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Abstract. One of the main challenges of modern physics is to provide
a systematic understanding of systems far from equilibrium exhibit-
ing emergent behavior. Prominent examples of such complex systems
include, but are not limited to the cardiac electrical system, the brain,
the power grid, social systems, material failure and earthquakes, and
the climate system. Due to the technological advances over the last
decade, the amount of observations and data available to character-
ize complex systems and their dynamics, as well as the capability to
process that data, has increased substantially. The present issue dis-
cusses a cross section of the current research on complex systems, with
a focus on novel experimental and data-driven approaches to complex
systems that provide the necessary platform to model the behavior of
such systems.

1 Introduction

Physical, geophysical, chemical, living and man-made systems often show behaviors
that cannot be understood by studying their building blocks or constituents to ever
finer detail but that are emergent. The concept of emergence can be summarized by
the statement that there exists an entity (e.g. an organism) which is more than the
sum of its parts [1].

Systems showing emergence are typically considered complex. This lack of simple
additivity in complex systems renders linear approaches and traditional experimental
and analytic frameworks useless and has led to the new scientific field of complexity
science, which uses system-level approaches. The lack of simple additivity also reflects
the importance of strong nonlinearities in complex systems. Prominent examples of
complex systems include seismicity [2,3], climatology [4–7], human heart dynam-
ics [8–12] and neural signaling or biological signaling processes in general [13], with
immense importance for society: Recent catastrophic earthquakes in Japan, Haiti,
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Italy and Indonesia (loss of life >550 000, economical damage >$US 200 billion)
and ever-increasing population density in large metropolitan areas near major active
faults (e.g., Tokyo, Istanbul, San Francisco bay area) highlight the great societal
importance of predicting and forecasting naturally occurring earthquakes. This is
also true for earthquakes unintendedly induced by geoengineering activities, such as
hydraulic fracturing [14,15] – a key enabling technology for unconventional resource
development in the oil and gas industry.

Another example is the brain. Understanding the relationship between structure,
dynamics and function in the brain is a crucial step toward innovative solutions for
brain-related diseases such as epilepsy and the goal of large-scale research projects
such as the CAD $1.6 billion Human Brain Project. Another important example is
the identification of genes that interact to control cellular processes by transcriptional
activation of a set of target genes – identifying their interactions is an essential task
for network reverse engineering in modern systems biology. Finally, cardiac arrest is
a major cause of mortality in the industrialized world, responsible for 325 000 deaths
annually in the US alone. These examples not only emphasize the importance of
understanding complex systems but also the urgent need to tackle the associated
challenges.

Among the recent advances in this direction, there are four overlapping themes
we will focus on here: prediction and causality; complex networks: synchronization
and communication, stability and controllably, the brain, the heart and beyond; and
nonlinear dynamics and pattern formation. These themes were also at the core of the
recent 14th Experimental Chaos and Complexity Conference held in Banff, Canada,
in 2016, which has stimulated this special issue.

2 Prediction and causality

Inferring cause–effect relationships from observations is one of the fundamental chal-
lenges in natural sciences and beyond. Due to the technological advances over the
last decade, the amount of observations and data available to characterize complex
systems and their dynamics has increased substantially, making scientists face this
challenge in many different areas. One specific example is the brain for which one
can make multivariate recordings of its activity on many different levels, ranging
from single neurons to extended brain regions. Several analysis techniques from infor-
mation theory, statistics and related disciplines exist to estimate causal influences,
interactions and connectivity from general multivariate recordings under certain
assumptions; see the reviews [16,17]. The connectivity is often of particular impor-
tance since it allows one to describe the dynamics of a given system in the modern
language of complex network theory and to tackle questions related to structure and
functionality.

Moreover, the presence of causal influences makes the behavior of a given system
typically more predictable. Indeed, improving the predictability is often used as the
guiding principle to build estimators for information flow and ultimately causal rela-
tions from data as it is the case for Granger causality and transfer entropy, cf. [18].
Data-driven prediction has a long history with Kalman filters one of the earliest exam-
ples [19]. In its classical formulation, the Kalman filter and their extensions such as the
ensemble Kalman filters [20] require the knowledge of the dynamical model equations
governing the evolution of the system at hand. In the absence of such knowledge, non-
parametric approaches to data-driven prediction are typically used. These include but
are not limited to methods based on the maximum entropy principle, cf. [21], and
time series graphs, cf. [22], as well as methods based on delay-coordinate embedding
(the Takens embedding theorem [23]) to reconstruct the nonlinear dynamics [24–28].
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These equation-free approaches are an indication that science may be moving
into a period where equations no longer play the central role in describing dynamic
systems that they have played in the last 300 years [29]. Taking it even a step further,
Hamilton et al. [30] have proposed a combination of delay-coordinate embedding
and ensemble Kalman filtering, which can lead to superior prediction results. As
shown by Hamilton et al. [31] in this special issue, this approach also solves the
challenge of separating dynamical and observational noise in time series data. From
a purely data-driven approach, recent developments in ensemble-based inference and
machine learning have proven useful to tackle diverse problems like transcriptional
gene network inference [32] and neuronal connectivity [33]. Although these approaches
seem to outperform others on a case-by-case basis, their usefulness for the study of
complex systems is limited, since they usually behave as black boxes, giving little
insight into the behavior of the underlying system. Another model-free and data-
driven approach to determine interactions and dependencies is centered around the
concept of recurrence plots (see the review [34]). In this special issue, Riedl et al. [35]
discuss how this technique can be generalized such that it can be applied to spatially
extended systems.

For systems that are characterized by discrete events and a point process dynam-
ics such as spiking neurons or aftershock sequences, many of the above data-driven
methods need to be adapted (cf. [36,37] and references therein) and new methods have
been proposed [38–40] to infer causal influences and interactions. Yet many challenges
remain. These include the correct identification of downregulating or inhibitory con-
nections [41,42], which play a fundamental role in neurosciences, for example. Another
one is the detection of causal connections and event-event triggering when complete
(spatio-temporal) information is lacking as discussed by Baró and Davidsen [43] in
this special issue, with direct implications in the context of rock fracture [44,45].

3 Complex networks: synchronization and communication,
stability and controllably, the brain, the heart and beyond

From interacting populations of earthquake faults to the nerve cells in the brain,
many complex systems can be represented as a collection of dynamical units coupled
via complex architectures. Complex network theory, a marriage of ideas and methods
from statistical physics and phase transitions, nonlinear dynamics as well as graph
theory, has become one of the most successful frameworks for studying this type of
complex systems and has led to major advances in our recent understanding of these
systems and their emergent properties, cf. [46,47].

The individual dynamics of the coupled units can often be considered oscillatory
or excitatory. For example, the brain and heart are largely composed of excitable
cells (neurons and cardiac cells, respectively); a cell is excitable if only a sufficiently
large stimulus generates a nonlinear response (action potential in a neuron) before
the system returns to its rest state. Similarly, many other biological systems and
chemical systems, including the now classic Belousov-Zhabotinsky chemical reaction
([48–51], see also the recent review [52]) fall into the class of excitable media.

Neurons and cardiac cells as well as chemical reactions may, however, not only
generate excitable dynamics but also oscillatory dynamics; for example the normal
sinus rhythm in the heart is driven by synchronized oscillations in the sino-atrial
node, which generates wave of activation propagating through the rest of the heart
(a network of excitable cells). Nonlinear wave propagation is one of the hallmarks
of both excitable and oscillatory media [53,54] and it is often present in the form
of self-sustained spiral waves, presenting a specific example of a synchronization
phenomenon.
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3.1 Synchronization and communication

The synchronization of coupled oscillators [55] is a fascinating manifestation of self-
organization that nature often uses to orchestrate essential processes of life [56].
More recently, the coexistence of localized synchronized and unsychronized regions
in homogeneous systems – so-called chimera states – has drawn a significant amount
of attention due to its symmetry-breaking nature [57–60].

The study of synchronization in model systems often goes hand-in-hand with
experiments. Hastings et al. [61] explored synchronization in networks of analog elec-
tronic Keener [62] neurons. Keener’s circuit generated a non-linear “sodium current”
using saturation properties of operational amplifiers, essentially realizing the original
Nagumo [63] circuit for FitzHugh-Nagumo [63,64] neurons; cf. [65]. Analog multi-
pliers have also been generate non-linear neuronal dynamics in studies of chimeras
in networks of analog electronic FitzHugh-Nagumo neurons [66] and synchronization
in networks of analog electronic Hindmarsh-Rose neurons [67]. In this special issue,
Ahmed et al. [68] present the results of their experimental study of synchronization in
a network of electronic, analog Brockett oscillators coupled through error feedback,
finding robust global synchronization.

One of the pioneering theoretical contributions to synchronization is due to
Kuramoto [69] who used differential equations to describe the time evolution of oscil-
lator phase in networks of coupled oscillators. The Kuramoto model has served as a
prototype for extensive studies of synchronization in these networks, and more gen-
erally, the dynamics of networks of coupled oscillators; cf. the review [70]. In this
special issue, Bonnin [71] develops a Kuramoto-style model for coupled noisy oscil-
lators, starting from a phase and amplitude description. Bonin shows that the phase
noise problem can be considered as drift–diffusion process.

Finally, ensuring security is one of the major goals in communication. One
approach has been to use synchronized chaotic oscillators for transmit and receive
functions [72–74]. In this special issue, Seneviratne and Leung [75] describe a novel
approach to secure communications using multiple chaotic signals for modulation and
demodulation. Limits on the security of cryptography [76,77] led to the use of physical
layer security in wireless networks [78,79], including the use of spread spectrum tech-
niques, cf. [80]. Seneviratne and Leung use a “mixture of chaotic modulation schemes
to generate chaotically modulated symbols for each subcarrier of a spread-spectrum
(OFDM, orthogonal frequency domain multiplexing) transmitter. As a result, the
transmitted signals are indistinguishable from noise without appropriate demodula-
tion. At the receiver, different demodulators are combined together for the different
modulation schemes for enhanced security. The high security offered by this sys-
tem comes with a slight performance degradation compared to conventional OFDM
communication systems.

3.2 Stability and controllability

One frequently asked question in the dynamics of complex systems is “How stable are
the dynamics?” Can we control the system so as to keep its dynamics in a satisfactory
basin of attraction or drive it out of alternative less satisfactory basins of attraction?
These questions of stability and controllability are central to a wide range of systems,
ranging from stability of power grids (to avoid collapses such as the recent ones in the
eastern US and India, for example) to cardiac dynamics (maintaining sinus rhythm
and preventing degeneration into dangerous rhythms such as ventricular fibrillation as
well as driving cardiac dynamics out of dangerous rhythms as done by defibrillation)
to maintaining the world’s fisheries.
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While many recent papers have addressed the issues of stability and controllability
in networks (e.g. [81–84]), the stability analysis of large networks began with seminal
papers of Wigner [85,86] and May [87] on the eigenvalues of random matrices and
thus the linear stability of large random systems (see also [88] and the recent review
[89]). Under appropriate additional hypotheses [90,91], the spectral radius of a large
random matrix depends upon its size, connectance (fraction of entries which are
non-zero) of its underlying graph, and the size of the entries, a result known as the
May-Wigner stability theorem.

However, many important large networks display non-linear dynamics suggesting
that different approaches might be necessary. One approach that has been proven
useful in assessing stability of attractors is “basin stability” [92], a network level,
non-linear stability concept, complementing the linear stability-stability paradigm.
As a consequence, in particular, Menck et al. [93] showed that eliminating “dead
ends” in power grids can improve their stability.

In this special issue, Smith et al. [94] address the question of stability in human
balance, a question first addressed in the context of dynamics by Collins and De
Luca [95] who recognized human balance as a complex, dynamic process. Stirling
and Zakynthinaki [96] studied Lyapunov stability of a quiet stance. Smith et al.
studied basins of attraction for postural stability (essentially basin stability), with
an aim to quantify previously subjective clinical measures. Falls in the elderly are a
major cause of mortality and morbidity [97,98]; Smith et al.’s ultimate overall goal
is to create a quantitative fall risk assessment tool.

3.3 The brain, the heart and beyond

The brain and heart have been widely studied as biological networks of excitable
media, that is, media which support action potentials [8,10], and more generally as
dynamical systems. As a specific example, Bélair et al. [99] characterized sudden
cardiac death and epilepsy as dynamical diseases, “marked by sudden changes in the
qualitative dynamics of physiological processes;” see also [11,100–103].

Sudden cardiac death caused by ventricular fibrillation (VF) leads to 325 000 sud-
den cardiac deaths per year in the US, making VF a leading cause of death in the
industrialized world. Both pharmacological and interventional (implantable cardiac
defibrillators) have been used in attempts to reduce sudden cardiac death due to VF.
The role of dynamical systems in addressing VF is evident in Weiss et al.’s [104]
description of the route from ventricular tachycardia (VT) to ventricular fibrillation
as a transition to spatiotemporal chaos, though the specific nature of this transition
remains to be established, cf. [105–107]. This dynamical systems-level perspective
also explains failures of certain drug treatments, including increased mortality from
sudden cardiac death in post-myocardial infarction patients treated with apparently
promising antiarrhythmic drugs (the CAST [108] and SWORD [109] trials). Although
drugs in the CAST trial sharply reduced the incidence of VT (understandable at the
cell level), they sharply increased the likelihood of transition to VF (understandable at
the organ as network of cells level), thus increasing mortality; see also [110–113]. More
recently, Uzelac et al. [114] found that current action potential models lack the neces-
sary coupling between voltage and calcium compared to experiments and thus fail to
reproduce some key dynamics. They concluded that better models are needed to study
the possible pro-arrhythmic potential of drugs and avoid failures such as the CAST
and SWORD trials discussed previously. In another direction, Luther et al. [115]) have
taken aim at the holy grail of low-energy defibrillation using a detailed analysis of how
the structure of the cardiac electrical systems affects the dynamics of defibrillation.

The dynamical systems perspective across different scales also applies to epilepsy
and more generally the brain as a whole [116]. The recent, ongoing large-scale BRAIN
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initiative [117–120] aims to understand brain dynamics at all scales, ranging from
local neuronal dynamics, through mesoscale and whole brain. At the single neuron
and sub-neuron scale, the BigNeuron project (http://bigneuron.org/) aims to define
and advance state-of-the-art single neuron reconstruction by testing on a common
open platform as many open-source, automated neuron reconstruction algorithms
as possible, using very large scale, publicly available single 3D neuron image data
sets acquired by several light microscopy methods [121]. At larger scales, The Allen
Mouse Brain Connectivity Atlas (http://brain-map.org) is a freely available, foun-
dational resource for structural and functional investigations into the neural circuits
that support behavioral and cognitive processes in health and disease [120].

At the same time, advanced MRI techniques (functional MRI (fMRI), functional
connectivity MRI and diffusion MRI imaging)) have been used to study brain func-
tion as well as structure (cf. the review [122]), though it is likely that only the
interplay between structure and dynamics gives rise to function [123]. A connec-
tivity analysis of the default mode network of the brain in a resting state found
that its activity was attenuated during cognitive processing [124]. More recently,
Padmanabhan et al. [125] found dynamical disease (abnormal structure and func-
tion) in the default mode network in autism. A community-wide effort to understand
intrinsic brain architecture in autism, the Autism Brain Imaging Data Exchange
(http://fcon 1000.projects.nitrc.org/indi/abide/) in now underway [126].

A second major brain network, the task positive network, has also been studied by
advanced MRI. Here Grady et al. [127] found that default mode network engagement
decreased and task positive network engagement increased with aging; see also [128].
In an analysis of brain activity in higher level tasks, Protzner et al. [129] found dif-
ferences in resting-state data and functional differences between Scrabble R© experts
and beginners engaged in visual word recognition. Experts used brain regions associ-
ated with working memory and visual perception rather than those associated with
meaning retrieval, see also [130], reminiscent of differences in brain usage between
chess experts and novices [131].

Brain networks have also been explored with new tools such as algebraic topol-
ogy [132–134] and more generally network science ([135] and references therein),
extending graph-theoretic analysis [46]. Networks of Boolean (switching) elements
offer another useful model in the study of the brain as well as other biological net-
works such as the genetic regulatory network. Rosin et al. [136] found chaotic, periodic
and excitable dynamics in an experimental study of large autonomous (not clocked)
Boolean networks implemented using field programmable gate arrays. Although the
genetic regulatory network have long been studied with piecewise-linear differential
equations (cf. [137,138]), networks of Boolean switching circuits can readily incorpo-
rate time delays difficult to incorporate in differential equation models. This can lead
to long-term transients and chimera states [139–141].

We conclude this subsection with two observations of convergence, typical of the
field of applied dynamical systems. First, causality approaches appear to be a promis-
ing tool in the diagnosis of dynamical diseases, for example, EEG-based diagnosis of
Alzheimer’s disease [142,143]. Secondly, Falk and Bassett [144] explored the relation
between brain and social networks. In this spirit, Field et al. [145] offered an initial
exploration of phase transitions in social networks.

4 Nonlinear dynamics and pattern formation

Emergent behavior in complex systems often comes in the form of self-organized struc-
tures or patterns [146–148]. These can range from geological spatial scales [149–151]
and evolutionary time scales [152,153] to lab scales [154]. One specific feature of
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emergent behavior in many systems is that it is self-similar or scale-free, i.e., an
absence of characteristic scales over orders of magnitude. This is in particular true
for earthquakes, which exhibit such scaling properties in space, time and sizes down
to the smallest scales in natural and induced settings; see [155–157] and references
therein. Despite this feature, earthquake prediction remains an important, elusive
challenge [158]. One possible way forward is lab experiments on rock fracture and/or
stick-slip dynamics under controlled conditions; cf. [45,159,160]. For example, Lockner
and co-workers have investigated a classic stick-slip model [161] in lab experiments
[162], complementing earlier work [44].

On evolutionary time scales, scientists have asked whether speciation, considered
as pattern formation, can occur in the absence of selection [152,153]. This type of
model, a neutral model, was introduced by Hubbell [163,164] as a minimal alterna-
tive to the classical concept of ecological niches [165–167], and can be viewed [164]
as complementing niche theory. As a partial answer to the question of the basis for
speciation, computer experiments by Bahar and colleagues found universal dynamics
in emergent sympatric clustering/speciation in a neutral fitness landscape – the sys-
tem displays directed percolation dynamics [152], as well as more general clustering
in an agent-based model [153].

Due to the non-equilibrium nature of emergent behavior, internal fluxes are an
essential part of the dynamics. In this special issue, Skiba and Filatov [168] describe
pattern formation in non-linear physical diffusion processes arising from the processes
of transfer of energy generated by the corresponding external forcing and then dis-
sipated in the medium. Rapid energy transfer in these media can lead to so-called
blow-up modes characterized by a period of rapid change in a variable such as tem-
perature in a bounded region, cf. Hu [169]. In order to study these processes Skiba
and Filatov introduce new numerical methods in a 3D spherical shell.

The balance between external forcing and internal dissipation also plays an impor-
tant role in hydrodynamic systems, especially if one considers turbulence [170]. For
example, Deike et al. [171] contrasted the effects of boundary conditions in an exper-
imental study in which irregular waves are driven toward an absorbing sloping beach
opposite the wavemaker or a reflecting vertical wall. One sees a quasi-one-dimensional
field of nonlinear waves in the case of an absorbing boundary and a more multidirec-
tional wave field with the reflecting boundary. Observed scaling in this experimental
model is compatible with previous theoretical analysis of Falcon et al. [172].

Pattern formation and turbulence can also occur in a quantum setting, studied
in Dan Lathrop’s lab, with quantum vortices in superfluid helium being one specific
example [173]. The study of superfluid turbulence using microscopic particles and
metastable helium molecules as tracers [174] as an experimental model provides a
deep understanding of turbulence with surprisingly broad applications such as defect
formation from symmetry breaking [175]. Other applications range from superfluid
transport of information in turning flocks of starlings [176] to cosmology, using vortex
lines in a superfluid to model the dynamics of cosmological strings [177,178].

The consistent quantification of the complexity of a given pattern or system is
one of the open challenges in the field. Lloyd [179] has offered three abstract tests
for complexity: “1. How hard is it to describe the pattern or system? 2. How hard is
it to create it? 3. What is its degree of organization?” In this special issue, Nagaraj
and Balasubramanian [180] offer and compare several approaches to measuring com-
plexity, namely entropy, compressability, and internal symmetry. In comparison with
Lloyd’s work, Nagaraj and Balasubramanian’s measures are easier to compute. In par-
ticular, data compression has wide applications and one can measure the difficulty of
compression, cf. Gersho and Gray [181].
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5 Summary

As we have shown in this brief review, experimental research into the dynamics of
complex and chaotic systems is a broad, active field, with many interconnections
among specific areas of investigation. Present and future research are enabled by
high-performance computing, “big-data-sized,” multi-scale analysis (especially in the
study of brain and more general network dynamics), new mathematical techniques
(equation-free, data-driven modeling), and new applications of classical, abstract
mathematics (e.g., algebraic topology), potentially yielding a broad range of appli-
cations of important social interest – from stabilizing the power grid, understanding
earthquakes, to controlling dynamical disease of the brain and heart.
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59. E. Schöll, Eur. Phys. J. Special Topics 225, 891 (2016)
60. J. Davidsen, Nat. Phys. (2017), doi:10.1038/s41567-017-0014-7
61. H.M. Hastings, O.I. Hernandez, L. Jiang, B. Lai, L. Tensen, J. Yang, Dynamics of

biomimetic electronic artificial neural networks, in International conference on appli-
cations in nonlinear dynamics, edited by V. In, P. Longhini, A. Palacios (Springer,
Cham, 2016), pp. 195–207

62. J.P. Keener, IEEE Trans. Syst. Man Cybern. 5, 1010 (1983)
63. J. Nagumo, S. Arimoto, S. Yoshizawa, Proc. IRE 50, 2061 (1962)
64. R. FitzHugh, Biophys. J. 1, 445 (1961)
65. E.M. Izhikevich, R. FitzHugh, Scholarpedia 1, 1349 (2006)
66. E.M.E. Arumugam, M.L. Spano, Chaos 25, 013107 (2015)

https://doi.org/10.1038/s41567-017-0014-7


3194 The European Physical Journal Special Topics

67. E. Steur, C. Murguia, R.H. Fey, H. Nijmeijer, Int. J. Bifurc. Chaos 26, 1650111 (2016)
68. H. Ahmed, R. Ushirobira, D. Efimov, Eur. Phys. J. Special Topics 226, 3199 (2017)
69. Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in

International symposium on mathematical problems in theoretical physics, Lecture notes
in physics, edited by H. Araki (Springer, Berlin-Heidelberg, 1975), Vol. 39, pp. 420–422

70. S.H. Strogatz, Physica D 143, 1 (2000)
71. M. Bonnin, Eur. Phys. J. Special Topics 226, 3227 (2017)
72. C.W. Wu, L.O. Chua, Int. J. Bifurc. Chaos 3, 1619 (1993)
73. T.L. Carroll, L.M. Pecora, Synchronizing chaotic circuits, in Nonlinear dynamics, Cir-

cuits, edited by T.L. Carroll, L.M. Pecora (World Scientific, Singapore, 1995), pp.
215–248

74. L. Kocarev, U. Parlitz, Phys. Rev. Lett. 74, 5028 (1995)
75. C. Seneviratne, H. Leung, Eur. Phys. J. Special Topics 226, 3287 (2017)
76. M.E. Hellman, IEEE Commun. Mag. 40, 42 (2002)
77. S.V. Kartalopoulos, IEEE Commun. Mag. 44, 146 (2006)
78. Y.S. Shiu, S.Y. Chang, H.C. Wu, S.C. Huang, H.H. Chen, IEEE Wirel. Commun. 18,

66 (2011)
79. A. Mukherjee, S.A.A. Fakoorian, J. Huang, A.L. Swindlehurst, IEEE Commun. Surv.

Tutor. 16, 1550 (2014)
80. R. van Nee, R. Prasad, OFDM for wireless multimedia communication (Artech House,

Inc., Norwood, MA, USA, 2000)
81. F.J. Müller, A. Schuppert, Nature 478, E4 (2011)
82. N.J. Cowan, E.J. Chastain, D.A. Vilhena, J.S. Freudenberg, C.T. Bergstrom, PLoS

ONE 7, e38398 (2012)
83. Y.Y. Liu, J.J. Slotine, A.L. Barabási, Proc. Natl. Acad. Sci. USA 110, 2460 (2013)
84. M.T. Angulo, J.A. Moreno, G. Lippner, A.L. Barabási, Y.Y. Liu, J. R. Soc. Interface

14, 20160966 (2017)
85. E.P. Wigner, Ann. Math. 62, 548 (1955)
86. E.P. Wigner, Ann. Math. 67, 325 (1958)
87. R.M. May, Nature 238, 413 (1972)
88. R.M. May, Stability and complexity in model ecosystems (Princeton University Press,

Princeton, NJ, USA, 2001)
89. S. Allesina, S. Tang, Popul. Ecol. 57, 63 (2015)
90. J.E. Cohen, C.M. Newman, J. Theor. Biol. 113, 153 (1985)
91. S. Geman, Ann. Probab. 14, 1318 (1986)
92. P.J. Menck, J. Heitzig, N. Marwan, J. Kurths, Nat. Phys. 9, 89 (2013)
93. P.J. Menck, J. Heitzig, J. Kurths, S.J. Schellnhuber, Nat. Commun. 5, 3969 (2014)
94. V.A. Smith, T.E. Lockhart, M.L. Spano, Eur. Phys. J. Special Topics 226, 3315 (2017)
95. J.J. Collins, C.J. De Luca, Exp. Brain Res. 95, 308 (1993)
96. J.R. Stirling, M.S. Zakynthinaki, Chaos 14, 96 (2004)
97. M.E. Tinetti, N. Engl. J. Med. 348, 42 (2003)
98. CDC, Web-based Injury Statistics Query and Reporting System (WISQARS) (2015),

http://www.cdc.gov/injury/wisqars/ (accessed 2016/27/10)
99. J. Bélair, L. Glass, U. an der Heiden, J. Milton, Chaos 5, 1 (1995)

100. A. Beuter, J. Bélair, C. Labrie, Bull. Math. Biol. 55, 525 (1993)
101. M.C. Mackey, J.G. Milton, Ann. N. Y. Acad. Sci. 504, 16 (1987)
102. F.L. Da Silva, W. Blanes, S.N. Kalitzin, J. Parra, P. Suffczynski, D.N. Velis, IEEE

Trans. Biomed. Eng. 50, 540 (2003)
103. F.L. Da Silva, W. Blanes, S.N. Kalitzin, J. Parra, P. Suffczynski, D.N. Velis, Epilepsia

44, 72 (2003)
104. J.N. Weiss, A. Garfinkel, H.S. Karagueuzian, Z. Qu, P.S. Chen, Circulation 99, 2819

(1999)
105. T. Cameron, J. Davidsen, Phys. Rev. E 86, 061908 (2012)
106. G. St-Yves, J. Davidsen, Phys. Rev. E 91, 032926 (2015)
107. S. Alonso, M. Bär, B. Echebarria, Rep. Prog. Phys. 79, 096601 (2016)

http://www.cdc.gov/injury/wisqars/


Challenges in the Analysis of Complex Systems 3195

108. Cardiac Arrhythmia Suppression Trial (CAST) Investigators, N. Engl. J. Med. 321,
406 (1989)

109. A.L. Waldo, A.J. Camm, P.L. Friedman, D.J. MacNeil, J.F. Pauls, B. Pitt, C.M. Pratt,
P.J. Schwartz, E.P. Veltri, Lancet 348, 7 (1996)

110. D.S. Echt, P.R. Liebson, L.B. Mitchell, R.W. Peters, D. Obias-Manno, A.H. Barker,
D. Arensberg, A. Baker, L. Friedman, H.L. Greene, M.L. Huther, N. Engl. J. Med.
324, 781 (1991)
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