
Eur. Phys. J. Special Topics 229, 3341–3349 (2020)
c© The Author(s) 2020

https://doi.org/10.1140/epjst/e2020-000046-8

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

Applications of the Nambu–Jona-Lasinio
model to the partonic structure
of the pion?,??

Wojciech Broniowski1,2,a, and Enrique Ruiz Arriola3,b

1 Institute of Physics, Jan Kochanowski University, 25-406 Kielce, Poland
2 Institute of Nuclear Physics PAN, 31-342 Cracow, Poland
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Abstract. We present a brief review of results of chiral quark models
for soft matrix elements in the pion state, appearing in high-energy
processes as well as accessible in present and future lattice studies.
A particular attention is paid to the recently explored double parton
distribution functions of the pion.

1 Introduction

David has been successfully using quark models all over his career, including applica-
tions to dense matter where the otherwise usually confined quarks may be de-confined
and give rise to stars with a quark core [1,2]. In this talk we focus on other aspects of
chiral quark models, such as the Nambu–Jona-Lasinio (NJL) model, applied to the
domain where they were originally designed for, namely the soft limit in the vacuum.
There the quarks remain confined, but the chiral symmetry is broken, leading to
rich dynamical predictions. It is not so commonly known that in this case the model
explains numerous features of the pion (in general, the Goldstone bosons), both in
low- and high-energy processes, whenever the soft-hard factorization holds (see [3] for
a detailed review). These results, amended with the necessary QCD evolution which
generates radiatively the gluon degrees of freedom, compares very favorably to the
available experimental and lattice data. We briefly review some of these results and
then pass to a recent topic of double parton distribution functions (dPDF) in the
pion [4–6] evaluated in chiral quark models followed with the DGLAP evolution. We
discuss the issue of partonic correlations and the proposed measures based on the
Mellin moments of dPDFs [6].
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Fig. 1. Diagrams to evaluate the single (a) and double (b) valence quark distributions of
π+ at the leading-Nc order in the NJL model. In diagram (b) integration over q− is carried
out.

2 Basic formalism

The field-theoretic definition of the single parton distribution function (sPDF)
involves a diagonal matrix element of bilinear operators in a hadronic state
(see [7] and references therein), namely

Dj(x) =

∫
dz−

2π
eixz

−p+〈p| Oj(0, z) |p〉
∣∣
z+=0 ,z=0.

(1)

Here p is the momentum of the hadron, x is the Bjorken variable interpreted as the
fraction of the light-cone momentum of the hadron carried out by the struck parton,
and Oj(0, z) is a bilocal operator which for the quarks and anti-quarks considered
here and in the applied light-cone gauge takes the form

Oq(y, z) = 1
2 q̄(y −

z
2 )γ+q(y + z

2 ),

Oq̄(y, z) = − 1
2 q̄(y + z

2 )γ+q(y − z
2 ). (2)

The light-cone coordinates are introduced as v± = (v0±v3)/
√

2, whereas the boldface
indicates the transverse components, v = (v1, v2). The quark-pion coupling is point-
like, as follows from the NJL model.

For the double parton distribution functions (dPDF) one has, analogously, a
matrix element involving two bilocal currents [7],

Dj1j2(x1, x2, b) = 2p+

∫
dy−

dz−1
2π

dz−2
2π

ei(x1z
−
1 +x2z

−
2 )p+

×〈p| Oj1(y, z1)Oj2(0, z2) |p〉
∣∣
z+1 =z+2 =y+=0 ,z1=z2=0

, (3)

where indices 1, 2 refer to the two partons. Note that there is an extra argument of
this object, namely, the relative transverse distance between the partons, b.

The simple meaning of the above definitions in the momentum space is illustrated
in Figure 1, where for definiteness we take the case of the charged pion and use the
large-Nc limit, which amounts to evaluating the one quark loop. We note that for
dPDF of Figure 1b there is a momentum flow between the two probing operators.
Integration over q− imposes the constraint y+ = 0 from equation (3), whereas the
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Fig. 2. Comparison of the NJL mode followed with LO DGLAP evolution (band) to the
extraction of the valence pion sPDF made in [9]. The dashed line uses the πA Drell-Yan
data, and the solid line combines them with the HERA leading-neutron electro-production
data.

transverse component q is the Fourier-conjugate variable corresponding to b. The
evaluation leads to simple results presented in the sections below.

As discussed extensively in [3], the evaluation according to the diagrams of
Figure 1 corresponds to the quark model scale µ0, where no gluons are present and
the constituent quark and anti-quark saturate the momentum sum rule, 〈x〉µ0 = 1.
Fits to phenomenological sPDF provide the value µ0 ∼ 320 MeV (see, e.g., [8]). The
matching condition between the model and QCD for an observable A is imposed by
the condition

A(x, µ0)|model = A(x, µ0)|QCD . (4)

Then, the QCD evolution is carried out to higher scales µ, where comparison to the
experimental data of lattice simulations is possible. This process, here performed at
the leading order, generates radiatively the gluons. The QCD evolution is a crucial
ingredient of the approach.

3 Single parton distributions of the pion

Let us first recall the results for sPDF of the pion, first obtained by Davidson and
one of us (ERA) [10] by analyzing the forward Compton scattering amplitude in
the Bjorken limit.1 There, at the quark model scale and in the strict chiral limit of
mπ = 0, one gets (notation for π+, other pion states are obtained via the isospin
symmetry)

qval(x) ≡ Du(x) = Dd̄(x) = 1× θ(x)θ(1− x). (5)

We note the proper support, normalization, and a uniform distribution in the +

momentum fraction x.
When evolved to higher scales, the results agree very well with the phenomeno-

logical extractions of qval(x) from the data. The comparison to the Fermilab E615
Drell-Yan data can be found, e.g., in [8]), so here in Figure 2 we confront the

1One technical aspect of high relevance in the calculation is the choice of the NJL regularization,
which needs to preserve gauge invariance and chiral symmetry, as well as their corresponding Ward-
Takahashi identities.
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model to a recent phenomenological extraction of [9], corresponding to the scale
µ2 = Q2 = 10 GeV2. We note a very good agreement of the model (the band reflects
the uncertainty in the initial scale, µ0 = 313+20

−10 MeV [8]) to the analysis of [9]. In par-
ticular, we note an excellent agreement with the analysis combining the πA Drell-Yan
data and the HERA leading-neutron electro-production data. A very recent analy-
sis [11] confirms this agreement when we take µ0 = 374 GeV to get 0.55 momentum
fraction of the valence quarks at Q2 = 5 GeV2.

Further, we wish to comment of the behavior of qval(x) at x→ 1, which recently
has been a subject of heated discussion. With the applied DGLAP evolution from
Q0 = 313 MeV, this behavior is given by [8]

qval(x) ∼ (1− x)4Cf/β0 log[α(Q0)/α(Q)] = (1− x)1.24. (6)

The power clearly evolves with the scale Q. We stress a very good agreement of this
behavior in our model with the phenomenological extraction, cf. Figure 2.

Admittedly, our analysis as well as the quoted experimental extraction [9] do
not account for the soft-gluon resummation effects, which flatten the curve near the
thereshold, x → 1 [12]. In comparisons, such effects should be included both at the
theoretical and the experimental side.

There are numerous other results for the pion that can be computed with this
scheme (chiral quark model followed with QCD evolution), all of them giving a
fair comparison, whenever available, with the experimental or lattice data. Notable
examples are the parton distribution amplitude (PDA) [13], the generalized parton
distribution functions (GPD) [8], or the quasi parton distributions [14,15].

4 Double parton distributions of the pion

Now we pass to our main topic of this talk, namely, the predictions for the valence
dPDF of the pion. The evaluation of the diagram from Figure 1b yields (in the chiral
limit of mπ = 0) the result [4–6]

Dud̄(x1, x2, q) = 1× δ(1− x1 − x2)ΘF (q), (7)

where the δ function reflects the conservation of the + components of the momentum
and the Θ indicates the proper support 0 ≤ x1, x2 ≤ 1. The form factor F (q) depends
on the adopted regularization scheme, which is necessary to remove the hard momen-
tum contribution from the model. Analogously to the case of sPDF, the distribution
in x1 or x2 is uniform. The factorization of the longitudinal and transverse dynamics
holds in the strict chiral limit.

First, let us bring up a very general formal aspect of dPDFs, namely, the Gaunt-
Stirling (GS) sum rules [16]. These identities hold for the special case of q = 0,

Dij(x1, x2,q = 0) ≡ Dij(x1, x2), (8)

and link the marginal projections/moments of dPDFs to sPDFs in a way typical of
probability distributions. They follow from a decomposition of the parton operators
in a basis of the light-front wave functions [17]

∑
i

∫ 1−x2

0

dx1 x1Dij(x1, x2) = (1− x2)Dj(x2),
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Fig. 3. Valence dPDF of the pion, x1x2Dud̄(x1, x2), evolved with the DGLAP equations to
subsequent scales µ indicated in the panels. The initial condition at the quark model scale
µ0 is the singular distribution of equation (7) (taken from [6]).

∫ 1−x2

0

dx1Divalj(x1, x2) = (Nival − δij + δīj)Dj(x2), (9)

where ival is the difference of the parton (i) and anti-parton (̄i) distributions, with

Nival =
∫ 1

0
dxDival(x). In numerous approaches on the market, the GS sum rules

are non-trivial to satisfy [16,18–20]. We have shown in [21,22] that a successful
approach follows from a top-down method, starting from an n-parton distributions
with δ(1− x1 − ...− xn) from momentum conservation, which yields the distributions
with lower number of partons via subsequent marginal projections.

We note that the NJL form of equation (7) explicitly satisfies the GS sum rules,
as the model obeys all constraints from the Lorentz covariance and symmetries. Fur-
thermore, as the sum rules hold when the QCD evolution is applied (see below), the
feature holds at any scale.

The scheme to evolve dPDFs has been derived long ago [23,24]. An efficient
method is based on the Mellin moments, similarly to the case of sPDFs. Details
are presented in [6,21].

Our results for the valence dPDF of the pion (conventionally multiplied with
x1x2), evolved to increasing scales µ, are shown in Figure 3. We note that, as expected
from the DGLAP evolution, the strength shifts to lower x1 and x2 as µ increases.
Note that the initial condition for the evolution is distributed singularly along the
x1 = x2 line, as given in equation (7). The evolution washes out this behavior, filling



3346 The European Physical Journal Special Topics

Fig. 4. Correlation Dud̄(x1, x2)/Du(x1)Dd̄(x2) at various evolution scales µ indicated in
the panels. The regions marked in green have the correlation within 20% of unity. (taken
from [6]).

all the triangle with x1 + x2 ≤ 1. Of course, as the evolution generates radiatively
more partons, the two valence partons do not need to carry all the momentum, hence
x1 + x2 can be smaller than 1.

Next, in Figure 4 we show our results for the correlationDud̄(x1, x2)/Du(x1)Dd̄(x2).
This is an important measure, as whenever it departs significantly from 1, one cannot
use the factorization assumption frequently made in analyses of the double parton
scattering (see [25] for a recent review). The regions in the plots marked with green
have the correlation within 25% from the unity, indicated the region where factoriza-
tion approximately works, whereas outside of this region it is significantly broken. We
note that at low x1 and x2 increasing the evolution scale brings the correlation ratio
closer to 1, which is in line with the conclusions of [26] for the gluon distributions in
the nucleon.

As proposed in [6], a very practical measures of correlation which hopefully could
be probed in the upcoming lattice analyses, are based on the ratios of the Mellin
moments for the valence distributions,

〈xn1xm2 〉
〈xn1 〉〈xm2 〉

. (10)

The key point is that these ratios are independent of the evolution scale, since the
corresponding factors involving the anomalous dimensions cancel out. This feature
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Table 1. The ratios of the double to single valence moments, 〈xn1xm2 〉/〈xn1 〉〈xm2 〉, in the
NJL model, equation (11). Rows and columns correspond to n and m. These ratios are
independent of the evolution scale µ.

1 2 3 4

1 2/3 1/2 2/5 1/3
2 1/2 3/10 1/5 1/7
3 2/5 1/5 4/35 1/14
4 1/3 1/7 1/14 5/126

Fig. 5. Lowest Mellin moments of the valence dPDF of the pion, plotted as functions of the
evolution scale. The vertical line indicates the typical lattice scale of 2 GeV.

occurs only for the valence case, where the evolution does not mix dDPFs and sPDFs
via the so called inhomogeneous term. In the NJL model, we have the simple formula

〈xn1xm2 〉
〈xn1 〉〈xm2 〉

=
(1 + n)!(1 +m)!

(1 + n+m)!
. (11)

The lowest values of these ratios are listed in Table 1, and the evolution of a few
lowest moments is presented in Figure 5.

Finally, we discuss the transverse form factor F (q), appearing in equation (7). Its
form depends on the regularization scheme of the NJL model, and for fundamental
reasons can only be trusted for soft external momenta. In the Spectral Quark Model
(SQM) [27] it has a very simple form

F (q) =
m4
ρ − q2m2

ρ(
m2
ρ + q2

)
2
. (12)

In the NJL model with the Pauli-Villars (PV) subtraction a numerically very similar
result follows, as can be seen from Figure 6. The region with |q| > 1 GeV, where the
form factor goes negative, is outside of the validity of the model.

The corresponding effective cross section for the double parton scattering coincides
(in SQM) with the geometric cross section, namely

σeff =
1∫ d2q⊥

(2π)2F (q⊥)F (−q⊥)
= π

12

m2
ρ

= π〈b2〉 = 23 mb. (13)
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Fig. 6. Valence dPDF form factor of the pion in the SQM (solid line) and in NJL with PV
regularization (dashed line), plotted as a function of the transverse momentum.

5 Summary

To summarize, here are our main points:

– The topic of the double parton correlations is driven by recent experimental
evidence as well as by possible future lattice studies.

– Our results are obtained in the NJL model which is a simple field theory of the
pion in the soft regime based on the spontaneous chiral symmetry breaking.
It is a covariant calculation, with all symmetries preserved, which leads to
proper formal features. In particular, the GS sum rules are satisfied. The QCD
evolution to higher scales is a crucial ingredient of the approach.

– The model leads, in the chiral limit, to the longitudinal-transverse factorization,
whereas there is no factorization in the x1 and x2 variables, which are correlated
due to the momentum conservation.

– The correlation ratio at low x1 and x2 is brought close to 1 with increasing
evolution scale.

– The appropriate ratios of the Mellin moments do not depend on the evolution
scale, hence are particularly convenient. They could be probed in future lattice
simulations.
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