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Abstract. We provide an overview of recent advances of the complex
dynamics of particles in strong confinements. The first paradigm is the
Lorentz model where tracers explore a quenched disordered host struc-
ture. Such systems naturally occur as limiting cases of binary glass-
forming systems if the dynamics of one component is much faster than
the other. For a certain critical density of the host structure the trac-
ers undergo a localization transition which constitutes a critical phe-
nomenon. A series of predictions in the vicinity of the transition have
been elaborated and tested versus computer simulations. Analytical
progress is achieved for small obstacle densities. The second paradigm
is a dense strongly interacting liquid confined to a narrow slab. Then
the glass transition depends nonmonotonically on the separation of the
plates due to an interplay of local packing and layering. Very small
slab widths allow to address certain features of the statics and dynam-
ics analytically.

1 Introduction

The dynamics of dense glass-forming liquids slows down drastically upon decreasing
the temperature or compressing the system eventually reaching a quasi-arrested dis-
ordered structure referred to as a glass. Concomitant with the vitrification the slow
structural relaxation displays a series of striking features which do not have an analog
in other domains of physics [1]. In recent years significant progress has been achieved
to provide accurate data covering the microscopic evolution of the structural relax-
ation from a few picoseconds up to the microsecond regime. While there is still no
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consensus on how the glass transition should be rationalized theoretically, a coherent
theoretical picture encompassing various facets accompanying the glass transition has
been developed within the mode-coupling theory (MCT) of the glass transition [1,2]
by Wolfgang Götze and collaborators in the last 30 years.
Various predictions of the MCT have been corroborated in experiments and

simulations [3]. For example, strong evidence for the predicted minimum in
the frequency-dependent susceptibilities has been collected in depolarized-light-
scattering experiments [4–6] which have been analyzed in terms of schematic
models within the MCT [7–9]. The freezing of the spatio-temporal dynamics ac-
companied by stretched relaxation has been directly observed in dynamic light
scattering in colloidal systems [10,11] which strikingly resembles the prediction
of MCT [12,13] for hard spheres. Seminal computer simulations on binary mix-
tures [14,15] have observed scaling behavior for the relaxation in the close
vicinity of a plateau in the intermediate scattering functions characterizing the
frozen-in structure. A highly non-trivial prediction of the MCT is the existence of
glass-glass transitions if competing mechanisms for glass formation exist [16,17].
For polymer-colloid mixtures an additional short-range depletion attraction can be
tuned such that the nonequilibrium state diagram displays nonmonotonic glass-
transition lines [18–22], i.e. a reentrant behavior emerges. Then for certain size
ranges of the depletion interaction a higher-order glass transition singularity be-
comes manifest in the dynamics accompanied by ultra-slow logarithmic decays
[16,17,23–25].
The theoretical progress in understanding the complex dynamics accompanied

with the glass transition encourages now to push mode-coupling theory to new fron-
tiers. So far MCT calculations were restricted to the equilibrium dynamics for mono-
component or binary systems of comparable size. Here we now focus on systems where
the constituents are only weakly coupled and one component diffuses much faster than
the other one. Such a decoupling of the dynamics has been observed in alkali silica
melts in computer simulations [26,27] and in neutron scattering experiments [28,29].
Microscopically the alkali ions meander through a slowly rearranging host matrix of
silicon oxide on preferential diffusion pathways, reminiscent of a nano-porous material.
Semi-quantitative agreement with MCT has been achieved [30] using the measured
static structure factors as input in the mode-coupling functional. Yet, at first glance
silica melts appear as a peculiarity since they are known to form locally tetrahe-
dral networks, i.e. with strong directional bonds yielding only a loosely packed host
structure. However, computer simulations for strongly size-disparate mixtures inter-
acting via soft-sphere repulsion [31,32] or repulsive Yukawa interactions [33] display
the same phenomenology without invoking chemical effects or polymeric aspects [34].
Therefore one infers that the scenario of weakly coupled dynamics is generic. Within
MCT this is connected to a delocalization transition for the small particles [35] which
diffuse through an arrested matrix of big particles. An experimental realization of
such a strongly size-disparate mixture has been achieved for colloids only recently
by Sentjabrskaja et al. [36]. There the experimental challenge was to resolve the
dynamics of the small particles which rearrange too fast for conventional particle
tracking. By adapting differential dynamics microscopy also to dense colloidal sys-
tems they were able to extract intermediate scattering functions for the small par-
ticles and uncover a novel ultra-slow relaxation scenario for a certain critical size
ratio.
The limiting case where one component is frozen from the very beginning has been

addressed theoretically in terms of an extension of MCT by Krakoviack [37–40]. Here
an interacting liquid is confined to a quenched porous host structure. The theory then
predicts a localization transition which should be contrasted from the glass-transition
scenario. Within the theory a divergent localization length emerges and directly
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at the transition anomalous transport is found, reminiscent of the Lorentz model
discussed earlier by Götze et al. [41,42]. However, for small concentrations of the
fluid component the model should reduce to the Lorentz model, where a gas of non-
interacting tracers explores a disordered host structure. There it has been shown that
MCT yields inconsistent results, since the singular behavior of the long-wavelength
modes is not properly accounted for within the theory [43]. Thus it appears that MCT
in its current form is not suited to address all aspects of the localization transition in
the Lorentz model or variants thereof [1].
The first goal of this article is to provide an overview on recent progress on slow

dynamics of particles confined to disordered host structures. In particular, we will
discuss the ramifications of an underlying percolation transition on the dynamics of
tracer particles and elucidate various facets of complex transport emerging in the
vicinity of the transition. The problem is addressed mostly in terms of computer
simulations for different microdynamics. The theoretical analysis is then within a
dynamic scaling hypothesis as suggested from dynamical critical phenomena. Also
included is a brief discussion of novel data for a tracer in the host matrix that is
subjected to an external force. There is also analytic progress for low obstacle densities
for a lattice variant of the Lorentz model where the tracer particle is exposed to an
external strong driving field.
A second goal is a summary of recent progress on slow dynamics of confined

liquids. Here a mode-coupling theory has been formulated [44] that accounts for a
slab-geometry. Then the separation of the plates introduces a new length scale into
the problem and new physics is expected once this separation becomes comparable
to a few particle diameters.

2 Obstructed dynamics in Lorentz models

The basic paradigm of hindered motion by frozen obstacles has been formulated
by Lorentz [45] where particles explore a disordered array of hard scatterers. While
Lorentz conceived the model originally to explain the resistance of metals for electron
transport, these Lorentz models have become nowadays valuable minimal models for
various transport phenomena in random structures, in particular, for porous media
characterized by networks or compartments weakly connected by channels. The im-
portance of Lorentz models stems from various branches of natural sciences where
strongly heterogeneous materials are involved. Therefore a physical understanding of
the impact on disorder on the macroscopic properties, in particular, particle trans-
port, fluid flow or permeability, is of prime importance for applications in mate-
rial science, nanochemistry, oil recovery, and more recently for biological systems.
Often transport in these disordered structures becomes anomalous in the sense that
the mean-square displacement of a tracer particle does not increase linearly for long
times, rather it follows a power law ∝ tα with an anomalous exponent α < 1. Exam-
ples for such anomalous behavior are ubiquitous in nature and include tracer dynamics
in porous soil columns [46], slow transport of alkali ions in nanoporous supercooled
silica melts [26,28–30], and subdiffusive motion of proteins in biological matter [47].
In these biological systems the dense packing of differently sized proteins, lipid, sug-
ars, and membranes, is coined macromolecular crowding [48] and leads to a strong
suppression of transport with molecular weight [49] of the agents, often eventually
giving rise to anomalous diffusion [50] observed in eukaryotes, bacteria, and synthetic
biological fluids, see reference [47] for a review.
Here we are concerned with the simplest versions of Lorentz models either in

continuum or on a lattice and review the peculiar transport properties emerging via
frozen disorder explored by a single tracer particle.
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2.1 Continuum Lorentz models

2.1.1 Structure and void space

The disordered host structure in continuum is specified by placing obstacles into
d-dimensional space, such that the tracer can access only regions of space that are
not excluded by the obstacles. Correspondingly, the configuration space of the tracer
consists of the void space of the obstacle structure. To simplify even more, the ob-
stacles are distributed randomly, identically, and independently, which implies that
the host structures are realizations of a spatial Poisson process with number density
n. Furthermore, the obstacles are considered as spherical such that the tracer can-
not come closer to the center of an obstacle than an exclusion distance σ. Since the
obstacles are distributed independently, the exclusion regions may overlap and form
clusters. The model is also referred to as Swiss-cheese model where the obstacle clus-
ters correspond to the holes in the cheese while the tracers have to move within the
cheese. Then the structural properties of the host matrix are characterized entirely in
terms of the dimensionless number density n∗ = nσd. Equivalently one may use the
volume fraction accessible to the tracer ϕ, often called the porosity or void fraction
of the system. From the Poisson process one works out easily that

ϕ = exp(−Vdn∗), (1)

where Vd = π
d/2/Γ(d/2 + 1) denotes the volume of the d-dimensional unit sphere.

Already at intermediate obstacle densities, the void space is strongly compartmen-
talized, consisting of pockets of various sizes. Correspondingly, long-range transport
is restricted to the component of the void space spanning the entire system. This
incipient percolating cluster ceases to exist beyond a certain density n∗c known as
the percolation threshold. Computer simulations yield n∗c ≈ 0.359 [51] in the two-
dimensional case, and n∗c ≈ 0.838 [52–55] in 3D. The volume fraction ϕ∞ of the
incipient percolating cluster plays the role of an order parameter here and is antici-
pated to vanish as ϕ∞ ∼ (−ε)β for ε→ 0, ε < 0, where ε = (n− nc)/nc denotes the
separation parameter. More generally, for finite systems of linear dimensions L the
volume fraction is expected to obey the finite-size scaling

ϕ∞(ε, L) = L−β/νϕ̂∞(L/ξ), (2)

where ξ ∼ |ε|−ν denotes the divergent correlation length characterizing the linear di-
mension at which the infinite cluster becomes homogeneous. Systems much larger
than the correlation length, L� ξ, should be indistinguishable from an infinite sys-
tem, thus ϕ∞ should become independent of the system size. This implies that the
scaling function should behave as a power law ϕ̂∞(x� 1) ∼ xβ/ν for large dimension-
less arguments x = L/ξ. Conversely, whenever the correlation length exceeds the box
length significantly, the volume fraction is no longer dependent on the correlation
length, suggesting that ϕ̂∞(x� 1) = const. approaches a finite value. This entails
that directly at the critical point, n∗ = n∗c , the volume of the incipient percolating
cluster ϕ∞Ld ∝ Ldf grows as a power law with the system size, here characterized
by the fractal dimension df = d− β/ν. Correspondingly, the infinite cluster becomes
a fractal at the transition, while for obstacle densities below the transition, n∗ < n∗c ,
the infinite cluster is expected to become homogeneous and space-filling at length
scales larger than the correlation length ξ ∼ |ε|−ν .
In simulations the percolating cluster can be identified by a Voronoi tessellation

of the obstacle centers [53,56] which we have implemented relying on the free voro++
library [57]. The measured volume fractions for three-dimensional continuum Lorentz
models are displayed in Figure 1 and confirm nicely the theoretical predictions. The
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Fig. 1. Volume fraction ϕ∞ of the incipient percolating cluster of the void space between
3D overlapping spheres as a function of the separation parameter ε := (n∗ − n∗c)/n∗c from
the percolation transition for different system sizes 2L/σ. Lines represent the median, tinted
areas indicate statistical variance among the samples. The power law ϕ∞ ∼ (−ε)β with
β = 0.418 is highlighted by the gray line. In the inset, the value of ϕ∞ directly at the
percolation transition (ε = 0) is shown as a function of L. The expected scaling ϕ∞ ∼ L−β/ν
is indicated by a gray line.

values of the critical exponent for the growth of the infinite cluster β ≈ 0.418 and the
divergence of the correlation length ν ≈ 0.88 are consistent with the static exponents
for percolation in 3D.

2.1.2 Mean-square displacement and diffusion

The dynamics of a tracer particle on this infinite cluster will reflect the fractal prop-
erties of the system. The tracer will probe the many dead ends of the fractal before
reaching the relevant connections between the compartments to explore finally the
entire infinite cluster. This problem of single-particle transport on a fractal structure
has been coined by de Gennes [58] as the ant in the labyrinth and one anticipates
anomalous transport

δr2∞(t; ε = 0) ∼ t2/dw , for t→∞, (3)

for the long-time increase of the mean-square displacement δr2∞ := 〈[R(t)−R(0)]2〉∞
of tracers exploring only the percolating cluster. Here the subdiffusive increase is char-
acterized by the exponent dw which is known as the walk dimension. More generally,
one expects that the tracer explores a region of linear dimension R in a typical time
t ∼ Rdw .
For densities below the percolation transition, ε < 0, the infinite cluster becomes

homogeneous on scales larger than ξ ∼ |ε|−ν such that the mean-square displacement
should grow as in ordinary diffusion

δr2∞(t, ε < 0) = 2dD∞t, for t→∞, (4)

where the diffusion coefficient D∞ = D∞(ε) depends sensitively on the distance
to the percolation threshold. For small but nonzero ε < 0 the mean-square
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Fig. 2. Double-logarithmic representation of the mean-square displacements δr2∞(t) for
ballistic tracer particles on the infinite cluster for the 3D Lorentz model. Distances are
measured in units of the exclusion radius σ, times in units of to = σ/v where v is the
velocity of the tracer. Obstacle density n∗ = n∗c(1 + ε) increases from top to bottom in
geometric progression to the critical point. The straight line indicates anomalous transport
with a walk dimension of dw = 4.81. The inset displays a rectification of the data at the
percolation threshold for increasing system size.

displacement should follow the anomalous increase ∼ t2/dw of the fractal cluster up to
times tξ ∼ ξdw ∼ (−ε)−νdw and smoothly cross over to diffusion. This insight suggests
that dynamical scaling in the form

δr2∞(t, ε) = t
2/dwδr̂2∞(t/tξ), (5)

should hold. For short rescaled times the scaling function assumes a constant δr̂2∞(t̂�
1) = const., since the particle has not explored the infinite cluster on times large
enough to detect deviations from the fractal behavior. Conversely, for long times dif-
fusive behavior is recovered imposing δr2∞(t̂� 1) ∼ t̂1−2/dw , which entails the scaling
prediction for the long-time diffusion coefficient D∞ ∼ t2/dw−1ξ ∼ ξ2−dw . In terms of
the separation parameter ε = (nc − n∗c)/n∗c this is equivalent to D∞ ∼ (−ε)μ∞ with
conductivity exponent μ∞ = ν(dw − 2) [59,60].
Simulation data of ballistic tracers in the 3D Lorentz model [61,62] are displayed

in Figure 2 and show anomalous transport for the mean-square displacement at the
critical obstacle density over more than 6 decades in time. The measured exponent
dw = 4.81 is in agreement with a theoretical prediction dw = df + (d− 1)/ν by Machta
and Moore [63]. The long-time diffusion coefficients D∞ have been shown to vanish
as D∞ ∼ (−ε)μ∞ [62] as the transition is approached, corroborating furthermore the
exponent relation for the conductivity exponent. Similarly, the scaling hypothesis,
equation (5), has been tested by superimposing simulation data t−2/dwδr2∞(t, ε) ver-
sus rescaled times t/tξ. It appears that convergence to the scaling law is significantly
slower [51,54,62] than for the exponents emphasizing that scaling behavior is a more
stringent condition on the dynamics than power-law behavior. However, the correc-
tions to scaling are anticipated to be again universal and a considerably better data
collapse is achieved by incorporating these corrections in terms of the known exponent
for the corrections of the cluster-size distribution [62,64].
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The mean-square displacement δr2∞(t) encodes the same information as
the time-dependent diffusion coefficient D∞(t) := (1/2d)dδr2∞(t)/dt, the velocity-
autocorrelation function Z∞(t) := dD∞(t)/dt, or the associated frequency-dependent
conductivity Z∞(ω) =

∫∞
0
exp(iωt)Z(t)dt, each quantity being sensitive to a differ-

ent aspect of the transport phenomenon. The scaling hypothesis for the mean-square
displacement, equation (5), translates to each of these cases and has been tested, e.g.
to discuss the crossover in the frequency-dependent linear response from dispersive
to Ohmic transport [61,62].
Rather than considering only particles on the infinite cluster, one can also in-

vestigate the dynamics for tracers starting anywhere in the void space of the host
structure [54,65]. In essence, the scaling properties also transfer to the corresponding
all-cluster average δr2(t, ε), the most important modification is now that the anom-
alous transport at the percolation threshold δr2(t) ∼ t2/z becomes slower by admixing
the contributions of the finite clusters [66]. The dynamic exponent can be shown to
fulfill the scaling relation z = νdw/(ν − β/2) yielding z = 6.25 for the 3D ballistic
Lorentz model.

2.1.3 Non-Gaussian parameter

While the mean-square displacement provides a first indicator of transport prop-
erties in these porous structures, higher moments of the fluctuating displacement
ΔR(t) = R(t)−R(0) encode also valuable information. The next non-trivial quan-
tity is the mean-quartic displacement δr4∞(t) := 〈|ΔR(t)|4〉∞ where we again only
consider tracer particles on the infinite cluster. For a Gaussian process, i.e. if the
displacement ΔR(t) is normally distributed, the mean-quartic displacement can be
trivially related to the mean-square displacement. A convenient measure to quantify
the deviations from Gaussian transport is the non-Gaussian parameter [47]

α
(∞)
2 (t) =

d

d+ 2

δr4∞(t)
[δr2∞(t)]2

− 1, (6)

and a corresponding quantity for the all-cluster averaged quantities. Particles confined
to the infinite cluster will eventually display Gaussian transport on length scales larger
than the correlation length ξ with corresponding crossover time tξ ∼ ξdw . Therefore
for obstacle densities below the percolation threshold α

(∞)
2 (t→∞) = 0, while directly

at the transition a non-trivial finite value for α
(∞)
2 (t→∞) is found [62]. The situation

is rather different once all-cluster averages are considered. The reason is that transport
becomes a heterogeneous mixture of the different clusters. As a consequence the
mean-quartic displacement δr4(t) grows faster than the square of the mean-square
displacement [δr2(t)]2 such that the non-Gaussian parameter α2(t) diverges as a power
law directly at the transition with an exponent that can be related to the static and
dynamic critical exponents ν, β, z [54,62].

2.1.4 Space-resolved transport

The low-order moments of the fluctuating displacement provide valuable temporal
information, however, the underlying length scales governing the transport phenom-
ena are only indirectly encoded. To reveal the spatio-temporal dynamics one has
to rely on variables that probe the particle trajectories also on a predefined length
scale. Typically this is achieved in inelastic scattering experiments [67], e.g. neu-
tron scattering, X-ray, or light scattering, which monitor fluctuations of wavenum-
ber q. The measurable quantity is then the intermediate scattering function (ISF)
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F (q, t) := 〈exp[iq ·ΔR(t)]〉 where q is the scattering vector connected to the scatter-
ing angle which can be adjusted in the experiment. Recently, it has been shown that
the ISF can also be obtained from advanced image correlation spectroscopy such as
dynamic differential microscopy (DDM) [36,68,69], a method that is also suited to
resolve the motion of active particles [70,71]. Here we focus again on tracer particles
that are located on the infinite cluster only and modify the definition of the ISF
accordingly to

F∞(q, t) = 〈exp [iq ·ΔR(t)]〉∞ . (7)

Close to the critical obstacle density n∗c the dynamic scaling hypothesis suggests that
the density enters the ISF only in terms of the characteristic length scale ξ and
associated time scale tξ ∼ ξdw

F∞(q, t, ε) = F̂∞(t/tξ, qξ). (8)

For small wavenumbers qξ � 1 and large times t� tξ, the tracer explores a homo-
geneous medium and ordinary diffusion is anticipated F∞(q, t) = exp(−D∞q2t). This
is compatible with the scaling hypothesis only if D∞q2t ∼ (t/tξ)(qξ)2 or D∞ ∼ ξ2t−1ξ
as we found earlier.
The interesting regime is if the wavenumber probes lengths much larger than the

microscopic scale but still small compared to the correlation length, qξ � 1. Then
the particle explores only regions where the infinite cluster appears fractal, hence it
is indistinguishable from the critical point. A similar condition has to be imposed on
the time scales, viz. times are long compared to any microscopic scale but small to
the characteristic time to sense the finite correlation length, t� tξ. In this case the
ISF has to be independent of the correlation length and relaxes on the characteristic
time scale τq := tξ(qξ)

−dw ∼ q−dw . Concomitantly the ISF simplifies in the critical
regime to

F∞(q, t) = F∞(t/τq). (9)

The long-time behavior of the ISF can be connected to the probability to return
or remain near the starting point [72], similar to the principle idea of fluorescent
correlation spectroscopy [73]. Then an algebraic long-time decay F∞(q, t) ∼ t−df/dw
is anticipated for small wavenumbers. By the scaling hypothesis, equation (9), this
entails that the prefactor increases as q−df . Hence the ISF reflects both the spatial
fractal as well as the temporal fractal. Interestingly, the ratio evaluates to df/dw =
0.525 in 3D which is close the value 1/2 predicted within a mode-coupling theory [41–
43,72]. Simulation results for the ISF for a range of wavenumbers are displayed in
Figure 3 and corroborate the theoretical expectation in terms of the dynamic scaling
hypothesis. Albeit mode-coupling theory does not capture all facets of the transition,
in particular, it misses the fractal nature of the underlying space, the theory is in
qualitative and for certain aspects even in semi-quantitative agreement.

2.1.5 Quenched host structures

The assumption of independently distributed obstacles is certainly an oversimplifica-
tion for realistic porous host structures. For example, for the alkali silica melts [26–29]
the preferential diffusion pathways for the alkali ions emerge as a quasi-arrested de-
fect structure of a tetrahedral network. Similarly, for size-disparate soft [31] or hard
spheres [36] the interaction between the particles leads to strong short-range correla-
tions which modify locally the structure of the pores. Nevertheless fingerprints of the
anomalous dynamics as predicted for the Lorentz models are clearly found in all these
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Fig. 3. Intermediate scattering function F∞(q, t) for the ballistic Lorentz model in 3D
for particles on the infinite cluster only. The obstacle density is tuned to the percolation
threshold. The terminal relaxation approaches a power law for small wavenumbers q, which
are measured in terms of the inverse exclusion distance σ−1. The solid black line represents
a power law ∼ t−df/dw as guide to the eye.

Fig. 4. (a–c) Illustrations of the considered models. (a) Lorentz model: overlapping obstacles
(gray) and point tracer (red). (b) Cherry-pit model: obstacles (dark gray) and extended
tracer (red). The area unreachable by the tracer center is marked in light gray. (c) WCA-
system: soft obstacles (gray) and soft tracer (red). Figure reproduced from reference [76]
(CC BY 3.0).

systems. Recent experiments [74,75] on quasi-two-dimensional colloidal systems com-
posed of superparamagnetic particles demonstrate that the physics of the localization
transition can be realized also in laboratory experiments.
In computer simulations the simplifying assumptions of independently distributed

obstacles can be easily relaxed and the scenario of the transition can be compared to
the scaling predictions as obtained for the idealized Lorentz model. In a recent case
study [76] for 2D the overlapping hard obstacles were replaced first by a quenched
hard-disk liquid and second by a quenched polydisperse matrix interacting via a
Weeks-Chandler-Andersen potential. Figure 4 illustrates the three different cases as
a tracer explores a frozen host structure. The first variation is referred to as the
cherry-pit model and consists of a quenched equilibrium configuration of hard disks
of diameter σcore. The dimensionless control parameter is the packing fraction η =
(N/L2)πσ2core/4 of the cores at number density N/L

2. The tracer is modeled itself as
a hard disk of diameter σT such that the interaction distance is σ = (σcore + σT)/2.
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The second dimensionless control parameter determining the percolation of the void
space is then again n∗ = (N/L2)σ2. One may represent the model by associating a
halo to each obstacle indicating the areas not accessible to the tracer, see Figure 4.
Thus the structure consists of non-overlapping cores, yet the halos of the obstacles
may overlap. The percolation transition occurs if the tracer cannot move through the
entire structure without touching cores or halos.
The percolation threshold n∗c in the cherry-pit model then depends explicitly on

the packing fraction η. For fixed packing fraction the percolation threshold can be
accurately determined by a Voronoi tesselation [57] upon gradually increasing the size
of tracer, thereby discarding more and more links in the tesselation network until this
network no longer spans the system. Interestingly, the maximum value n∗c = 0.359
is assumed for the original Lorentz model with independent obstacles, e.g. η = 0.
Upon increasing the packing fraction the critical obstacle density decreases, and as
a peculiarity in 2D systems a minimum emerges at η ≈ 0.5 and increases again for
even higher packing fractions [76]. This feature is not present in the corresponding
3D analog [55]. The percolation transition is present for all packing fractions and
universality suggests that the underlying geometrical properties are characterized by
the same universal exponents, say ν for the growth of the correlation length ξ ∼ |ε|−ν
and β for the weight of the infinite cluster ϕ∞ ∼ (−ε)β , ε < 0.
The transport properties of the cherry-pit model have been quantified in the all-

cluster-averaged mean-square displacement δr2(t) = 〈ΔR(t)2〉 for densities approach-
ing the extracted critical obstacle density in geometric progression. Directly at the
critical point anomalous subdiffusive transport is expected δr2(t) ∼ t2/z with a dy-
namic exponent z. To test the universality the local exponent

γ(t) =
d log[δr2(t)]

d log(t)
, (10)

has been computed from the simulation data, see Figure 5, for a rather high packing
fraction η = 0.6. Directly at the percolation threshold this local exponent saturates
at a value that is only slightly smaller than the one of the 2D Lorentz model in
Brownian dynamics z = 3.036 [51] or for hopping transport in the lattice Lorentz
model [64]. The residual difference is most likely due to the slow convergence for
ballistic tracers, which has been observed also for the original 2D Lorentz model [77].
The origin of this slow convergence for ballistic particles in contrast to Brownian
tracers is not understood, attempts to rationalize it in terms of corrections to scaling
as in reference [64] don’t yield a convincing answer [77].
As a next step towards reality the hard disks have been replaced by soft ones in

terms of a Weeks-Chandler-Andersen potential. An equilibrated sample is quenched
and acts as host structure for soft noninteracting tracer particles, see Figure 4. The
first observation is that for an ideal gas of tracers in the canonical ensemble the
localization transition is replaced by a rapid but smooth crossover [76]. This can
be easily rationalized since for soft interactions the barriers introduced by the host
structures are finite, therefore the question if a tracer meanders through the entire
system or not is strongly energy-dependent. It is instructive to visualize the potential
energy landscape as seen by the tracer. For low energies of the tracer the accessible
configuration space consists only of isolated low-lying valleys, upon increasing the
energy these regions grow and start to merge until at a certain threshold a connected
region spanning the entire system emerges. Within this picture it becomes clear that
the percolation transition itself becomes energy-dependent. Since in the canonical
ensemble every tracer is assigned a different energy, a fraction of the tracers will
always be localized while another one always percolates through the system. In fact
this insight has been corroborated by switching to a microcanonical ensemble of
tracers such that all tracers have the same total energy. Then one finds that the
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Fig. 5. Local exponents γ(t) = d log[δr2(t)]/d log t of the mean-square displacements δr2(t)
of the cherry-pit model for the obstacle packing fraction η = 0.6. Reduced density increases
from top to bottom. The horizontal line indicates the anomalous exponent 2/z with z = 3.036
of the Lorentz model. The shaded areas correspond to one standard deviation Δ in the
interaction distance σ. Figure reproduced from reference [76] (CC BY 3.0).

percolation transition is restored, and anomalous transport becomes pronounced in
the vicinity of the threshold and the dynamic exponent is compatible with the one of
the 2D Lorentz model [76]. Furthermore the data for the canonical ensemble can be
reconstructed as heterogeneous superpositions of the microcanonical ones weighted
by the measured distribution of energies.

2.1.6 Splitting of universality classes

While the structural properties close to the percolation transition are univer-
sal [53,56], irrespective if the system is on a lattice, in continuum with independent
or correlated obstacles, this does not necessarily hold for the associated transport
processes. Indeed in the theory of continuous phase transitions it is well known that
the dynamic universality class describing transport splits into the paradigmatic mod-
els A–J [78,79] depending on different conservation laws and couplings. Similarly, for
percolative transport the simplest universality class is the one of the random resistor
network (RRN) that considers charge transport on a lattice with certain sites block-
ing the current. Two neighboring unblocked sites are connected by a link and all links
have the same conductance.
Universality suggests that it does not really matter if initially the conductances

are identical, one may as well start from a distribution of conductances. Upon coarse
graining this distribution will renormalize and display a peak at some typical value.
Iterating the renormalization step the peak will become narrower and narrower such
that gradually the distribution of conductances approaches the one of a single allowed
value for the conductance.
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However if the distribution of conductances displays initially a power-law tail of
weak conductances a different scenario may arise. It may happen that upon coarse
graining the power-law tail becomes more and more dominant at the expense of the
typical values, such that after many renormalization steps the distribution is self-
similar at all scales. Then the transport properties at the percolation threshold are
dominated by the tail of weak conductances, thereby giving rise to a new dynamic
universality class [80]. More precisely, if the distribution ρ(Γ) of conductances Γ scales
as ρ(Γ) ∼ Γ−α, 0 < α < 1, for Γ→ 0, the walk dimension obeys the exponent relation

dw = max{dlatw , df + [ν(1− α)]−1}, (11)

where dlatw is the universal exponent for Boolean RRNs and for diffusion on lat-
tices [59,64,80]. Thus the weak conductances dominate the transport properties for
a sufficiently large exponent α.
In the Lorentz model in continuum narrow channels emerge naturally since the

obstacles can come arbitrarily close to each other, see Figure 4. Interestingly for the 2D
Lorentz model the universality class of the RRN takes over, the narrow channels are
irrelevant in the sense of the renormalization group. Therefore the 2D Lorentz model,
the 2D cherry-pit model, and the 2D soft-sphere model of the previous subsection
all display the same critical behavior as the RRN on a lattice. This is markedly
different for the 3D Lorentz model where for ballistic tracers the measured value
dw = 4.81 is larger than the universal lattice value d

lat
w = 3.88. In fact the measured

value [54,62,81] is consistent with a prediction by Machta and Moore [63] suggesting
a value of α = 1/2 for the distribution of small transition rates in the 3D Lorentz
model.
Since the weak links have been identified as relevant for the 3D Lorentz model, it

is interesting to revisit universality and to investigate the role of the narrow channels.
The statistics of having a narrow channel can be modified by introducing structural
correlations into the system. Relying on a quenched hard-sphere host structure the
probability to find such narrow channels becomes larger than for the uncorrelated
Lorentz gas [55]. This observation holds both for the infinite cluster only as well as
averaged over all pores of the system. Yet, apart from changing the value of this
probability density the changes induced by the packing are smooth deformations
with respect to the original Lorentz model. Simulation results for the mean-square
displacement δr2∞(t) for ballistic tracers confined to the infinite cluster reveal that
the walk dimension dw remains the same for all packing fractions [55]. Therefore the
conclusion is that the statistics of the narrow channel is irrelevant as long as the
probability density extrapolates to a constant for small channel widths. However,
changing the dynamics from ballistic to Brownian tracers does have an impact on the
walk dimension, here the mean-square displacement δr2∞(t) ∼ t2/dw increases with a
smaller value of the walk dimension of dw = 4.24. Thus the way the narrow channels
are probed is important and surprisingly Brownian tracers are faster than ballistic
ones.
For both cases one can estimate the typical transition rates between two compart-

ments connected by a narrow channel. Assuming that for ballistic tracers the channel
acts as a pinhole, i.e. everything that hits goes through, the typical transition rate
should be proportional to the cross-sectional area ∼ w2 where w is the width of the
channel. Similarly, for Brownian particles the channel should act as an Ohmic resistor,
such that the typical transition rate is proportional to the cross-sectional area and
inversely proportional to the effective length Lw of the channel. Here Lw estimates
on what scale the narrow channel remains narrow, and by Pythagoras one works
out that Lw ∼ √w. Collecting results the prediction for Brownian tracers is that the
typical transition rate should scale as ∼ w3/2. Using these expressions to convert the



Nonlinear Response to Probe Vitrification 3141

Fig. 6. Typical escape time te of a tracer particle exiting from a Delaunay simplex through
a narrow channel of effective width w � σ using either ballistic or Brownian dynamics.
Included are the typical escape time in terms of an effective circular channel width

√
Aw/π

(red and orange data points) obtained from the measured cross-sectional areas Aw. A clear
splitting between the scaling of the typical escape time for ballistic and Brownian motion
emerges and the fitted exponents differ by 0.5. For comparison, the expected power laws
with exponents −2 (ballistic) and −3/2 (Brownian) are indicated by solid gray lines. Figure
reproduced from reference [55] (© 2016 American Physical Society. This figure is subject
to copyright protection and is not covered by a Creative Commons License.)

distribution of narrow channels to probabilities for small transition rates one finds
the values α = 1/2 [63] for ballistic tracers and α = 1/3 [82] for Brownian ones, which
explains the measured values for the walk dimension.
The distribution of escape times from a compartment can also be extracted directly

from the simulation and can be fitted reasonably well by a log-normal distribution. In
particular, the mean value may differ from the typical value by orders of magnitude.
From the fit the position of the maximum is used as a typical escape time, see Figure 6.
Then one observes that indeed the typical escape times grow as predicted theoretically
in the limit of small channel widths, thus demonstrating the splitting of the dynamic
universality class of percolative transport.
It is interesting to investigate whether further universality classes beyond the

ballistic and the Brownian dynamics exist. A natural candidate are ballistic tracers
for soft obstacles, such that the narrow channels are replaced by passes in the energy
landscape that lie barely below the total energy. A second example may be Brownian
motion in suspension such that hydrodynamics introduces lubrication forces rendering
the small channels more difficult to pass. A third somewhat more remote example is
2D transport of particles undergoing circular orbits which are reflected elastically at
the obstacles. There it has been shown that a delocalization transition at low density
emerges [83,84] in addition to the conventional localization transition where small
transition rates between barely connected clusters naturally occur.

2.1.7 Driven systems

The dynamical properties of the tracer in equilibrium provide valuable information
also on the linear susceptibilities by the fluctuation-dissipation theorem. For example,
if an external force F acting on the tracers is switched on at a certain instant of time,
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say at time t = 0, the tracers will respond by a net movement along the direction
of the force. For small forces one anticipates that this time-dependent drift velocity
v(t) is linearly related to the force and the detailed connection is provided by the
fluctuation-dissipation theorem

v(t) =
F

kBT

∫ t

0

Z(t′)dt′ + o(F ). (12)

Here Z(t) denotes the velocity-autocorrelation function in equilibrium and kBT is the
thermal scale. Equation (12) generalizes the Einstein relation for the steady state drift
velocity v(t→∞) = DF/kBT via the Green-Kubo relation D =

∫∞
0
Z(t)dt. General-

izations for the linear response to arbitrary time dependences of the force are straight
forward and yield frequency-dependent mobilities as linear susceptibilities.
Here we want to discuss briefly what happens beyond the linear response in the

Lorentz model, i.e. if the forces are not small anymore. Since the diffusion coefficients
become arbitrarily small as the percolation transition is approached, the linear re-
sponse becomes smaller and smaller. At the same time one anticipates that the linear
response regime shrinks to smaller and smaller forces. Directly at the transition the
linear response strictly vanishes since transport remains anomalous for all times im-
plying that the diffusion coefficient is zero. Nevertheless the drift velocity will not
vanish and by self-similarity a power-law dependence is anticipated.
Achieving accurate simulation results for the driven Lorentz model turns out to

be extremely difficult. First the nonequilibrium steady state is not known but it has
to be reached within the simulation time. However as the critical point is approached
the relaxation time tξ ∼ ξdw diverges such that it takes longer and longer to reach
the steady state. Second, since the linear-response regime shrinks the applied forces
have to be tiny to see the crossover to the linear response. Correspondingly long
simulation runs have to be performed to still extract a net drift velocity beyond the
noise. There is an additional conceptional problem of the driven Lorentz model for
the case of ballistic tracers. Here the particles gain energy by descending the potential
and thus would become faster and faster. This appears to be an artifact of the model
since no inelastic collisions can thermalize the system. Therefore one should switch to
Brownian dynamics where the velocity fluctuates always around the thermal velocity
no matter how far the motion along the field actually went.
Physically one expects that by the forces the tracers are drawn in dead ends of the

ramified structures and the tracer will reside in these pockets for exponentially large
times until a thermal fluctuation helps the particle to climb all the way up against
the gradient to find the right pathway through the structure. Clearly only particles
located on the infinite cluster can contribute to a non-vanishing drift velocity.
Results for the stationary drift velocity as a function of the external force are

displayed in Figure 7. For obstacle densities not too close to the percolation transition
the linear response regime is reached. Upon increasing the force the data become less
and less reliable since convergence to the steady state has not been achieved in all
runs. This problem becomes more serious the closer the density is to n∗c . Empirically
we find that a power-law decrease F−α emerges for large forces with an exponent that
appears to depend also on the density. A suitable interpolation formula is provided
by v = 1/(a/F + bFα). Currently it remains on open question whether a nonlinear
response directly at the transition can be identified and if dynamic scaling holds also
in the nonlinear regime. Due to the problems mentioned it may be worthwhile to
readdress the problem again on a lattice with hopping dynamics.
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Fig. 7. Stationary drift velocity v of a tracer particle in response to a constant uniform
force F for various separation parameters ε := 1− n∗/n∗c . The drift velocities have been
rescaled by dividing by the scaling prediction εμ in linear response with conductivity expo-
nent μ = 2.38 for Brownian particles in 3D. Full symbols indicate that the tracer dynamics
has successfully relaxed into its long-time limit, while open symbols point out that no steady
drift was reached. Error bars are included for the full symbols. Lines represent an empirical
fit of 1/(a/F + bFα). The inset shows the same data in double-logarithmic representation,
highlighting the behavior for small forces F .

2.2 Lorentz gas and the low-density expansion

Fundamental insight into generic transport properties have been gained in terms of
exact solutions of the Lorentz model for low obstacles densities. There each trajec-
tory is decomposed into a sequence of free motions interrupted by scattering events
with individual obstacles. Reorganizing the cascade of scattering events in terms of a
multiple-scattering expansion reveals that to first order in the obstacle density only
the scattering problem with a single obstacle needs to be solved. The first approaches
in this direction have been made in the late 1960’s in the seminal work of Weijland
and van Leeuwen [85]. Since the scattering with a single hard sphere for a ballistic
particle is trivial and yields a trajectory that never comes back, an involved resum-
mation procedure had to be introduced for the expansion. In essence, one has to solve
first for Boltzmann’s equation to account for sequences of independent scattering
events, the first-order-density correction then emerges via repeated interactions with
the same obstacle where free ballistic motion is replaced by the Boltzmann evolution
operator. The solution can be obtained only for large times, long wavelengths, and
low densities. A puzzling result is that the diffusion coefficient becomes a nonanalytic
function of the obstacle density [85,86]. The origin of this phenomenon can be traced
back to the divergence of the mean-free path length as the obstacle density becomes
small.
Even more bewildering are the ramifications of the repeated scattering for the

time- and length-dependent transport properties. The frequency-dependent diffusion
coefficient is related by the generalized Green-Kubo relation

D(ω) =

∫ ∞

0

eiωtZ(t)dt, (13)
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to the velocity-autocorrelation function Z(t) = (1/d)〈v(t) · v(0)〉. In particular, for
the stationary state, ω = 0, the standard Green-Kubo relation is recovered. Assuming
that Z(t) decays exponentially fast yields a frequency-dependent diffusion coefficient
that is an analytic function for small frequencies. However it was shown that in the
ballistic Lorentz model the velocity-autocorrelation function should behave asymp-
totically as Z(t) � −At−(d+2)/2 with a coefficient A > 0 [86,87]. Thus the decay is
only algebraic implying persistent anticorrelations by the repeated scattering events
with the same obstacle. Loosely speaking, these correlations build up since the parti-
cle remembers that the path is blocked by an obstacle, the power-law decay connects
to the algebraic decay of the return probability in the diffusion propagator [86]. Sim-
ulation results are difficult to obtain in the regime of low densities but confirm both
the algebraic decay as well as the prediction for the prefactor [81].
While for the ballistic Lorentz model the velocity-autocorrelation function has

been worked out only asymptotically, the full time dependence is accessible for the
Brownian case [88]. Even more, explicit expressions for the intermediate scatter-
ing function have been provided. In particular the long-time tail of the velocity-
autocorrelation function is recovered. The key insight is that the involved resumma-
tion by solving first for Boltzmann’s equation can be avoided since in the Brownian
case the tracer returns to the same obstacle already merely by the free diffusion.

2.2.1 Equilibrium dynamics in the lattice Lorentz model

Further analytic progress is made by considering obstructed motion of a tracer particle
on a lattice. The lattice analog of the Lorentz model considers hopping transport on
a disordered lattice such that a certain fraction of sites is occupied by obstacles.
Tracers can explore the lattice and hop to neighboring sites with equal rates provided
the site is not blocked. The model again displays a percolation transition of the empty
lattice sites which coincides with the localization transition of the transport problem.
The universality class describing the critical properties is provided by the random
resistor network which has been studied by extensive computer simulations in the
literature [59,64].
The velocity-autocorrelation function has been solved exactly for all times to first

order in the obstacle density by reducing the problem to the interaction with a single
scatterer [89]. The main prediction is that again an algebraic decay emerges due to
repeated interactions with the same obstacle. These predictions have been confirmed
by elaborated computer simulations [90]. Later it became evident that these tails
in the velocity-autocorrelation functions are generic [91,92] for an entire class of
lattice Lorentz models since the mechanism relies only on the particle conservation
law [86].

2.2.2 Field induced response

Since the velocity-autocorrelation function of the lattice Lorentz gas can be eval-
uated explicitly in first order of the obstacle density and for all times, the lattice
Lorentz gas constitutes a promising model to investigate the influence of a force on
the tracer. In the driven lattice Lorentz gas the system is initially in equilibrium and
a uniform step force is switched on at time zero pulling the tracer along a lattice
direction [93,94]. The dimensionless force F = force · a/kBT measures the strength of
the applied force on the tracer and it introduces a bias in the nearest-neighbor transi-
tion probabilitiesW (d ∈ N ). The transition probabilities fulfill local detailed balance
in both lattice directions with W (aex)/W (−aex) = eF and W (aey)/W (−aey) = 1
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Fig. 8. (Left panel) Stationary velocity in units of the bare velocity v0 = (a/2τ) sinh(F/2) for
different densities and forces. Solid lines correspond to the analytic solution of the stationary
velocity in first order of the obstacle density and symbols represent simulation results. (Right
panel) Velocity response v(t)− v(t→∞) normalized by it is initial value t→ 0. Solid lines
represent the first-order theory and symbols correspond to simulation results with an obstacle
density of n = 10−3. The black dotted line represents the time-dependent behavior predicted
by the fluctuations-dissipation theorem. The black dashed lines correspond to the long-time
behavior including the exponential decay as predicted by the theory.

and a convenient choice is W (±aex) = e±F/2/(eF/2 + e−F/2 + 2) and W (±aey) =
1/(eF/2 + e−F/2 + 2). The choice of the transition probabilities is not unique and a
different dependence has also been considered in the literature [95,96]. Unnormalized
transition rates such that the exponentially distributed waiting time of the tracer af-
ter a jump is characterized by a mean-waiting time of τ/Γ with Γ = [cosh(F/2) + 1]/2
appear also naturally.
Similarly to the lattice Lorentz gas in equilibrium [97–99], the first-order density

response can be evaluated by considering all possible interactions of the tracer with
a single obstacle. Although the calculations are the same in principle, the formulas
become much more involved due to the inclusion of the force and one has to rely on
computer algebra to obtain closed expressions [93,94].
The response of the tracer is encoded in the displacement Δx(t) = x(t)− x(0)

along the force for times where the force acts on the tracer. The first quantity of
interest is given by the velocity of the tracer defined by a time derivative of the
mean-displacement:

v(t) =
d

dt
〈Δx(t)〉, (14)

where the symbol 〈·〉 denotes an average over all possible obstacle realizations and
starting positions of the tracer.
In the absence of obstacles, the tracer velocity is time-independent and readily ob-

tained by the difference of the forward and backward transition rate in a single jump
event leading to v0 = (a/2τ) sinh(F/2). In the presence of obstacles, the velocity be-
comes time-dependent and the immediate response is determined by the first jump
event with v(t→ 0) = v0(1− n). The stationary velocity of the tracer for long times,
can be evaluated explicitly for all forces in first order of the density and is expressed
in terms of complete elliptic integrals [93]. For fixed obstacle density and increas-
ing force, the stationary velocity v(t→∞) of the tracer becomes more and more
suppressed [Fig. 8 (left panel)]. The same behavior is also found for fixed force and
increasing density of obstacles such that the stationary velocity is purely disorder-
suppressed where an increase in the disorder leads to a decrease of the stationary
state velocity. For small forces, the stationary velocity is no longer determined by an
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Fig. 9. Time-dependent variance of the tracer displacement parallel to the force for different
strength of the driving in the presence of obstacles with a density of n = 10−3 (left panel).
Time-dependent diffusion coefficient parallel to the force (right panel). Force increases from
bottom to top. Lines represent the theory and symbols correspond to simulation results. The
black dashed lines represent simulation results of a tracer in the presence of mobile obstacles
with mean waiting time τ and forces F = 10 and F = 12. Figure reproduced from refer-
ence [94] (© 2017 American Physical Society. This figure is subject to copyright protection
and is not covered by a Creative Commons license.)

analytic expansion in the force as in the case of the bare velocity. Instead, the inter-
actions of the tracer with the obstacle disorder introduce logarithmic contributions
beyond the linear response behavior.
In the linear response, the time-dependent approach to the stationary state veloc-

ity is determined by the velocity-autocorrelation function Z(t) = (1/2)d2〈Δx(t)2〉/dt2
of the tracer in equilibrium:

v(t) =
F

a

∫ t

0

dt′ Z(t′). (15)

Since the velocity-autocorrelation function exhibits a slow algebraic decay of the form
Z(t) ∼ t−2 for long times due to the persistent memory introduced by the obstacles,
the fluctuation-dissipation theorem predicts an algebraic approach to the stationary
velocity v(t→∞) with ∼ t−1. However, the analytic solution reveals that for any
small but finite driving the algebraic decay is decorated by an exponential one such
that the stationary-state velocity is always approached exponentially fast [Fig. 8 (right
panel)]. The time scale for the exponential decay is set by the applied force and scales
as ∼ 1/F 2.
The fluctuations of the tracer along the force are measured in terms of the variance

of the displacements:

Varx(t) = 〈[Δx(t)− 〈Δx(t)〉]2〉 = 〈Δx(t)2〉 − 〈Δx(t)〉2. (16)

The corresponding diffusion coefficient Dx(t) is then obtained by a time derivative
via Dx = (1/2)dVarx(t)/dt. In the absence of obstacles, the fluctuations along the
force increase diffusively with a bare diffusion coefficient of D0x = (a

2/4τ) cosh(F/2).
In the presence of obstacles and for increasing strength of the driving, the fluctuations
exhibit a pronounced intermediate superdiffusive regime governing the transition to
the stationary state [Fig. 9 (left panel)]. In the stationary state, the fluctuations in-
crease diffusively, yet the stationary diffusion coefficient along the force is considerably
enhanced [Fig. 9 (right panel)].
The superdiffusively growing fluctuations at intermediate times can be rationalized

in terms of an asymptotic model in the limit of large forces [94]. In this case, the
transition rates along the field dominate the motion of the tracer and transitions
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perpendicular and against the field can be ignored. Then, the fluctuations of the
tracer along the field at intermediate times can be evaluated explicitly to

Varx(t) =
1

3

na2

64
exp(3F/2)

t3

τ3
, τ∗ � t � τ. (17)

The asymptotic model is valid up to times where the diffusion of the tracer perpendic-
ular to the field becomes relevant. The time scale for the onset of the superdiffusion is
identified as τ∗ ∼ τe−F/2/√n and the regime of superdiffusion grows with increasing
force. From the asymptotic model, a true superdiffusive exponent of 3 is identified
in the limit of large forces which constitutes an upper bound for the increase of the
fluctuations at intermediate times.
The transport behavior in the stationary state can also be characterized in terms of

the force-induced diffusion coefficient Dindx = Dx(t→∞)−Deqx (t→∞), with long-
time diffusion coefficient Deqx (t→∞) = (a2/4τ)[1− (π − 1)n] in equilibrium [97].
Similarly to the stationary velocity for small forces, the force-induced diffusion coef-
ficient Dindx acquires nonanalytic contributions which arise solely due to the interac-
tions of the tracer with the obstacle disorder. For large forces, the force-induced dif-
fusion coefficient increases exponentially with Dindx ∼ exp(3F/2) which is also purely
obstacle-induced.
Interestingly, the stationary diffusion coefficient Dx(t→∞) exhibits two different

force regimes in first order of the density where the fluctuations can be either disorder-
suppressed or disorder-enhanced. In the disorder-suppressed regime, an increase in the
disorder leads to a suppression of the fluctuations. For forces F � 1.45 the fluctuations
in the stationary state are disorder-enhanced where an increase in the disorder leads
to an enhancement of the growth of the fluctuations. This phenomenon has also been
found in other models for driven systems [100–102].
It is interesting to ask if the results obtained for the driven lattice Lorentz model

can be transferred to the continuum case. Here the hopping motion is replaced by
Brownian motion and the hard obstacles are replaced again by hard spheres in 3D. The
master equation for the conditional probability then should be replaced by a suitable
many-body Smoluchowski equation. For the case of dilute colloidal suspension, series
expansions for the stationary velocity have been elaborated [103], however the full
dynamical response remains to be worked out.

3 Confined liquids

Understanding the transport properties of confined liquids is of great interest for
numerous practical applications. Examples range from liquid supply, adhesion to lu-
brication, friction in narrow channels as well as in biological systems. Confinement
effects for densely-packed liquids have been investigated in slit geometry mainly by
computer simulations [104,105] and experiments [106,107] focusing on the regime of
moderate confinement with slit widths of several particle diameters or larger. These
studies revealed the existence of an oscillatory density profile close to the wall [106].
Furthermore, the dynamics in confinement has been shown to increase or decrease
compared to the bulk depending on the roughness of the walls [108,109]. A remark-
able empirical scaling of the diffusivities with the excess entropy [110,111] has also
been established for confined liquids.
Another recent focus has been given in the study of glasses to introduce com-

peting mechanisms, which, in principle, can lead to a nonmonotonic state diagram.
Such kind of reentrant scenarios have been realized upon adding short-range interac-
tions to the colloidal particles [17,18] or inserting the liquid into a frozen disordered
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Fig. 10. A schematic cross section of hard spheres of diameter σ confined to a slit of
accessible width L. For two colliding spheres the momentum transfer is almost parallel to
the walls in the limit of L→ 0. Figure reproduced from reference [118] (© 2017 American
Physical Society. This figure is subject to copyright protection and is not covered by a
Creative Commons license.)

host structure [112,113]. Alternatively, confinement can also introduce such compet-
ing mechanisms. To describe dense liquids in such confinement the MCT has been
extended [44,114] relying on symmetry-adapted modes that account for the broken
translational symmetry perpendicular to the walls. A striking prediction of the MCT
in slit geometry has been the emergence of a multiple reentrant glass transition in the
nonequilibrium state diagram as a function of the slit width along lines of constant
packing fraction [44,115,116]. This multiple reentrance is attributed to a complex
competition between the layering induced by the walls and the local caging. This
scenario has been corroborated by event-driven molecular dynamics simulations for
slightly polydisperse hard-sphere systems [115,117] upon measuring the self-diffusion
coefficients parallel to the walls.
Here we briefly summarize the recently developed mode-coupling theory in con-

finement and its nonequilibrium state diagram in comparison to computer simula-
tions. Furthermore, we review the emergence of a divergent time scale controlling the
dimensional crossover from 2D systems to 3D confined systems.

3.1 Glassy dynamics in confinement

3.1.1 Mode-coupling theory for confined liquids

The theory considers a single-component liquid comprised of N identical structure-
less particles of mass m confined between two plane parallel smooth hard walls, see

Figure 10. Particle positions are specified by xn = (x
‖
n, x⊥n ) for n = 1, . . . , N , where

x
‖
n describes the in-plane coordinates. The confinement restricts the transverse posi-
tions to −L/2 ≤ x⊥n ≤ L/2. For hard particles with exclusion radius σ/2, the phys-
ical wall separation then corresponds to H = L+ σ. Since the confinement induces
a modulation of the equilibrium density profile n(x⊥), the fluctuations in the direc-
tion perpendicular to the walls are decomposed into a set of discrete Fourier modes
characterized by a wavenumber Qμ = 2πμ/L, μ ∈ Z where L denotes the width of
the slit accessible to the particles. The key quantity is the generalized intermediate
scattering function Sμν(q, t) = N

−1〈ρμ(q, t)∗ρν(q, 0)〉, where

ρμ(q, t) =

N∑

n=1

exp[iQμx
⊥
n (t)] e

iq·x‖n(t), (18)

are symmetry-adapted Fourier modes for the microscopic density, and q = (qx, qy)
are the conventional wave vectors in the lateral plane.
Relying on this set of distinguished variables the equations of motion have been

derived within the Zwanzig-Mori projection operator formalism [44,114,119]. As a
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Fig. 11. Nonequilibrium state diagram as obtained from a numerical solution of the MCT
equations for a hard-sphere fluid (left panel) and power-law fits of the simulated diffusion
coefficients to D ∼ (ϕ− ϕc(H))−γ (right panel). The right figure also includes the isodiffu-
sivity lines with indicated values. The multiple reentrant is indicated by arrows of constant
density. Figures reproduced from reference [115] (© Nature Communications 2014. This
figure is subject to copyright protection and is not covered by a Creative Commons license.)

peculiarity of the confinement there appear now two different relaxation channels
corresponding to currents parallel and perpendicular to the walls, thereby changing
the mathematical structure of the theory with respect to bulk systems. The equations
are closed by a mode-coupling approximation for the memory kernels by projecting
onto pairs of generalized density modes. For the tagged-particle motion a similar
approach yields equations of motion which couple to the collective density [120].
A natural question that arises is if these equations still provide unique solutions

that represent correlation functions as has been proven in bulk systems [1,121–123]
and if the long-time limits can be shown to exist [116]. The first question has been
answered positively recently for general multiple relaxation channels [124] which arise
for example also for molecular systems [125,126].
A second interesting issue is to ask how a narrow slit approaches a 2D system as

the wall separation decreases. There it has been shown that MCT converges under
certain conditions to the 2D counterpart [119], however the limits of time to infinity
and plate separation to zero do not commute. Therefore one anticipates two different
glassy states, one for the 2D system and another one for the confined 3D set-up.
Here we do not repeat the equations of motion but refer to a recent review [117],

rather we focus on the nonequilibrium state diagram.

3.1.2 Comparison to computer simulations

The nonequilibrium state diagram within MCT has been obtained [44,115] by scan-
ning the parameter space (ϕ,H = L+ σ) taking the structural input obtained from
the inhomogeneous Percus-Yevick closure [67,127–129], see Figure 11. The result
demonstrates a striking multiple reentrant behavior. Here, the glassy behavior is
suppressed for wall distance of integer values of the particle diameter σ, while for
half-integers the dynamics is already blocked due to incommensurable packing. Con-
sequently, in the latter case only a moderate density is required to force the liquid
into a glassy state.
This state diagram is also compared to computer simulations for 10% polydisperse

hard-sphere systems of mean diameter σ̄. This allows testing the MCT prediction on a
semi-quantitative level. The critical packing fraction within the simulations have been
determined by power-law fits to the lateral diffusion coefficient D ∼ (ϕ− ϕc(H))−γ ,
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with MCT-exponent γ. Interestingly, the state diagram for polydisperse hard spheres
corroborates the multiple reentrant scenario qualitatively. For instance, the oscilla-
tions within the transition are weaker and the extrema are slightly shifted to lower
wall separations. Another extension of the above reentrant behavior to a wedge geom-
etry with small opening angle predicts a possible liquid-glass coexistence [115].

3.2 Decoupling in strong confinement

The regime of extremely confined fluids where only a monolayer fits between the
walls has been investigated by computer simulations, density functional theory, in-
tegral equations and experiments both for colloidal as well as for molecular liq-
uids [130,131]. However, analytical progress in this direction has been achieved only
very recently [119,132–134]. Within this theoretical study, the key observation was
that in strong confinement the canonical ensemble for the fluid in a slit geometry
decouples into a two-dimensional fluid in the lateral plane and an ideal gas in the
transversal direction. Interestingly, in the limit of extreme confinement a hidden small
parameter n0L

2 has been identified, where, n0 denotes the 2D number density, which
allows calculating structural properties systematically.

3.2.1 Density profile

It is interesting to elaborate the influence of the transversal degrees of freedom on
structural quantities, such as the density profile perpendicular to the walls. In the
limit of L→ 0 one can determine the density profile by taking the transversal degrees
of freedom as a small perturbation. The density profile of hard-sphere fluids in a slit
geometry can be evaluated to [119]

n(x⊥;L) =
n0

L

{

1 + π(n0L
2)g(σ)

[(
x⊥

L

)2
− 1
12

]

+O(n0L2)2
}

, (19)

where the first-order correction is proportional to g(σ), the 2D pair distribution func-
tion at contact. This factor also represents the curvature of the density profile. The
density profile including the curvature is asymptotically an exact result, which quan-
tifies the emergence of inhomogeneous packing in confined geometry. This analytical
prediction is compared to hard-sphere simulations in Figure 12 for two different 2D
packing fractions. One infers that the curvature of the density profile grows with
increasing packing fraction. The comparison in Figure 12 for two moderate packing
fractions indicates that the theoretical prediction is in fact an exact result in the limit
of extreme confinement.

3.2.2 Divergent coupling time

The decoupling property in strong confinement suggests that in the limit L→ 0 the
lateral and transversal degrees of freedom hardly influence each other. However, for
small but finite L the consequences of the weak coupling between lateral and transver-
sal degrees of freedom on the dynamics have remained mostly unexplored.
For hard-sphere fluids the coupling between the transversal and lateral degrees of

freedom occurs only via binary collisions. Yet, in extreme confinement the momentum
transfer is almost planar, see Figure 10, and the coupling becomes weaker as the walls
approach each other. Consequently, the binary collision operator may be replaced to
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Fig. 12. The density profile in the direction perpendicular to the walls of quasi-2D hard-
sphere fluids for packing fractions ϕ2D = 0.20 (left panel) and ϕ2D = 0.40 (right panel),
where ϕ2D = (π/4)σ

2n0 with number density n0. The symbols are simulational results,
whereas the dashed lines are the theoretical predictions given by equation (19).

leading order by its two-dimensional analog. The difference between the 3D and the
2D collision operator then corresponds to the small interaction between the lateral
and transverse degrees of freedom. This weak coupling is expected to introduce a time
scale up to which the coupling of the degrees of freedom is irrelevant. As the plate
separation becomes smaller this time scale is expected to grow. The simplest way to
identify this divergent time scale is to monitor a conserved quantity in the decoupled
ensemble. In fact, the transversal kinetic energy of a tagged particle is a conserved
quantity in the decoupled ensemble, however it will equilibrate slowly with the other
degrees of freedom by the coupling. Employing the Zwanzig-Mori projection operator
formalism [1,67] an exact expression of the leading-order relaxation rate τ can be
derived after performing the structural and kinetic averages [118]

τ−1 =
16ϕ2D
3
√
π

(
L

σ

)2
g(σ)t−10 . (20)

Here the scaling factor (L/σ)2 reflects the small momentum transfer in quasi-planar
collisions. This prediction has been confirmed by computer simulations only re-
cently [118].
Although this analytical theory mainly deals with hard-core interactions, one an-

ticipates that the results remain valid for the case of smooth potentials as long as the
typical time for a particle to traverse the slit (Knudsen time scale) is still much larger
than the duration of a collision. Then the mechanism for small transverse momentum
transfer should be identical to the one for hard particles, see Figure 10.
It is also interesting to consider the opposite case where the duration of a collision

is much longer than the time to traverse the slit. This can be realized by using
relatively soft particles. Then the use of a collision operator is inappropriate, however
the collision events can be averaged over the fast transverse oscillations. Analytic
progress in this direction has been achieved [135] and it turns out that the predicted
relaxation time diverges as ∼ L−3.
Here we test this prediction by tuning the softness of the interaction poten-

tial. Particle-particle interactions of the form upp(r) = 4ε[(σ/r)
48 − (σ/r)24] + ε for

r ≤ 21/24σ and upp(r) = 0 for r ≥ 21/24σ have been shown to mimic reliably hard-
sphere interactions [136,137]. For convenience, we employ the characteristic energy

scale ε = kBT which defines the time scale t0 =
√
mσ2/ε. Particles located inside
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Fig. 13. Relaxation time τ for the dimensional crossover for strongly confined liquids as
a function of the wall separation L for two types of particle-particle interactions while the
wall-particle interaction has been kept identical.

the slit interact with both walls, and we use the wall-particle interaction uwp(z) =

4ε[(σ/z)48 − (σ/z)24] + ε for z ≤ 21/24σ and uwp(z) = 0 for z ≥ 21/24σ, where z is
the distance to one of the walls. The walls are located at ±(σ + L/2), and the wall-
particle interaction has been kept identical in all our simulations to realize hard walls.
Figure 13 displays the dimensional crossover time for different particle-particle soft-
nesses as the walls approach each other. One observes that the time scale divergence
changes from L−2 to L−3 with increasing softness of the particles, which is in line
with the above theoretical predictions. This implies that the conserved quantity in
the decoupled ensemble of hard-core like particles will decay much faster than for soft
particles.

4 Summary

Confinement has profound implications on the dynamics of tracers and dense liquids.
The Lorentz model is a minimal model for the dynamics of tracers in disordered host
structures which emerges naturally if a separation of time scales occurs. The dynamics
in the vicinity of the localization threshold becomes anomalous and displays universal
behavior as suggested from dynamical critical phenomena. In realistic systems some
of the basic assumptions of the original Lorentz model need to be relaxed. While
changing from uncorrelated obstacles to realistic quenched host matrices does not
affect the universal properties, the way the matrix is probed dynamically is relevant.
Furthermore, it would be interesting to investigate in detail how slowly rearranging
matrices gradually change the transport properties.
For the case of the glass transition in confinement a striking multiple-reentrant

scenario has been revealed both within mode-coupling theory and computer simula-
tions. However, so far only the nonequilibrium state diagram and the nonergodicity
parameters have been evaluated. Therefore there is a need for full dynamic solutions
of the mode-coupling equations as well as for further computer simulations. Experi-
ments in strong confinement appear to be feasible in colloidal systems provided one
can avoid that particles stick to the wall. Interesting predictions that require further
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investigations concern the dimensional crossover from 2D to confined 3D systems, in
particular, the possibility of a glass-glass transition deserves further attention.
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44. S. Lang, V. Boţan, M. Oettel, D. Hajnal, T. Franosch, R. Schilling, Phys. Rev. Lett.
105, 125701 (2010)
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55. M. Spanner, F. Höfling, S.C. Kapfer, K.R. Mecke, G.E. Schröder-Turk, T. Franosch,
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Solids 357, 472 (2011)
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73. F. Höfling, K.-U. Bamberg, T. Franosch, Soft Matter 7, 1358 (2011)
74. T.O.E. Skinner, S.K. Schnyder, D.G.A.L. Aarts, J. Horbach, R.P.A. Dullens, Phys.
Rev. Lett. 111, 128301 (2013)

75. A.L. Thorneywork, R.E. Rozas, R.P.A. Dullens, J. Horbach, Phys. Rev. Lett. 115,
268301 (2015)
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