

µe = kBT ln(neZ(a2, a3)), µi = kBT ln(niZ(a2, a3)), (30)

βp′′ = ni + 2niZ(a2, a3). (31)

We may express the pressure related to the Boltzmann pressure

βp/(ne + ni) = 1/3 + (2/3)Z(a2, a3), (32)

with the correct limits

βp/ni → 3 if T →∞; βp→ ni if T → 0. (33)

Finally we study lithium plasmas using the same methods and similar approxima-
tions as for hydrogen and helium. Lithium atoms are formed by a nucleus carrying
three positive charges and three electrons in the atomic shells. The outer electron
is only loosely bound with an ionization energy of I = 5.39 eV. The relevant bound
state consists of 4 charged particles and this makes some mathematical similarity to
the inversion of the cluster series for H2 - plasmas since it may be reduced to a fourth
order polynomial. We are starting again from a chemical picture, denoting the con-
centrations in this view by stars. Neglecting singly charged Li+ - ions, the essential
contributions to the pressure have the form

βp = n∗e + n∗i + n∗2+i + n∗Li, (34)

n∗Li = (n∗e)
3n∗iKLi(T ), n∗2+i = (n∗e)

2n∗iK
2+
Li (T ). (35)

Again we assume for now, that the densities are connected by ideal mass action laws
with appropriate mass action constants. Going to the grand canonical ensemble in
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the physical picture, we assume for the pressure

βp′′ = ze + zi + 2b′′iezezi + 3b′′iee(T )z2ezi + 4b′′ieee(T )z3ezi . (36)

Applying equation (3), expressions for the densities are

ne = ze + 2zezib
′′
ie(T ) + 6b′′iee(T )z2ezi + 12z3ezib

′′
ieee; (37)

ni = zi + 2zezib
′′
ie + 3b′′iee(T )z2ezi + 4z3ezib

′′
ieee. (38)

With ze = 3zi, zi = niZ we get a fourth order polynomial with respect to Z:

1 = Z + a2Z
2 + a3Z

3 + a4Z
4, (39)

a2 = 6nib
′′
ie, a3 = 27n3i b

′′
iee, a4 = 108n3i b

′′
ieee, (40)

and for the pressure in terms of the fugacity function Z(a2, a3, a4):

βp′′ = ze + ni = pid + 3ni[Z(a2, a3, a4)− 1]. (41)

In order to simplify, we may either neglect the singly charged ions Li+, as proposed
above, or fuse it with the energetically close Li-atoms in order to get, in full equiv-
alence to hydrogen, the more simple polynomial 1 = Z + a2Z + a4Z

4. With this
assumption, the solution may be approximated by the Padé formula

Z(a2, a4) ' 1 + 0.25a2 + 0.1a22 + 1a4 + 0.003a2.54

1 + 1.25a2 + 2a4 + 0.1a2.52 + 0.003a2.54 + 0.003a2.754

, (42)

in analogy to hydrogen. Let us underline again, that so far we considered only the
contributions from ladder diagrams with three or more ranks, for methodological
reasons. They are of the orders e4, e6, e8. In the next section, we will include the
missing ring contributions which are connected to the screening effects.

4 Combination of screening and bound state effects in dense
plasmas at moderate densities

4.1 Region of hydrogen atom formation

Taking into account screening effects by including contributions of the ring diagrams
has been worked out by Kraeft et al. [24]. For the low density region considered
here, we introduce the so-called reduced mass approximation (RMA) and neglect
exchange effects [21,24,37] for the low density region. The RMA is based on the
assumption that only collisions of opposite charges are relevant, which follows from
the asymptotic properties of the so called quantum virial functions Q(ξab) for
ξab = βeaeb/(4πελab)� 1, for details see [21,24,37]. In the same region, the exchange
contribution decreases exponentially [24,37]. The well - known result for pressure
contributions stemming from ring diagrams is neglecting symmetry effects [8,19,24]

βp = ze + zi −
κ3g

12π
(1− 3

√
π

8
κgλ+ ..), Z(a2, a3) ' 1/a

1/3
3 , (43)

where κg is the Debye screening parameter as it appears in the grand canonical
ensemble, i.e. expressed by fugacities instead of densities, and λ = λie due to RMA
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here and in the following. Including higher density orders we get [21]

βp = ze + zi −
κ3g

12π
φ(κgλ), φ(x) = 1− 3

√
π

8
x+

3

10
x2 + ... (44)

' (1 + 3x3)/(1 + (3
√
π/8)x+ 0.1418x2 + x5).

For this so-called quantum Debye-Hückel approximation (QDHA), the inversion leads
to screened fugacities [8,21,24]

z = ze = zi = n exp[−βe2κG(κλ)], κ2 = 8πβne2, (45)

G(x) = 1−
√
π

4
x+

9

48
x2 + ... ' 1/(1 +

√
π

4
x). (46)

Taking into account that κ depends on z too, and replacing z by a screened fugacity
z̃ and κ by κ̃, the following expression is obtained [21,37]

z → z̃ = n exp
[
− βe2κ̃/(1 +

√
π

4
κ̃λ)
]
, κ̃ = κZ1/2. (47)

We insert this result into the inversion equations (17)–(18) for the bound states and

get for the screened fugacity function Z̃ = z̃/n

1 = Z̃ + a2Z̃
2 + a4Z̃

n, ak = ak(ni, T ) . (48)

This is an approximation which is certainly not applicable in the case of degenerate
electrons. But we can combine the inversion procedures for screening and for the
bound states using the results of the previous section.

The further procedure depends on the specific plasma. Let us start with hydrogen
and include only atomic states. Combining the approximate solution for the screening
contribution (43) with the result for the bound state contribution for hydrogen (13)
we get for the fugacities and the pressure

ze = zi = z ' nZ
[
8πnλ3σBPL(T ) exp[−βe2κ̃G(κ̃λ)]

]
, (49)

βp = ne −
κ̃3

12π
φ(κ̃λ) + niZ

[
8πniλ

3σPBL(T ) exp[−βe2κ̃G(κ̃λ)
]
, (50)

respectively. The latter expression is closely related to the Saha equation in QDHA
[8,24,37]. This confirms the idea, expressed already in the previous section, that the
Z-function corresponds to the degree of ionzation α of electrons and ions, see equa-
tion (16). Taking into account Z(x) ' 1− x+ ... we see that this result is compatible
with both limits of “no screening” and “no bound states”.

For the pressure we find relatively simple formulae which contain three nonlinear
functions having convenient Padé approximations. Note that so far our results refer
only to the region of non-degenerate electrons. There are several ways for including
the degeneracy effects of the electrons. The easiest one is the replacement of the first
contribution by the Fermi–Dirac pressure. This will effect the pressure only at higher
densities, where it will increase rapidly,

βp = βpide −
κ̃3/2

24π
φ(κ̃λ) + niZ(γ), (51)

γ = 8πniλ
3σPBL(T ) exp[−βe2κ̃G(κ̃λ)].
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Here the Planck - Brillouin - Larkin partition function appears, instead of the full
two-particle function, because all terms linear in e2 are already taken into account by
the screening procedure and should not appear twice. This effect is also responsible
for the convergence of the partition function [8,24]. Since the fugacity series contains
more terms than the density series, we may expect that some of the difficulties con-
nected with the convergence of the density expansion, as, e.g., the strong decrease
of the pressure going possibly even down to negative values at high density, may be
avoided. Indeed, a representation of the pressure using the fugacity expansion shows
a more reasonable behavior with increasing density. It is much closer to the behavior
obtained in the chemical picture using Saha-type mass action laws [13], as Figure 1
demonstrates. Taking account all contributions up to second order in the fugacity,
the pressure is shown for three temperatures. No negative pressures appear, which we
would observe in a pure density expansion. This is due to the fact that the fugacity
is not fixed, it decreases with increasing value of the partition function and avoids in
this way negative pressures.

The good convergence of the new expression (51) including the nonlinear functions
Z(x) and φ(x) based on the fugacity series (43) is due to the fact that the fugacities
of the electrons and the protons are rather small in the bound state region. We notice
again that this result comes from an extension of the density expansion including all
quadratic terms from the fugacity virial expansions and the full Fermi pressure of
the electrons. We see that the overall behavior of the new representation is much
better than that of mere density or mere fugacity representations. Therefore we may
conclude that the most appropriate description of Coulomb systems is by inverted
fugacity expansions. The new contributions allow to control the exponential increase
of the second virial coefficient in the bound state region. The physics behind is that
the fugacity expansions describe well the saturable forces between bound states in
Coulomb systems, but on the other hand the additive long range Coulomb forces and
the screening effects are better represented by density series. It is consistent with
the Saha theory and in particular also with the quantum Saha-Debye-Hückel theory
developed above. Further we may state that the new extended analytical theory is,
up to the density n ' 1021 cm−3, in reasonable agreement with earlier calculations
based an the chemical picture and quite complex numerical codes [13]. We stress the
following structural differences of equation (51) to the original Saha theory:
1. The exponent exp(βI) in the Saha equation is replaced by the PBL-partition func-
tion.
2. The first Debye-Hückel screening function, which is linear in κ, is replaced by a
nonlinear function φ(x) describing the quantum statistical ring sums in the grand
canonical expansion.
3. The linear second virial coefficient is replaced by a nonlinear ladder function
stemming from the representation in the grand canonical ensemble.

The grand canonical ensemble plays an essential role in our derivation. Equa-
tion (5) corresponding to a second iteration is in some sense incomplete, e.g., we
would expect that in higher iterations more κ-terms are replaced and that more
terms corresponding to a mass-action law will appear.

In the region of low temperature T < I/kB and non-degenerate plasmas our rather
simple formulae give a rather good behavior and describe well the transition from low
density to the valley of bound states. We note however that several physical effects
as, e.g., plasma phase transitions are not yet described by the present approach.
Evidently this effect appears only taking into account higher order terms or after
transition to some chemical picture [30,37,46]. The treatment of phase transitions is,
however, not our aim here, knowing that the description of phase transitions in the
grand canonical ensembles requires special tools. Anyhow the overall agreement of
mixed representations with chemical descriptions is quite reasonable, the deviations
increase only at large densities beyond n ' 1021 cm−3, see Figure 1. The largest
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deviations appear near the minimum of the relative pressure for hydrogen at 20000 K
(the green line is the present theory and the red line, the lowest of the curves comes
from the PACH approximation [13]) and may be interpreted as due to the formation
of molecules which have been neglected in this section so far.

4.2 Region of hydrogen molecule formation

In order to describe molecule formation we should include contributions from the
fourth order virial coefficient by replacing the solution of a second order polynomial
Z(x) by the solution of a fourth order polynomial Z(x, y) as described in Section 3.1,
equation (18). This leads to closed equations of the shape

βplow = pide −
κ̃3/2

24π
φ(κ̃λ) + βniZ(γ, ζ) (52)

in the low-density region. Here we introduced the “screened virial coefficients” ã2 = γ
and ã4 = ζ defined by

γ = 8πnλ3ie exp(−βe2κ̃G(κ̃λie)σH(T ); (53)

ζ = 16πnλ3HH exp(− 2βe2κ̃G(κ̃λie)σH2(T ). (54)

The hydrogen partition functions are defined as σH(T ) = σPBL(T ), see equation (11),
and

σH2
(T ) =

∑
ν

gν [exp(−βEν − 1 + βEν ], (55)

where the gν denote degeneration factors of the energy levels Eν (electronic and
ionic) of the H2 molecule . The subtraction of the first linear terms of the exponential
function is introduced to avoid double counting, since all terms up to e4 were already
taken into account in the summation of ring diagrams. The ground state of the H2

molecule has the binding energy

E
(0)
H2
' 2× 13.6 eV + 4.7 eV = 31.9 eV ' 2.35EH (56)

and the corresponding ground state contribution is

σH2
(τ) = exp(2.35/τ)− 1− (2.35/τ), τ = T [K]/157886 . (57)

Investigating Figure 1, we see small shoulders at intermediate densities which
may reflect the formation of atoms and minima at ni ∼ 1023cm−3 due to the forma-
tion of molecules. For still larger densities, all bound states break down due to the
dominance of the Fermi pressure which steeply increases. However, in this region the
energy level shifts, which are not yet included, may start to play a role. This will
be discussed in forthcoming sections. For the temperature T = 20000 K (in green)
the comparison with earlier calculations (lowest curve in red), based on the chemical
picture including molecules and Padé approximations PACH [13] shows that our new
results for the relative pressure are a bit deeper. Let us draw some conclusions: We
have seen that density as well as fugacity expansions have both advantages as well
as disadvantages:
1) The density expansion describes well the screening effects but it fails to cope with
rapidly increasing contributions from the screening terms and from the BPL-partition
function.
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Fig. 1. Equation of state (EOS) of hydrogen represented by the relation of total pressure to
the Boltzmann pressure. For lower densities ne < 1023cm−3, the pressure has been calculated
on the basis of equations (52)–(55) including the nonlinear ring and ladder diagrams from
atom and molecule formation. We see first a decrease due to the formation of bound states
leading to a minimum and another increase. Left panel: We show the pressure p/2nkBT at
the temperature T = 20000, 30000, 50000 K in dependence on the density (in log scale) (ni−
total proton density). Right panel: Comparison with an earlier calculation for temperatures
T = 20000, 30000, 50000 K [20,21] in dependence on the ion density. For the temperature
T = 20000 K (in green) we show also another earlier calculation (lowest curve in red), based
on the chemical picture including molecules and Padé approximations PACH [13]. (1 kK =
103 K.)

2) The fugacity expansions are more smooth, since any rapidly increasing term makes
the fugacity factors less relevant. Any finite fugacity expression corresponds to an infi-
nite density series including the partition function σ. If σ is getting large, then the
fugacity goes to zero what guarantees even at large densities always finite contribu-
tions to the pressure. This is true for the screening contributions and for the bound
state contributions.
3) The inverted fugacity expansions used here are useful smooth representations of
the pressure. This procedure of inverting fugacity series provides Saha-like terms and
therefore chemical effects.

In Figure 1 we give a comparison of the present theory for T = 20000, 30000,
50000 K with the numerical results obtained within an advanced chemical picture by
minimization of the free energy [13]. At the present moment the agreement is still
only qualitative. This shows that our new methods still need further development.
This is basically due to missing terms in the interference between screening and
ladder diagrams. With the chemical picture we mean here the Saha equation as
well as any description which is based on the optimization of expressions for the
free energy depending on the density of free charges, atoms and molecules [11,13].
Based on these observations we may recommend the use of the present alternative
to the relative complicated chemical descriptions. We may conclude that the mixed
expansions derived first in [21] combine the positive features of density and fugacity
expansions avoiding most of the negative features. We should mention that the present
approach fails in the region of large densities. The reason is, that at higher densities
the Hartree-Fock effects and the Wigner - type ion - ion interaction effects provide
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Fig. 2. Relative pressure βp/(ne + ni) including bound state and screening effects. Left
panel: Helium plasmas at T = 30000, 50000, 80000 K (red, green, blue curves) obtained
by inversion of fugacity series as a function of log(ni). In the region of stronger screening
and atom formation the relative pressure decreases from 1 to 1/3 corresponding to the
binding of three particles in one helium atom. The thin lines in magenta, turquoise, black
show the fractions of free helium ions nHe++/ni at the corresponding temperatures. Right
panel: Lithium plasmas. We show that the relative pressure prel = p/(3nikBT ) at T =
50000, 80000, 120000 K is going down to about 1/4 and forms also a minimum connected
with the binding of three electrons and one nucleus in a lithium atom. We included here
the Fermi pressure and see an increase at high densities, which however is only qualitatively
correct since there are other corrections also needed (see Section 5).

additional negative contributions to the pressure, as we will see in the last section.
In order to describe the transition to full ionization in the degenerate region more
correctly, these and other additional effects as the bound state shifts have to be taken
into account. This leads in particular to a loss of the symmetry between electrons
and ions. The bound state shifts and their influence on the disappearance of the
bound states with increasing density will be discussed in the next section following
references [1,2].

4.3 Low and moderate densities in helium and lithium plasmas

The calculations for helium and lithium plasmas are performed in the same way as for
hydrogen except the different definitions of the Z-functions explained in Section 3.2.
The result for the relative pressure of a helium plasma is shown in Figure 2. In order
to compare with the result for the density of free helium ions, which is given by the
Z-function, we show Z(ni, T ) by thin lines.

From the physical point of view we observe the expected behavior. Bound states
formation is reflected by shoulders and minima of the relative pressure. The agreement
with earlier calculations of the pressure using the mass action law [11,12,39] is, in
particular around the minimum, not yet satisfactory.

We summare now the results of this section. We have shown that transitions from
full to partial ionization and back to full ionization at high densities occur in the
temperature range 104−105 K in a density region around ni ' 1020−1024 cm−3. The
formation of H atoms, also H2 molecules, He and Li atoms may be described in the
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physical picture. We included ring and ladder diagrams in higher order approxima-
tions as well as certain combinations of these basic diagrams. The formation of the
minima is essentially connected with the contributions of inverted ladder diagrams.
The principal scheme how the formation of bound states depends on the density at
a fixed temperature is shown in Figure 2. We see that the main effects as the forma-
tion of atoms and molecules and their destruction at very high densities are correctly
described. The agreement with advanced calculations based on the more complicated
chemical picture is, at higher densities around the minima and beyond, only qual-
itatively so far. The inversion of fugacity functions stemming from summations of
partial fugacity series leads to quite simple descriptions of the bound state formation
without using mass action law equations. At extremely high densities, the present
methods fails due to the missing Hartree-Fock and Pauli blocking effects which are
relevant at close packing of electrons and ions. This will be discussed next.

5 Pauli blocking effects and energy shifts

5.1 Effective wave equations and energy shifts

The study of level shifts and broadening due to interaction effects is of large signifi-
cance for the investigation of plasmas [10,23]. According to elementary estimates, the
ground state level disappears because of screening effects at rD < 2aB . Later studies
give the more precise value of the Debye radius rD < 0.84aB at which the levels dis-
appear. This idea goes back originally to Ecker and Weizel and was worked out by
Theimer and Kepple and in more detail in [8,24,25,27]. The cited authors developed
the general idea, that the continuum comes down with the density, so that the ion-
ization energies are squeezed. Note that Mott-like effects may be of different origin
[23]. The disappearance of the bound states with increasing density was discussed in
many works [8–10,23–25,27]. The appropriate tool is the use of a generalization of
the Schrödinger equation, the Bethe - Salpeter equation which is named after Hans
Bethe and Edwin Salpeter. It is difficult to trace back the origin of this fundamental
equation. Evidently it was first published in 1950 in the final part of a paper by
Yoichiro Nambu, but without derivation and then formulated in a more systematic
way by Bethe and Salpeter (1951), so one should more correctly say “Nambu-Bethe-
Salpeter” equation. This equation was used in particular for the development of a
more advanced theory of the energy levels in plasmas [23–25,27]. Nowadays this con-
cept is found in fruitful applications in the theory of nuclear bound states [4,40–42]
and recently also in the physics of graphene [5].

The bound states of pairs of particles play a major role for the properties of gases
and plasmas, they are responsible for the formation of atoms, molecules, clusters etc.
Let us first consider the treatment of a pair bound state in the case that the pair is
isolated from the surrounding. This way we have a many-body problem for N = 2
particles (e.g. electron and proton) with a central force potential U = U(r), where
r = |r1 − r2|. The wave function Ψ (r1, σ1, r2, σ2, t) obeys a Schrödinger equation in
the 6-dimensional space

i~
∂Ψ

∂t
=

{
− ~2

2m1
∆1 −

~2

2m2
∆2

}
Ψ + U(r)Ψ . (58)

After separating the center of mass motion, the Schrödinger equation for the relative
motion in momentum representation reads

~2p2

2m12
φn(p)−

∑
q

V (q)ψn(p + q) = E0
nψn(p) . (59)
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For the electron-proton system, the reduced mass is m−1ep = m−1e +m−1p ≈ m−1e . Using

Rydberg units (~ = 1,me = 1/2, e2 = 2), the Coulomb interaction in momentum
representation reads V (q) = 8π/q2. The normalized wave function for the ground
state (n = 1) is

ψ1(p) =
8
√
π

(1 + p2)2
,

∑
p

|ψ1(p)|2 =

∫
d3p

(2π)3
|ψ1(p)|2 = 1. (60)

The corresponding ground state energy for hydrogen is 1 Ry = 13.56 eV, the higher
levels depend on two quantum numbers Es,l. If the bound states are imbedded into
a plasma, this shifts the levels as pointed out above.

5.2 Level shifts and disappearance of the discrete spectrum

An elementary approach is the confined atom model [24], which assumes that the
bound state electrons are confined by a spherical box with the radius r0 given by

(4π/3)r30 ' V/Ni. (61)

This imbedding leads mainly to an increase of the kinetic energy of the bound electron
in the confined atom (ca) model by the amount

∆Eca
sl = Ry

a2B
r20
xsl (62)

where the xsl are the zeroes of the Bessel functions, being the solutions of the problem
’electron imbedded into a box’, e.g. x10 = 3.142, x20 = 6.283, ... . We get for the
ground state shift

∆Eca
10 = 3.124 (4πnia

3
B/3)2/3Ry. (63)

According to this estimate, the bound state levels merge into the continuum at

Esl + ∆Eca
sl = 0. (64)

The physical reason for this shift is the Pauli exclusion principle, i.e. the bound
electrons are not admitted to penetrate the space occupied by the atoms in the
neighborhood. The elementary estimate given above provides us with the condition
for the existence of a ground state

r0 > 0.4aB: rs > 0.4. (65)

This condition, which is less stringent than the Mott conditions, needs certainly
improvements. A more strict calculation of the level shift may be given with the
quantum statistical approach based on the Nambu-Bethe-Salpeter equation [24,25],
introducing concepts such as the self-energy, dynamical screening and the spectral
function. For these many-body quantities, special approximations can be performed
which reflect different processes in the plasma. In this way, an effective wave equation
is obtained [10,24]:

p2

2me
ψn(p)−

∑
q

V (q)ψn(p + q) +
∑
q

Hpl(q)ψn(p + q) = Enψn(p) . (66)
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We assumed here the adiabatic limit me/mp � 1, the center of mass motion p has
been neglected. In general, the plasma Hamiltonian Hpl(q) will depend also on p
and on the energy, if dynamical and retardation effects are taken into account. The
plasma Hamiltonian will shift the energy eigenvalues En = E0

n + ∆En and will mod-
ify the wave functions ψn(p). With increasing density, the influence of the plasma
increases and the binding energies may merge into the continuum so that bound states
disappear. This breakup of bound states is called Mott effect and has important con-
sequences for the macroscopic properties of the plasma. We focus on the influence of
the mean-field contributions to the effective Schrödinger equation of pairs,

p2

2me
ψn(p) −

∑
q

V (q)ψn(p + q) +
∑
q

V (q)
[
fe(p)ψn(p + q) (67)

− fe(p + q)ψn(p)
]

= Enψn(p) .

Here, fe(p) = fe(Ep) is the Fermi distribution. In the case of low density the pertur-
bation due to the plasma Hamiltonian is small, the shift of the energy eigenvalues is
obtained with the unperturbed wave functions as

En − E0
n = ∆EFock

n + ∆EPauli
n = −

∑
p,p′

ψ∗n(p)V (p′ − p)fe(p
′)ψn(p) (68)

+
∑
p,p′

ψ∗n(p)V (p′ − p)fe(p)ψn(p′) .

Here, inserting the Schrödinger equation, the Pauli blocking term can be rewritten
as [1,2]

∆EPauli
n =

∑
p

ψ∗n(p)

(
p2

2me
− E0

n

)
fe(p)ψn(p) . (69)

A simple expression is found in the low-density limit, where the Fermi distribution
with the normalization

∑
p fe(p) = ne/2 is concentrated near p = 0. In the zero tem-

perature limit, we have a Fermi sphere with Fermi momentum pF = (3π2ne)
1/3 � 1.

The energy shift of the ground state φ1(p), equation (60), results as

∆EPauli
1 ≈ 1

2
ne (−E0

1) |ψ1(0)|2 = 32πne . (70)

Here and in the following we are using Rydberg units where the dimensionless density
of free electrons is ne in units of a3B , and the ground state energy is E0

1 = −1. In this
approximation, the Pauli blocking shift is linear in the density. In the general case of
arbitrary temperatures, we have to introduce the Fermi function and the integrals in
equation (16) cannot be taken in a simple way,

∆EPauli
1 =

32

π

∫ ∞
0

dp
p2

(1 + p2)3
fe(p). (71)
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Fig. 3. The shifts of the ground state E10 (black) and two excited states E20, E30 in Pauli-
Fock approximation (given in Ry-units) and the lowering of the continuum level (red), as
function of the density (given in Rydberg units) from [2,21,23].

If we approximate the Fermi distribution by a Boltzmann distribution normalized to
the same density, we obtain an analytical expression

∆EPauli
1 ≈ 32πneG(T ); G(x) ' 1

1 + 77
16x

, (72)

where the function G(T ) expressing the temperature-dependence is given in a simple
approximation [23]. Here the Rydberg units of temperature are given by Ry/kB =
157886 K, i.e. by the ionization temperature of hydrogen. In the asymptotic approx-
imation T � 1 (i.e. temperatures below 20000 K where G(x) ' 1) this leads back to
the zero temperature expression for the shift given by equation (17).

Similar expressions can be given for the Fock term. In the low temperature, low
density limit we get

∆EFock
1 = −128ne

∫ ∞
0

dp
1

(1 + p2)4
= −20πne . (73)

It compensates partially the Pauli shift so that the total shift is

∆EFock
1 + ∆EPauli

1 = 12πne . (74)

It is shown in Figure 3, full line, indicating a rather steep shift of the bound state
energy. Taking into account the temperature effects, the Fock shift is given by

∆EFock
1 = −64

π2

∫ ∞
0

p dp

(1 + p2)4

∫ ∞
0

dk k ln

[
(p+ k)

|p− k|

]
fe(k) (75)

Due to phase space occupation, the bound state energy is shifted and may merge
with the continuum of scattering states, indicating the breakup of bound states.
Considering in equation (67) the continuum part of the spectrum describing scattering
states, only the Fock shift contributes to the energy shift. The lowest energy in the
continuum occurs at p = 0 and is shifted by

∆EFock(p = 0) = −
∑
q

V (q)fe(q) = −4pF /π = −4(3ne/π)1/3.
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However, the two-particle continuum state can only be created at the Fermi momen-
tum since all states below that are occupied. Thus the continuum of scattering
states, where the bound states become free, begins at pF where we have in the zero
temperature limit the Fock shift

∆EFock(pF ) = −
∑
p

V (p− pF )fe(p) = −2pF /π = −2(3ne/π)1/3 (76)

shown also in Figure 3. Extrapolating these low-density results to higher densities,
the ground state disappears at a density which corresponds (in Rydberg units) in
first approximation to ne ' 0.015. This leads to an average distance of r0 ' 2aB and
is with respect to the density lower than the Mott criterion. The Mott condition

r0 ' aB ,
4π

3
ner

3
0 = 1 (77)

expresses the idea that atoms are destroyed if the mean distance of the electrons is
equal or smaller than the Bohr radius. We remember that the elementary estimate
based on the confined atom model led us even to a higher limit density r0 ' 0.4aB .

For a variational evaluation of energy shifts see [1]. In order to summarize: In
this section the influence of the medium is studied in mean-field approximation,
i.e., by Pauli blocking and Fock self energy. The first of the contributions to the
shift we denote as Pauli-blocking and the second one as Fock contribution. We have
shown above that the Fock term and the Pauli blocking contributions have opposite
signs and compensate each other partially. We consider the density region where
Pauli-Fock shifts dominate and remember that the Fock term and the Pauli blocking
contributions have opposite signs. According to the present estimates (see Fig. 6), the
hydrogen levels merge into the (lowered) continuum at a density of about nia

3
B ' 0.01.

This gives a proton density in H-plasmas of about 1023 cm−3. In He or Li plasmas,
because of the smaller Bohr radii, the density of fully ionization of all atoms is
about one order of magnitude higher. At these high densities, where the bound states
disappear, the equation of state needs an entirely different approach, which is the
topic of the next section.

6 Equation of state at high densities and pressures

6.1 Two fluid model and Hartree–Fock–Wigner contributions

In the limit of very high densities, we may think about nuclear densities beyond
1022−1023 cm−3, we expect that the plasmas of light elements are determined mainly
by the Pauli principle and by strong Coulomb repulsion of the nuclei and show there-
fore some universality. In this region of very high densities, the plasmas of light
elements may be described by the so-called two-fluid model, as a composition of
an electronic fluid, i.e., a degenerate one-component plasma (OCP) with a positive
background, and a strongly interacting ionic fluid with a negative background. In
the region of strongly degenerate electrons, the thermodynamics is in good approxi-
mation determined by the ideal Fermi–Dirac and by the Hartree–Fock contributions
to the thermodynamic functions. Bound states are not relevant due to the fact that
atomic shells are no more stable mainly due to the shifts and the Pauli blocking effect
discussed above. We neglect continuum correlations in the electron-proton channel
which are described by the generalized Beth–Uhlenbeck formula [42]. Correlations
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in the degenerate electron system are described by the Macke–Gell-Mann–Brueckner
result, see [24].

We investigate now the triangular region between neΛ
3
e ∼ 1 where the electrons

become degenerate and the value of the Brueckner parameter

rs =

(
3

4πnea3B

)1/3

∼ Γe ∼ 1. (78)

Note that we have to generalize here the definition of the coupling parameter Γe
including the degeneration effects [20]. The electrons are degenerate and strongly
coupled if Γe > 1. The ions behave classically and form a strongly coupled classical
subsystem. For the pressure, correlations in the ion subsystem lead to the Wigner
contributions stemming from short-range order and lattice-like structures.

Let us first consider the electronic part. In the limit of high densities the pressure is
dominated by the Fermi-Dirac (FD), Hartree-Fock (HF), and Gell-Mann–Brueckner
(GB) contributions. At T = 0, they are depending on the parameter rs, see Section
6.4. in [24],

p = pFD + pHF + pGB + ... (79)

where the corresponding contributions to the pressure (in Ryd units) are

pFD =
(3π2)2/3

5

~2

me
n5/3e = 1.47327

ne
r2s
,

pHF = 0.3059
ne
rs

pGB = ne [−0.0622 ln rs + 0.142 + 0.0054rs ln rs + 0.015rs + ...] . (80)

At the very high densities studied here, the first two contributions dominate and the
GB term corresponding to the ring diagrams may be omitted.

At finite temperatures the Fermi-Dirac and the Hartree-Fock contributions to the
chemical potential and the corresponding pressure are determined by Fermi-integrals
and their inversion functions. As a result we have, see, e.g., [24]

αFD = βµFD
e , neΛ

3
e/2 = I1/2(αFD

e ),

αHF = βµHF
e = −βe

2

Λe
I−1/2(αFD

e ). (81)

The pressure may be calculated either by integrations or obtained directly from the
general formula

pHF = const

∫
d3p

(2π)3

∫
d3q

(2π)3
Vee(p− q)fe(p)fe(q). (82)

We study now the temperature dependence of the Hartree-Fock contributions to
the chemical potential and the pressure following a procedure developed by Zim-
mermann [27]. First we find αHF = βµHF

e as a function of the dimensionless electron
density y = neΛ

3
e/2 where the limiting cases of small or large density respectively have

to be observed. After finding piecewise representations we use the method of concate-
nating the pieces at the crossing points developed for the ideal Fermi contributions
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by Zimmermann

αHF = − e2

kBTΛe

([
w(y − 1.1)

[
y − 1.0612y2 + 0.7299y3

]
(83)

+w(1.1− y)
[
1.241y1/3 − 0.6981y−1 + 1.018y−7/3

])
,

πHF(y) = βpHF/ne = − e2

kBTΛe

(
w(y − 1.8)

[
0.5y − 0.7073y2 + 0.5474y3

]
(84)

+w(1.8− y)
[
0.3103y1/3 − 0.0005y−1 + 0.2541y−7/3

])
.

Slightly improving Zimmermann’s method we use here as in some earlier work [37] a
smooth interpolation between both pieces using the the two complementary functions
w(x) and w(−x) where the interpolating weight is related to the tanh(x) function
and is defined by (with a fit parameter a ' 1− 10):

w(x) =
[
(1 + exp(ax)

]−1
. (85)

This kind of interpolation using a free parameter is convenient for practical calcu-
lations of the thermodynamic functions including the equation of state. As another
convenient method we may use also Padé formulae for the Hartree-Fock pressure and
the fugacity of electrons which read

βpHF
e

ne
= − e2

kBTΛe

(0.5y − 0.7073y2 + 3.103y4)

(1 + 0.8543y + 10y3.666)
, (86)

zHF
e = ne exp

[
− e2

kBTΛe

(y − 0.2069y2 + 3.103y4)

(1 + 0.8543y + 10y3.666)

]
. (87)

By construction of the interpolating procedure these expressions are compatible with
the known approximations for low or high degeneracy respectively. For alternative
representations including the higher order terms and covering the full range see a
review [43]. For the intermediate region EF < T < 12EF a parametrization of the
Hartree-Fock contributions was given by Perrot and Dharma-wardana and discussed
in [24]. The dependence of the Hartree-Fock functions on the density is demonstrated
in Figure 4. We observe here a smooth transition of the expansions in the region
of intermediate degeneracy. Numerical Monte-Carlo (MC) results obtained by path
integral MC can be found in [44].

The contributions stemming from the ionic fluid is numerically of the same order
and may be approximated in the framework of two fluid models by Wigner- type
expansions [20,24]. In the density region ni ' 1023 − 1025cm−3 which we will study
here, we may use in zeroth approximation the following limits for pressure and
fugacities:

pWi
i [Ry] ' −0.5964ni

rs
; (88)

zWi
i ' ni exp

(
− 1.222

rsτ

)
, τ = kBT/Ry. (89)
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Fig. 4. Hartree-Fock contributions to the electronic pressure and the chemical potential
(in units −βe2/Λe. We give the limits of weak degeneracy (green) and strong degeneracy
(red) and the Padé approximations (blue) covering low and high densities as function of the
degeneracy parameter ye = neΛ3

e/2.

We see that the Wigner contributions as well as the Hartree-Fock contributions to the
pressure increase strongly with the density. At the same time the fugacities strongly
decrease. Both are changing their analytical shape at certain degeneracy parameter,
where the non-degenerate behavior goes more or less abrupt over into the degenerate
behavior, see Figure 5.

In the higher approximations, the ionic contribution may be approximated at
high densities by Wigner type expansions [20,24,45]. In the density region which we
will study here we may use for yi = ni(z

2
i e

2/kBT )3 � 1 an analytical approximation
for the ionic pressure stemming from an interpolation of Monte-Carlo calculations
[11,12,24,45]

pWi
i [Ry] ' −nikBT

(
0.0599y

−1/12
i + 0.3180 + 0.3578y

1/12
i + 0.4825y

1/3
i

)
. (90)

For the ionic fugacities we have at high densities correspondingly, see Section 6.5. in
[24],

zWi
i = ni exp

[
− (1.9228y

1/3
i − 2.3922y

1/12
i + 0.16708 ln(yi) + 3.215)

]
(91)

× exp
[
− rs

(1 + r2s)
(0.0736y

1/3
i + 0.6328y

−1/12
i − 0.1779)

]
. (92)

In difference to the situation at small densities, the contribution of the bound states
is in the high-density region just a perturbation which sometimes may be neglected
in the limit of very high densities and pressure.

Let us make a final note on this section. Hartree-Fock and Wigner effects are
strictly speaking not closely related but are stemming from quite different order
contributions in the interaction parameter e2. However both contributions are similar
with respect to their order in 1/rs and are numerically of similar order.
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Fig. 5. Fugacity coefficients of the electrons. Left panel: Hartree-Fock effects in dependence
on the degeneracy parameter ye = neΛ3

e/2 for the interaction parameter ξ = βe2/Λe = 2
(above) and ξ = 8 (below). Right panel: Fugacity coefficient of the ions due to Wigner
effects in dependence on the ion interaction strength yi = ni(βe

2)3 for rs = 0 (above) and
rs = 1 (below).

6.2 Bound state effects at high degeneration

In order to include the bound state contributions which are beyond Hartree-Fock
approximations we represent the contributions to the pressure beyond the Hartree-
Fock term by two-particle Greens functions

p = pFD + pHF − 1

2V

1∫
0

d λ

λ

∫
d1 d2V (1, 2) [G2 (1, 2, 1′, 2′;λ)−GFD

2 −GHF
2 ] , (93)

where G2 (1, 2, 1′, 2′) is the full two-particle Green’s function which may be repre-
sented by Feynman diagrams. The contributions of the omitted first diagrams have
already been calculated below. For the treatment of the light elements up to lithium
we have to include all Feynman diagrams including one heavy particle and 1 to 3 elec-
trons. This leads to the formula (93) for the pressure in the grand canonical ensemble
which should correspond to the low density representations given in Section 3.

We assume in the following that at very high densities / high degeneration the
bound state effects are just a correction. Note that beyond the Mott density we still
may have relevant scattering state contributions [42]. Here we assume that in a first
order the previous formulae are still valid with the difference that the fugacities are
determined by the Hartree-Fock and Wigner expressions. This way we get, e.g., for
the pressure of hydrogen the estimate (compare with Sections 1-3 and note that the
index “high” stands here for “high density”, and B for Boltzmann)

phigh = pFDe + pBi + pHF
e + pWi

i + 2nez
HF
e zWi

i b̃ie + 6(zHF
e )2(zWi

i )2b̃ieie. (94)

For helium we have correspondingly

phigh = pFDe + pBi + pHF
e + pWi

i + 2zHF
e zWi

i b̃ei + 3(zHF
e )2(zWi

i )b̃iee . (95)
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Fig. 6. Hydrogen plasmas: We demonstrate the method of smooth concatenation for
hydrogen at T = 20000 K. First we identify a crossing point near to ni ' 1023cm−3 and
concatenate then near to the crossing the low density branch (red) with the high - density
branch (green). The blue curve shows the result of concatenation using complementary tanh
- functions (a ' 1; y = neΛ3

e/2). The shoulder reflects the atom formation and the minimum
is due to the formation of molecular bound states.

and for and the grand-canonical pressure of lithium we get

phigh = pFDe + pBi + pHF
e + pWi

i + 2zHF
e zWi

i b̃ie + 3(zHF
e )2zWi

i b̃iee + 4(zHF
e )3zWi

i b̃ieee .

(96)

Here the coefficients b̃ denote the bound state virial contributions with energy levels
from the HF solution of the Bethe-Salpeter equation.

7 Applications to plasmas at extreme densities and pressure

The theory presented in the first sections provides isotherms of the pressure for
the non-degenerate region. After crossing the line of degeneracy neΛ

3
e ' 1 to the

degenerate regions above it, the previous theory is only a rough approximation since
degeneracy effects become dominant. Further the dissymmetry of the masses maybe
relevant. In this region the formulae given above are just an extrapolation which
is exact only with respect to the (sometimes dominant) ideal Fermi contributions.
For very dense, strongly degenerate plasmas, bound states do not exist, the plasma
behaves like a degenerate non-ideal Coulomb gas. We will study now in more detail the
region where no bound states exist any more, according to the solutions of the Nambu-
Bethe-Salpeter equations. According to the estimates from the previous section the
main contribution to he EOS comes now from Pauli and Fock effects. For hydrogen at
high densities we may use equation (96). This approximation and the one at low den-
sity plow are crossing in the region of about ni = 1023cm−3 (see Fig. 6). A convenient
interpolation is obtained here again by using the function w(x) = tanh(x/2)/2 which
connects the two pieces in a smooth at the crossing point y0 ' 18 where y = neΛ

3
e/2.
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Fig. 7. Hydrogen plasmas: Composition of all relevant contributions including in the
high-density branch as Hartree-Fock terms in the electronic pressure and Wigner-DeWitt
contributions to the ionic pressure. Left panel: Pressure related to the Boltzmann pressure
at 20000 K (red), 30000 K (green) and 50000 K (blue curve). Below 1023cm−3 we follow the
low-density approximation, and above this density we follow the high-density approximation.
The small shoulders may be due to the formation of atomic bound states and the minima
to molecular bound states (near to the minimum). Right panel: Comparison of the relative
pressure (pid neglecting interaction terms) at high densities and T = 10000KK, 20000KK
with data given by Vorberger et al. [46–48] (VASP).

This way we get in our case with a ' 0.1

plow/high = plow/(1 + exp(a(y − y0))) + phigh/(1 + exp(−a(y − y0))). (97)

The present theory may be considered as a simple extension of the two approaches
given above to the whole range of densities. We demonstrate the method of of smooth
concatenation of low density and high density approximations using tanh(x) functions
in Figure 6.

This way we found now for the limit of high density closed expressions for the
pressure of hydrogen and other light plasmas expressed in the physical picture of
densities. Basically we have developed now by inversion of the fugacity series different
formulae for the region of low, i.e. small and moderate, densities including bound
states on one side and large densities on the other side neglecting bound states. Both
limits are simple composed here, so that some uncertainties in the transition region
remain to be discussed.

As an application we calculated the pressure of hydrogen related to the classical
ideal pressure for the case of high densities beyond n ∼ 1023cm−3 at temperatures
10000−50000 K using the extended Hartree-Fock and Wigner approximations given
above, see Figures 7 and 8. The agreement of our new, rather simple high-density
approach with the previous ones [13,46–49] is satisfactory. A comparison with data
from the numerical approach VASP [46–49] as well as other methods discussed in
[46,50] shows that the curves for the relative pressure obtained by our method for
the region 1023−1025cm−3 are about 10 percent too high. On the other hand, our
analytical formulae allow the calculation of a density series at given temperature in
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Fig. 8. Calculations of the high-density pressure of hydrogen plasmas based on the extended
Hartree-Fock-Wigner approximation. The left panel shows the relative pressure calculated
using our low-density approach for the density region below 1023cm−3 at temperatures
T = 20000, 30000, 50000 K. Note that the bound states are in the region below n ∼ 1023cm−3

described only in certain approximation. At densities above n ∼ 1023cm−3 we used the
approximations developed in this section. In the right panel we show the pressure related to
the classical ideal pressure at the temperatures T = 10000 (in blue) and 20000 K (in red)
in high-density approximation. We present also a comparison with a curve (in green) from
the PACH theory by Beule et al. [13] for T = 10000 K (PACH - Padé approximations and
chemical picture).

just a few minutes on a standard personal computer and can easily be extended to
other light elements and to mixtures of them like in the atmospheres of stars.

In certain region of the density-temperature plane the pressure at high densities
is essentially determined by the Hartree-Fock approximation for the thermodynamic
functions and the Hartree-Fock approximation and Pauli blocking for the energy
shifts. We assumed here that in the high-density region these shifts provide the most
important effects for the destruction of bound state. In particular we contribute here
to the theory of hydrogen at high pressures in the region where a Mott transition
to full ionization has been predicted and where recent experiments have shown a
transition from insulating behavior to metal-like conductivity. In order to understand
this transition, several effects have to be taken into account. We concentrated here
on so-called Pauli blocking effects expressing the rule that states occupied by atomic
electrons cannot be occupied by free electrons with the same spin state. This leads
at high electron densities to the destruction of atomic states which need a relatively
high amount of phase space. We calculated the energy shifts due to Pauli effects and
discuss the Mott effects solving effective Schrödinger equations for strongly correlated
systems. A few remarks:

(i) For simplicity we neglected the formation of molecules which play a role at
temperatures below 20000 K [13].

(ii) In the temperature region which we studied here (10000−50000 K), no first
order phase transitions were observed in this approximation.
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Fig. 9. Helium and lithium plasmas: Composition of all relevant contributions at low and
high densities as Fermi-Dirac, ring, and ladder contributions as well as high-density Hartree-
Fock contributions to the electronic pressure and the Wigner-DeWitt contributions to the
ionic pressure. Low and high-density approximations are concatenated by complementary
tanh(x) - functions at the crossing point. Left panel: Helium plasmas at 30000 K (red),
50000 K (green) and 80000 K (blue curve) as functions of the ion density ni. Right panel:
Lithium plasmas at temperatures 80000 K (red), 120000 K (green), 200000 K (blue). The
minima are due to the formation of atoms.

(iii) The approach based on the physical picture which we used in the present
section, can be extended to lower temperatures, where H2 molecules dominate.
In the high density region studied here, the Fermi- and the Fock contributions
are most essential and the present picture is appropriate and quite simple. In
Figure 9 we show the corresponding results for helium and lithium plasmas.

8 Conclusions

In the present work, we developed the method of inversion of fugacity representa-
tions of the pressure with applications to molecular hydrogen plasmas and atomic
helium and lithium plasmas at high pressures/densities. We studied the EOS of vari-
ous plasmas at constant temperature for increasing density. Typically for all, graphs
start with a Boltzmann behavior i.e. βp/(ne +ni) ' 1 at low densities. With increas-
ing density the pressure related to the Boltzmann pressure decreases first due to
the formation of atoms and molecules. Then it goes through a minimum and rises
steeply due to Fermi, Hartree-Fock, and Wigner effects. We describe the formation
of the atomic and molecular minima without using mass action laws, using instead
algebraically inverted fugacity expansions up to four-particle cluster integrals. At
very high densities the EOS is determined beside the ideal Fermi pressure by elec-
tronic Hartree-Fock and ionic Wigner-DeWitt approximations. This leads to a strong
increase of the pressure which is in the high-density limit quite universal. The meth-
ods presented here lead to analytical approximations which are easily programmed



3430 The European Physical Journal Special Topics

on standard personal computers and provide within seconds of calculations curves
for the pressure for hydrogen, helium and lithium. The approach is applicable to any
mixture of plasmas of the light elements. The present method does not include the
region of extreme, beyond Megabar, pressures, where according to estimates [11],
plasma phase transitions may occur. Fugacity expansions are always rather smooth
and do not show van der Waals wiggles, so that one may have difficulties to detect
phase transitions by standard methods. However the approach is in principle appli-
cable to any mixture of plasmas of the light elements possibly up to carbon and to
conditions typical for some astrophysical applications.
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