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Abstract. We briefly review the foundations and applications of sta-
tistical mechanics based on the nonadditive entropies S;. Then we ad-
dress four frequently focused points, namely (i) On the form of the
constraints within a variational entropy principle; (ii) Are the g-indices
first-principle-computable quantities or fitting parameters?; (iii) If one
admits violation of the entropic additivity, why not admitting also vi-
olation of the entropic extensivity?; and (iv) Critical-like behavior.

1 Introduction

The basic goal of statistical mechanics is to start from appropriate microscopic laws
(classical, relativistic, quantum mechanics, chromodynamics) and, by adequately us-
ing probability theory, to ultimately arrive to the thermodynamical relations and
laws. Along these connections between the macro- and micro-worlds, a most relevant
link is made through the fundamental concept of entropy. This discovery, accom-
plished against a stream of criticism, surely is one of the most powerful and fruitful
breakthroughs of the history of physical sciences. It was achieved by Boltzmann in
the last three decades of the nineteenth century. His main result, currently known by
every pure and applied scientist, and carved on his tombstone in Vienna, namely,

Spa = klnW (1)

is the mathematical link between the microscopically fine description (represented
by W, the total number of accessible microscopic states of the system) and the
macroscopic measurable quantities (directly related to the entropy Spg, the very
same quantity generically introduced by Clausius in order to complete thermody-
namics!). Apparently, equation (1) has been explicitly stated in this form for the first
time by Planck, but it was definitively known by Boltzmann. The index G stands
for Gibbs, who put Boltzmann’s ideas forward and overspread the (classical) statis-
tical mechanical concepts through his seminal book [1]. Equation (1) is a particular
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instance of a more general one, namely (for systems with discrete configurations)

w w
Spe =~k Y _pilnp; (Zpi = 1) : (2)
i=1

i=1

When every microstate is equally probable, i.e., when p; = 1/W Vi, we recover
equation (1). Evidently quantum mechanics was unknown to Boltzmann and it was
just birthing when Gibbs’ book was published. It was left to von Neumann to extend
equation (2) in order to encompass quantum systems. He showed that the entropy
for a quantum system should be expressed by using the density matrix operator p,
namely [2]

Spe = —kTx[Flnpl  (Txp=1), (3)

sometimes referred to as the Boltzmann-Gibbs-von Neumann entropy (or just von
Neumann entropy). Notice indeed that the above equation recovers equation (2) when
p is diagonal.

The optimization of the entropy with appropriate constraints provides the ther-
mal equilibrium distribution, namely, for the canonical ensemble, the celebrated BG
exponential distribution, whose consequences are consistent with classical thermo-
dynamics. In what follows we shall, however, see that entropic functionals different
from the BG one must be used in order to satisfy thermodynamics for complex sys-
tems which strongly violate the probabilistic independence (or quasi-independence)
working hypothesis on which the BG entropy is generically based. The failure of this
simple hypothesis is typically the case whenever there is breakdown of ergodicity
(or a marginal dynamical behavior emerging for vanishing maximal Liapunov expo-
nent). Several dozens of non-BG entropic functionals have been studied along quite
a few decades. We focus here on the following one (introduced in [3] with the aim to
generalize the BG statistical mechanics):

137, - -
Sqg=k q—zll ‘ —kZpllnq :—kZpglnqpi:—kZpilng,qpi, (4)
i— i=1

z 1_q;1 (In; z =Inz). We straightforwardly verify that
lim,_,1 S; = Spe. The inverse of the g-logarithmic function In, z is the g-exponential
function e} = [1+ (1 - q)z]ﬁ, if 1+ (1—¢q)z>0, and zero otherwise (ef = e*).
The entropy S, shares with Spe various important properties such as concavity,
Lesche-stability, trace-form, and composability. They differ however in what concerns
additivity, as we comment in what follows.

An entropic functional S is said additive if it satisfies [4], for any two probabilis-
tically independent systems A and B, that S(A + B) = S(A) + S(B); otherwise it is
sald nonadditive. We easily verify that

where ¢ € R, and Ing 2

Sq(A+B)  S4(A) | S4(B) Sq4(A) S¢(B)
T A S A (5)

Therefore Spg is additive, and S, (with ¢ # 1) is nonadditive. The generalization of
the BG thermostatistical theory is currently referred to as nonextensive statistical
mechanics (see [3,5-8], which includes recent mini-reviews on which the present one
is based; see also [9] for a regularly updated Bibliography). The entropy S, satisfies
several interesting properties which deserve mention; among them, the uniqueness
theorems proved by Santos [10] and by Abe [11], as well as the connection [12] with
the Einstein likelihood factorization principle deserve a special mention.
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The natural, artificial and social complex systems to which S, and its associated
statistical mechanics have been applied are very diverse. They include long-range
interacting many-body Hamiltonian systems (see [13-30] for an overview) of vari-
ous types and symmetries (let us incidentally mention that long-range versions of
the interesting types focused on in [31,32] have not yet been handled), as well as
non-Hamiltonian ones [33], low-dimensional dynamical systems [34-47], cold atoms
[48-50], plasmas [51-59], trapped atoms [60], spin-glasses [61], power-law anom-
alous diffusion [62,63,63] and granular matter [65], high-energy particle collisions
[66-94], black holes and cosmology [95-98], chemistry [99-101], economics [102—
104], earthquakes [105], biology [106,107], solar wind [108,109], anomalous diffusion
and central limit theorems [110-118], quantum entangled and nonentangled systems
[119,120,122-124], quantum chaos [125], astronomical systems [126,127], signal and
image processing [128-132], self-organized criticality [133], mathematical structures
[134-139], scale-free networks [140-142], among others.

To conclude, some frequently asked questions related to conceptually delicate
points are briefly addressed in what follows.

2 Some remarks on frequently focused points
2.1 On the form of the constraints within a variational entropy principle

Within information theory, an entropic variational principle which is expected to
determine the most plausible distribution of probabilities, noted p(x), must use ro-
bust and experimentally accessible constraints such as the position of the center of
the distribution and its width. When the distribution decays quickly enough (e.g.,
exponential or Gaussian decays with random variables such as energy, velocities, po-
sitions), these quantities are conveniently identified with the mean value and the
variance. If, however, the distribution decays slowly (e.g., a power-law decay), those
quantities diverge and cannot be used within a mathematically well-posed problem.

For example, if the distribution is a one-dimensional g-exponential o e 2/t (€>0),
its mean value diverges if ¢ > 3/2, whereas its norm is well defined up to ¢ = 2. If it is
a one-dimensional centered ¢-Gaussian o eq =*/ 02, its variance diverges for ¢ > 5/3,
whereas its norm is well defined up to ¢ = 3. The problem is satisfactorily solved if,
instead of using the original distribution p(x) to calculate the mean values, variances,
and similar moments, we use the escort distributions  [p(z)]*(@ (with (1) = 1).
The functions x(g) to be used in each case are analytically established in [143], and
are numerically illustrated in [144].

It is occasionally counter-argued that experimental mean values and variances
never diverge, which is undoubtedly true. However, when the distribution decays
quickly enough, those quantities remain practically the same for experiments done
with more data and consequently better statistics. It is by no means so when the
distribution decays slowly enough. Indeed, in such cases the standard moments do
not stop increasing when more and more data become available, which exhibit their
essential mathematical inadequacy within a variational principle. In contrast, the ¢-
mean values and ¢-variances do remain practically the same for more and more data.

Let us finally mention that many calculations in literature do use standard mo-
ments for ¢ # 1. This procedure can in fact be correct if the value of ¢ is such that the
specific moments that are used in the theory are finite. This and related equivalences
have been discussed in [145].
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2.2 Are the g-indices first-principle-computable quantities or fitting parameters?

The g-indices definitively are quantities that are to be obtained, whenever mathemat-
ical tractability is achieved, from first principles, more precisely from the microscopic
(nonlinear) dynamics of the system, e.g., from the Hamiltonian of the system, or
typically from the universality class of the Hamiltonian, characterized by the central
charge ¢ (this is the usual index emerging in conformal quantum-field theories; see,
for instance, [121]). This is illustrated in Figure 1, and also in [122]. To be more
precise, what is being focused on in this figure is the following. We are considering a
crystalline N-particle one-dimensional quantum system at its vanishing temperature
critical point (with N — o0o). This state (which is nondegenerate if we assume that
symmetry has been broken) is a fundamental one, i.e., it is a pure state. Consequently,
the entropy (the BG-von Neumann entropy or any other admissible one) of the entire
system vanishes. We focus now on a subsystem of L elements. Because of the strong
quantum entanglement, the subsystem of L elements constitutes a statistical mixture,
hence its entropy S, (L) is different from zero for any value of the index g. It has been
shown [119] that a value of ¢ exists such that S,(L) o L, this is to say that S, is
extensive. This special value of ¢ is depicted in Figure 1.

It is clear that full mathematical tractability, like in the example just above,
is very rarely the case. Then, by fitting empirical data with adequate functions
(g-exponentials and ¢-Gaussians in many examples) we obtain, within acceptable
error bars, the values of ¢. The whole procedure is fully analogous to determining the
orbit of say Mars from first principles, within Newtonian mechanics. The would be
in principle possible if we had, at some initial time, the locations and velocities of
all the masses of the planetary system, and an ideally huge computer to numerically
solve the corresponding set of Newton’s equations. In practice, what astronomers do
is to fit their astronomical data by using the elliptic Keplerian generic form that
straightforwardly comes out from Newtonian mechanics.

2.3 If one admits violation of the entropic additivity, why not admitting also
violation of the entropic extensivity?

An analogous question can be posed in mechanics: If we admit, within relativistic
mechanics, violation of the classical expression for the kinetic energy, why not admit-
ting as well violation of the conservation of energy? The answer is well known: the
particular forms of energy that are used in such or such phenomenon have no reasons
to be universal, but the conservation of energy is a high-level principle, basically the
first principle of thermodynamics, which is to be respected unless extremely serious
reasons are undoubtedly verified in the future.

Similarly, the form of the entropic functional, together with its possible additiv-
ity, have no reasons to be universal. In contrast, the thermodynamic extensivity of
the entropy constitutes a basic requirement of the Legendre-transform structure of
thermodynamics. Indeed, this structure mandates quantities such as N itself, total
entropy S, total volume V', total magnetization M, and similar ones, to be extensive
in all circumstances: see in Figure 2 the typical scalings with size of all the thermo-
dynamical variables that enter into the Legendre transformations. Other reasons are
available in the literature (see, for instance, [138]) for the extensivity of the thermo-
dynamic entropy, but their discussion is out of the present aim.

2.4 Critical-like behavior

A couple of decades ago, Robin Stinchcombe from Oxford University and my-
self lengthily talked in Rio de Janeiro about the possibility that, since g¢-statistics
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Fig. 1. The index g has been determined [119] from first principles, namely from the uni-
versality class of the Hamiltonian, characterized by the central charge c. The values ¢ = 1/2
and ¢ = 1 respectively correspond to the Ising and XY ferromagnetic chains in the presence
of transverse field at 7' = 0 criticality. For other models see [146,147]. In the ¢ — oo limit we
recover the Boltzmann-Gibbs (BG) value, i.e., ¢ = 1. For arbitrary value of ¢, the subsys-

RV4 9+4c2-3

tem nonadditive entropy Sq is thermodynamically eztensive for, and only for, ¢ = =
(hence ¢ = %; some special values: for ¢ =4 we have ¢ = 1/2, and for ¢ = 6 we have
2
1= 7541
of g occurs only at precisely the zero-temperature second-order quantum critical point of
(1 + 1)-dimensional systems; anywhere else than this critical point, the usual short-range-

interaction BG behavior (i.e. ¢ = 1) is valid. From [12].

= é where @ is the golden mean). Let us emphasize that this anomalous value
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Fig. 2. Representation of the different scaling regimes for classical d-dimensional systems.
For attractive long-range interactions (i.e., 0 < a/d < 1, v characterizing the interaction
range in a potential with the form 1/7%) we may distinguish three classes of thermodynamic
variables, namely, those scaling with L?, named pseudo-intensive (L is a characteristic linear
length, 6 is a system-dependent parameter), those scaling with L4 the pseudo-extensive
ones (the energies), and those scaling with L? (which are always extensive). For short-range
interactions (i.e., @ > d) we have # = 0 and the energies recover their standard L¢ extensive
scaling, falling in the same class of S, N, V, etc, whereas the previous pseudo-intensive
variables become truly intensive ones (independent of L); this is the region, with two classes
of variables, that is covered by the traditional textbooks of thermodynamics. From [7,148].
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Fig. 3. The (q,3¢) pairs that are represented here have been taken from the g-exponential
cumulative probability function of the interarrival times during six cement-mortar loading
cycles [153].

typically focuses on complex phenomena of the power-law type, some sort of criti-
cality could naturally be expected. Today this is indeed more and more evident. On
one hand, several analytical connections between ¢ and critical exponents are since
long available in the literature (e.g., in [36,38,119]). On the other hand, more and
more examples are emerging exhibiting a smooth monotonic dependence of the effec-
tive temperature 7' on some index ¢ (i.e., an unique value of T for a given value of
q), typically close to a linear relation of the type T =a — bg with a > 0 and b > 0.
One such example was exhibited in [149], where it was established that 1/A;, =1 — ¢,
where ), is defined as the g¢-generalized Liapunov coefficient which appears in the
sensitivity to the initial conditions § = limaz(0)—0 ﬁ%(((t))) = e;‘qt of a one-dimensional
map, z being the dynamic variable (e.g., at the Feigenbaum point of the z-logistic
dissipative map). Many other examples have been exhibited in the literature, e.g., in
quark-gluon plasma [150], in the standard map [151], in (asymptotically) scale-free
networks [152], acoustic emission analysis of cement mortar [153] (see Fig. 3), and in
high-energy collisions [154].

2.5 On the g-central limit theorem

The classical Central Limit Theorem (CLT) plays a most important role in BG sta-
tistical mechanics. It basically states that the sum of a large number of (nearly)
independent random variables with finite variance approaches, after centering and
appropriate rescaling, a Gaussian distribution. Consequently, Gaussian distributions
are expected to be very frequently observed in Nature and elsewhere. A notorious
example is the Maxwellian distribution of velocities in any classical thermostatistical
system.

For a variety of reasons that we do not detail here, a generalized form of this
theorem was long expected in such a way that, due to strong correlations between
the random variables that are being summed, the attracting distribution would be a
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g-Gaussian instead of Gaussian. Consistently, illustrations of such generalized theorem
were being searched as well.

Two models were advanced [110,111] whose limiting distributions appeared nu-
merically (within high precision) to be ¢-Gaussians with ¢ < 1. However, they were
analytically shown by Hilhorst and Schehr [155,156] to be not ¢-Gaussians. These
analytical results turned out to numerically be, as Hilhorst and Schehr themselves
showed, amazingly close to to g-Gaussians but definitively not ¢-Gaussians. These
rather unexpected facts strongly stimulated the search of models whose limiting dis-
tributions could be proved to be ¢-Gaussians. This search achieved its analytical goal,
not only for ¢ < 1 (compact support) [157], but also for ¢ > 1 (infinite support) [117].

On different grounds, some time later, Hilhorst did another type of criticism [158],
which we briefly address now. Among the various attempts generalizing the CLT for
strongly correlated random variables, a particular one was done in 2008 by introducing
a g-generalized Fourier Transform (¢-FT) [113,114]. Within this theorem (named
g-CLT hereafter), it was implicitly used that the inverse ¢-FT is unique. Hilhorst
exhibited in [158] a family of counterexamples, where an infinite set of functions
have the same ¢-FT, therefore the ¢-FT inverse operation is not unique. This fact
created a dangerous gap into the ¢-CLT. Efforts were then dedicated to find what
supplementary information would make that inverse unique. This was successfully
achieved through three different paths. The first path is described in [159], the second
one in [160], and the third one in [161,162]. The next natural step would have of
course been to introduce one of these paths within the ¢-CLT in order to fill the
already mentioned gap. It happened, however, that the bothering gap was recently
filled in a quite different manner. Indeed, it was proved [118] that, for ¢ > 1, the limit
distribution is unique and can not have a compact support. It follows that it must
consequently be a ¢g-Gaussian. At the present stage, we may summarize these set of
results by saying that it is rigorously illustrated now the fact that, for a possibly
wide class of strongly correlated systems, g-Gaussian attractors are indeed expected
to frequently emerge in natural, artificial and social systems.

It is a warm honor to dedicate this manuscript to the memory of my great friend and
distinguished scientist Roger Maynard. He has given at least two crucial contributions in
the subject of the present review. The first of them is that, along a four-hours téte-a-téte
peripatetic discussion during the International Workshop on Nonlinear Phenomena held in
Florianopolis-Brazil in December 1992, we realized, for the first time (and having in hands
a preprint of the — at that time intriguing — paper by Plastino and Plastino [163] that was
accepted for publication in Physics Letters A a couple of weeks later), that g-statistics ought
to be generically relevant for long-range-interacting systems, a fact that has since then been
profusely verified. His second important contribution is described in Refs. [62,63,63], which
along time became a very cited one among Roger’s papers. I acknowledge a fruitful discussion
with D. Bagchi, and a critical reading by an anonymous Referee. I also acknowledge partial
financial support by the organizers of the present event in Grenoble, as well as from CNPq
and Faperj (Brazilian agencies) and the John Templeton Foundation (USA).
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