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Abstract. This topical issue collects contributions related to recent
achievements and scientific progress in special chaotic systems. The
individual papers focus on various questions of present-day interest in
this topic.

For many years, researchers have believed that the formation of strange attractors
in a dynamical system is related to a saddle point in its structure. Many well-known
systems with chaotic attractors such as the Lorenz, Rossler, Chua, and Chen systems
have a saddle point equilibrium. This category of systems with chaotic attractors is
familiar to researchers, and finding the chaoti atractors is simple because they are are
formed near the saddle points. In other words, most chaotic systems have a strange
attractor around their saddle point equilibrium and can be easily designed [1]. In
2011, Sprott presented standards to propose new systems with strange attractors [2].
He proposed that a new chaotic system should satisfy at least one of the following
three conditions: first, the proposed systems should model some essential unsolved
problems in nature; second, the systems should exhibit some previously unobserved
behavior; and finally, the system should be simpler than all other known examples
exhibiting the observed behavior. For example, the Lorenz system satisfied all of
these conditions in its first publication in 1963.

In the past decade, some novel dynamical systems with chaotic attractors have
been found that did not have a saddle point equilibrium [3–8]. To date, many new
chaotic systems have been proposed in this category. We call these systems “special”.
In other words, chaotic systems that satisfy the novelty conditions, and are not
common, are in this category. Chaotic systems without any equilibria [9], chaotic
systems with a line of equilibria [10], chaotic systems with a curve of equilibria [11],
and with surfaces of equilibria [11,12] are in this category.

The dynamics of chaotic systems depend on the initial conditions as well as
parameters. So, a system can show different coexisting attractors in the con-
stant parameters just by varying initial conditions [14–16]. Such a system is called
“multi-stable” [17,18]. A system that has a countable infinity of coexisting attractors
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is called “megastable” [19–22], while a system with an uncountable infinity of coex-
isting attractors is called “extreme multi-stable” [23–25]. Chaotic systems with differ-
ent multi-stabilities can satisfy the novelty conditions of the standard for proposing
chaotic systems. Another interesting dynamic in special chaotic systems is the coex-
istence of symmetric [26–28] attractors.

Chaotic attractors can be categorized into self-excited or hidden attractors [1,29].
Self-excited attractors are those attractors in which their basin of attraction contains
an unstable equilibrium, while the basin of attraction in hidden attractors is not
related to any equilibrium point [30–33]. Hidden chaotic attractors are one of the
hottest topics in the study of special chaotic systems. Many novel systems have
been proposed with hidden attractors [34–36]. Chaotic systems with rare attractors
have attracted attention. Rare attractors are those attractors in which their basins
of attraction are tiny [14,37]. Systems with multi-scroll chaotic attractors are other
interesting dynamical systems [38–40].

Chaotic systems can be categorized based on their dissipation. A system is called
conservative if its dissipation is zero. Some systems are “nonuniformly conservative”
[41]. This means that they are globally conservative, but they have some regions of
state space in which the system is dissipative and some other regions that are anti-
dissipative. Also, there are certain other features that are important to consider in
the study of new chaotic systems.

This special issue reviews the current state of the art in the research on special
chaotic systems. It starts with two mini-reviews. The author in paper [42] reviews
fractional-order chaotic systems. It discusses the history, achievements, applications,
and future challenges in fractional-order chaotic systems. The review begins with a
brief history of the first publications on fractional-order chaotic systems. Then, it con-
tinues by investigating recent relevant progress. A summary of particular applications
for such systems, which have been reported in the literature, is presented. The paper
is closed by discussing some open problems on this research subject. Authors in [43]
give a comprehensive review of chaotic flows with special equilibria. In their review,
they categorize chaotic systems with special properties in their equilibrium into eight
groups: systems with no equilibrium (NE), with stable equilibrium (SE), with line
equilibrium (LE), with curve equilibrium (CE), with plane equilibrium (PE), with
surface equilibrium (ES), with unstable equilibrium (US), and systems that belong
to more than one category (chameleon systems). They introduce the pioneer works
of each group and also review some recent important papers related to these groups.

Some of the papers investigate chaotic systems from the real-world [44–51].
Authors in [48] discuss a chaotic map of the process equation as a model for the
development of cells. They propose a behavioral model for cells that shows different
dynamics, from a high pluripotent stem cell to any distinct cell fate. The proposed
model considers a cell as a black-box for a living system and tries to depict the
presumed behaviors of the system. The model is a multi-stable iterated map with a
sensitive dependence on initial conditions. In [51], the authors propose an extended
Hindmarsh-Rose neuron model by taking into consideration slowly interacting cell
phenomena due to calcium ions. In the extended model, they consider the effect of
an external forcing current and the electromagnetic coupling between the magnetic
flux and the membrane potential of the neuron. They analyze the modified neuron
model in the presence of periodic and quasi-periodic excitations. The results demon-
strate multi-stability and hyperchaos, which was not explored earlier. To model dia-
betes mellitus pathophysiology, authors in [44] propose a computational model for
the insulin-glucose regulatory system. In this differential equation model, the com-
plex behavior of this biological system is considered. This model shows chaos and
bifurcating properties, which have been observed in dynamical diseases. The authors
have analyzed the static and dynamical properties of the proposed model to show its
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strength and capability to represent different types of diabetes and other dysfunc-
tions in the insulin-glucose system. Another research study related to the neuronal
system is [47]. In this work, the authors study a four-dimensional inertial two-nervous
system with delay. By analyzing the distribution of eigenvalues, the critical value of
zero-Hopf bifurcation is obtained. Complex dynamic behaviors are considered when
two parameters change simultaneously. Pitchfork and Hopf bifurcation critical lines
near the zero-Hopf point are obtained by using the central manifold reduction and
normal form theory. The bifurcation diagram is given, and the results of period-
doubling bifurcation into the chaotic region in the inertial two-neural system with
delayed Crespi function are shown. Alongside biological systems, other papers are
about specific real-world phenomena. The Nose-Hoover oscillator is a well-studied
chaotic system originally proposed to model a harmonic oscillator in equilibrium with
a heat bath at a constant temperature. Although this is a simple three-dimensional
system with five terms and two quadratic nonlinearities, it displays a wide variety of
unusual dynamics. However, it falls considerably short of its original purpose. The
author in [50] describes two simple variants of the Nose-Hoover oscillator, the first
of which satisfies the original goal exactly, and the second of which exhibits a hidden
global chaotic attractor that fills all of its three-dimensional state space. The author
in [45] states that during the last six years or so, several exciting papers have dis-
cussed systems with line segments of equilibria or planes of equilibria, and systems
with more general configurations. It draws attention to the fact that such equilib-
ria were considered previously by Miklos Farkas (1932–2007), in papers published
in 1984–2005. He called zip bifurcations those involving line segments of equilibria,
and velcro bifurcations those involving planes of equilibria. Then the author briefly
describes situations involving zip and velcro bifurcations. Authors in [49] propose
dynamical system governing from the nonlinear extension of the electrostatic ion-
acoustic waves (IAWs) under the influence of the external magnetic field in Thomas-
Fermi (TM) consisting of hot electrons, cold electrons, and mobile ions. The coupled
lower-dimensional model with a planar Hamiltonian exhibits periodic oscillations and
conservative properties. The disrupted system with trigonometric forcing can produce
richer phenomena. Authors in [46] study the dynamics of indirect field-oriented con-
trol (IFOC) of 3-phase induction motors. The dynamical behaviors of the studied
system are investigated using bifurcation diagrams, maximum Lyapunov exponent
plots, phase portraits, and isospike diagrams. The numerical simulation results reveal
that the IFOC of 3-phase induction motors displays coexistence of attractors for the
same set of IFOC of 3-phase induction motor parameters, i.e. periodic and chaotic
bursting oscillations. Basins of attraction of different competing attractors are plot-
ted, showing complex basin boundaries.

The next five papers investigate chaotic circuits [52–56]. By introducing a mem-
ristor into a chaotic system with a single non-quadratic term and substituting an
absolute value function for conditional symmetry, a unique chaotic system is con-
structed in [52]. The system shares a special structure of symmetry and conditional
symmetry. Also, the amplitude and frequency of the system variables can be rescaled
by the applied memristor. Interestingly, the system illustrates a new case of attrac-
tor control, namely partial amplitude control and global frequency control. Lastly,
as a new regime of extreme multi-stability, the memristive system shows relatively
simple bifurcation according to the initial condition. Paper [56] demonstrates numer-
ically and experimentally observed transitions between the stable states: regular and
chaotic oscillations in the case of state representations of binary memory trans-
formed into the Jordan form. The math model of original memory describes a simple
anti-series connection of two resonant tunneling diodes (RTDs). A derived third-
order dynamical system is analyzed concerning global behavior and, consequently,
implemented as a lumped analog circuit with a piecewise linear (PWL) vector field.
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Oscilloscope screenshots prove that the chaotic motion of binary memory is robust.
Authors in [53] study extreme and critical events in the forced Lienard systems
with a charge control memristor. It has been found that the system exhibits hidden
attractors either in the absence or presence of an external sinusoidal force. They
give evidence that these attractors play a crucial role in the appearance of criti-
cal events. They explain the mechanism leading to the emergence of catastrophic
transitions. Finally, they show that the observed critical transitions are typical for
memristor-based models, and understanding of them gives some insight into how to
avoid these types of devastating events at the time of the device fabrication process.
Paper [54] generalizes a second-order memristor-based jerk circuit. This is achieved
by substituting the first-order memristor contained diode-bridge and RC filter in an
existing memristive jerk circuit with a second-order one composed of a diode-bridge
and LC network. The second-order-memristor-based jerk circuit possesses an unstable
saddle-focus and generates complex parameter-dependent dynamics, including hyper-
chaos, chaos, quasi-period, and period along with co-existing behaviors. The coexis-
tence of symmetric chaotic and quasi-periodic attractors is shown by local attraction
basins. Furthermore, hardware breadboard is made for experimental investigations,
and the measurement results strongly validate complex parameter-dependent dynam-
ics revealed by the numerical simulations. In [55], conditional symmetry is obtained in
a memristive system when the function-based polarity inverse meets the new polarity
balance, which produces coexisting oscillations, including chaos and other periodic
ones. Coexisting bifurcations in two separate spaces are studied, showing an interest-
ing function of amplitude modification in a limited parameter interval. Furthermore,
a constant is embedded in the system as a knob to control the coexisting solutions
with any desired offset in one dimension. A circuit is designed showing the same
dynamics as numerical simulation.

While most papers in this special issue are about chaotic flows, some works about
chaotic maps are presented [57–60]. In [58], the authors study relatively simple exam-
ples of non-autonomous maps having different changes in time chaotic attractors.
They present a definition for a non-stationary hyperbolic attractor of the driven
maps and prove the existence of a non-stationary hyperbolic attractor in a 2-D driven
map. Also, a hyperchaotic attractor is introduced for the autonomous 3-D map of
the master-slave structure. Paper [59] studies the dynamics of a new fractional-order
map with no fixed points. Through phase plots, bifurcation diagrams, and the largest
Lyapunov exponent, it is shown that the proposed fractional map exhibits chaotic
and periodic behavior. New Hidden chaotic attractors are observed, and the transient
state is found to exist. The complexity of the new map is also analyzed by employ-
ing approximate entropy. Similarly, a control scheme is introduced. The controllers
stabilize the states of the fractional map and ensure their convergence to zero asymp-
totically. Authors in [57], propose a new model of chaotic attractors. The parameters
of the proposed model are varied like the state variables of the traditional chaotic
attractors. The variation ranges and values of the varied parameters are designed to
produce the required chaotic attractors. As the parameter variation of the chaotic
systems affects the chaotic attractors, it also affects the Lyapunov exponents and
the complexity of the chaotic systems. The results of the numerical simulation show
that the variation process of the parameters can positively affect the sensitivity of
the system to its initial conditions, which increase the values of the largest Lyapunov
exponent. In [60], the authors introduce a dynamical map with an infinite number of
equilibrium points. Although chaotic flows with special properties in their equilibria
have been investigated widely, this kind of work on chaotic maps has been neglected.
A complete dynamical analysis is done on this new map, which reveals its productive
potential in showing chaos and multistability.
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Multi-stability is undoubtedly a very hot topic in nonlinear dynamics. In this
issue, many papers [61–66] deal with multi-stability. In [63], the authors study the
dynamical behavior of an optomechanical system. It is shown that this optomechan-
ical system can exhibit antimonotonicity, coexisting attractors, and periodic and
chaotic bubble behaviors for a specific choice of the parameters. In the resolved
sideband regime and when the time scale of the mechanical oscillations is sufficiently
larger than the time scale of the cavity field, this optomechanical system displays Hopf
bifurcation, which triggers bursting oscillations. Paper [64] investigates the dynamics
of a model of a 4-neuron-based hyperchaotic Hopfield neural network (HHNN) with
a unique unstable node as a fixed point. The basic properties of the model, including
symmetry, dissipation, and condition of the existence of an attractor, are explored.
The numerical simulations highlight several complex phenomena such as periodic
orbits, quasi-periodic orbits, and chaotic and hyperchaotic orbits. Interestingly, the
authors describe several sets of synaptic weight matrixes for which the HHNN stud-
ied displays multiple coexisting attractors, including two, three, and four symmetric
and disconnected attractors. In [61], two simple megastable systems are presented
in detail. These systems show hyperchaotic behavior, which is a property in these
types of systems as previously proposed systems mostly show chaos and periodic
responses. In [66], a fourth-order hyperchaotic circuit with smooth diode-based non-
linearity is modified from the Tamasevicius oscillator. The hyperchaotic circuit has
both simple topology and algebraic equations. Certain previously uncovered dynam-
ical behaviors of multiple coexisting bifurcations, bi-stability, and offset boosting
are revealed by theoretical analyses and numerical simulations. In [62], a new 5D
chaotic system with line equilibrium is designed and described to reveal its extreme
multistability. All of the resulting attractors are hidden. The suggested system has
many complex dynamic behaviors in comparison with other chaotic systems. Also,
the line equilibrium stability in detail, bifurcation diagrams, Lyapunov exponents,
and basins of attraction are demonstrated. In [65], an autonomous RC hyperjerk-
like chaotic circuit with cubic nonlinearity is introduced and investigated. The state
equations of the proposed hyperjerk chaotic circuit are described using Kirchhoff’s
laws. A number of fundamental properties of the system, such as symmetry, dissi-
pation, equilibrium points, and stability are examined. By varying the parameters
of the system, it is revealed from numerical simulations that the system exhibits
some interesting dynamics, including crisis events, hysteretic dynamics (inducing the
coexistence of attractors), and transient chaos.

Some of the papers focus on chaotic systems with hidden attractors [67–69]. In
[69], an integer- and fractional-order form of a four-dimensional (4-D) chaotic system
with hidden attractors is investigated using theoretical and numerical methods. The
system is constructed by modifying the well-known two-dimensional Lotka-Volterra
system. When the selected bifurcation parameter varied, the system exhibits var-
ious dynamical behaviors and features, including the intermittency route to chaos,
chaotic bursting oscillations, and offset boosting. Moreover, the fractional-order form
of the system is examined through bifurcation analysis. In [67], a 3-D multi-state-
time-delayed chaotic system consisting of an externally added memristive element is
proposed. The proposed system belongs to the family of hidden attractors and dis-
plays multi-scroll behaviors. The chaotic behavior of the proposed time-delayed sys-
tem is investigated by bifurcation analysis, phase-plane analysis, and instantaneous
phase plot. Finally, a sliding mode controller is proposed for switching synchroniza-
tion between the two identical proposed multi-state-time-delayed chaotic systems,
including an externally added memristor with disturbances. Authors in [68] study an
on-off feedback method to control the dynamics of a radio physical oscillator having
hidden coexisting attractors. The proposed time-varying on-off feedback effectively
controls the multi-stability, which acts in an on-off manner. They show that for
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suitable values of feedback strength, feedback active time ratio, and time period, the
coexisting chaotic and periodic dynamics of the system go to a mono-stable periodic
state, followed by a stable steady state.

Several interesting chaotic systems have special features related to their equilib-
ria [70–76]. In [70], a new chaotic system in the spherical coordinates is proposed.
The system’s solution is inside a predefined sphere, and its attractor cannot cross
the sphere. Investigation of equilibrium points of the system shows that the system
has eight equilibria, and all of them are saddle. Bifurcation analysis of the system
depicts the period-doubling route to chaos with changing the bifurcation parameter.
The basin of attraction of the system is investigated to show the sensitivity of the
system to initial conditions. In [75], a three-dimensional novel chaotic system and
its projective synchronization are investigated. The proposed chaotic system has no
equilibria. The topological structure of the proposed chaotic system is different from
Lorenz, Rossler and Chen systems. Different qualitative and quantitative tools such
as time series, phase plane, Poincare section, bifurcation plot, Lyapunov exponents,
Lyapunov spectrum, and Lyapunov dimension are used to demonstrate the chaotic
behavior of the proposed system. Further, the projective synchronization between
the proposed chaotic systems is achieved using nonlinear active control. In [73], a
new hyperchaotic memristor oscillator is proposed. Different dynamical properties of
the proposed system, such as dissipativity, equilibrium points, and their stabilities,
Lyapunov exponents and Kaplan-Yorke dimension are investigated. The system has
a line of equilibria. Therefore, it belongs to the category of systems with hidden
attractors. Investigation of the stability of the line of equilibria shows that the line
is stable in some intervals and unstable in others. Bifurcation analysis of the system
reveals several coexisting attractors in certain ranges of parameters, which indicates
multi-stability. Authors in [74] propose the simplest three-dimensional chaotic flow
that has a line of equilibria. The chaotic attractor of the system is very special with
two slow and fast parts. In other words, the dynamics of the system are a combination
of slow and fast states. The unique chaotic attractor of the system is investigated.
Dynamical properties of the system, such as stability of equilibrium points and bifur-
cation diagrams, are studied. Authors in [71] propose a novel autonomous three-
dimensional system exhibiting a hidden attractor. Its attractor cannot be tracked
using perpetual points. The reason behind this inefficiency is explained using the the-
ory of differential equations. This system consists of a slow manifold depicted through
the time-series, although the system has no equilibrium points or such multiplica-
tive parameters. The authors also discuss the behavior of the attractor using time-
series analysis, bifurcation theory, Lyapunov spectrum, and Kaplan-Yorke dimension.
Authors in [72] report a class of systems without equilibria, which exhibit a scroll
attractor and whose vector field is differentiable. The system construction presents
great flexibility for the selection of the number of scrolls exhibited by the attractor.
They also report a special coupling for this class of systems, which allows the coupling
without introducing new equilibria in the system. In paper [76], a 3D jerk system with
only one stable equilibrium and hidden attractor is analyzed in infinity with the help
of the Poincare compactification. Meanwhile, a distributed delayed feedback (DDF)
control scheme for this system is proposed. By using the center manifold theory of
functional differential equation (FDE), Hopf bifurcation for the DDF control system
is analyzed and obtained. Results confirm the accuracy of the bifurcation analysis
and the effectiveness of the proposed DDF control strategy

Finally, the last four papers are related to special chaotic flows, such as conser-
vative, multi-scroll systems, and so on. Based on the matrix differential equation of
the Sprott-A system, paper [77] presents a class of rare 3D conservative systems by
adjusting its skew-symmetric state matrix and Hamiltonian. Then, an example sys-
tem is reported to show conservative dynamical behaviors. For given parameters and
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initial conditions, the example system can generate six isolated invariant tori and
six cluster-conservative chaotic flows. In [78], a new three-dimensional continuous
autonomous system is proposed. It exhibits single scroll chaotic behavior in a par-
ticular parameter region. By linear stability analysis and numerical simulations, the
authors investigate different dynamical observations with respect to system param-
eters and try to understand the route of generation of chaos. Lyapunov exponent
and Kaplan-Yorke dimension are used to verify the chaotic behavior. It becomes
periodic via an inverse period-doubling route for higher values of the parameters. A
two-parameter bifurcation diagram is shown, which distinguishes the chaotic region
from other periodic and steady-state regions. In [79], the authors introduce a chaotic
square attractor based on the collision of two heteroclinic orbits. Before the colli-
sion, the system presents the coexistence of two double scroll attractors. They are
generated via piecewise linear (PWL) systems that deal with two saddle-foci equi-
libria of different classes. In [80], a new function is introduced to generate various
multi-double-scroll and multi-double-wing hidden attractors. In order to prove the
effectiveness of the proposed method, three chaotic systems are taken into consid-
eration: a 3D chaotic system with stable equilibria, a 4D chaotic system, and a
4D hyper-chaotic system, both without equilibrium. The dynamical behaviors of
these systems are analyzed theoretically and numerically simulated, such as anal-
ysis of equilibria and their stability, Lyapunov exponent spectra, and bifurcation
diagrams.

This special issue provides a broad spectrum of current research on special chaotic
systems, and we hope that the researchers who are active in this field will find it
useful. We wish to express our appreciation to the authors of all the papers in this
special issue for their excellent contributions, as well as the many reviewers for their
high-quality work on reviewing the manuscripts.
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