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Abstract. The increasing ubiquity of complex systems that require con-
trol is a challenge for existing methodologies in characterization and
controller design when the system is high-dimensional, nonlinear, and
without physics-based governing equations. We review standard model
reduction techniques such as Proper Orthogonal Decomposition (POD)
with Galerkin projection and Balanced POD (BPOD). Further, we
discuss the link between these equation-based methods and recently
developed equation-free methods such as the Dynamic Mode Decom-
position and Koopman operator theory. These data-driven methods can
mitigate the challenge of not having a well-characterized set of govern-
ing equations. We illustrate that this equation-free approach that is
being applied to measurement data from complex systems can be ex-
tended to include inputs and control. Three specific research examples
are presented that extend current equation-free architectures toward
the characterization and control of complex systems. These examples
motivate a potentially revolutionary shift in the characterization of
complex systems and subsequent design of objective-based controllers
for data-driven models.

1 Introduction

The characterization and control of complex systems permeate classic physical, bio-
logical, and engineering sciences and enable modern applications such as the eradi-
cation of Poliomyelitis, control of internet traffic, optimizing energy infrastructures,
and social media advertising. The rapidly expanding capabilities in computing power,
data storage, and data transfer rates have generated enormous data sets, novel ex-
periments, and offered inspiration to control complex systems in real-time. Adapting
traditional mathematical and engineering methods to these high-dimensional, nonlin-
ear systems has presented substantial challenges. Moreover, the design of controllers
and the characterization of these complex systems remain an open-challenge requiring
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the development of new quantitative methods. We review the traditional approaches
to data-driven analysis while highlighting a number of recent methodological advances
toward the control of complex systems.
Despite the dimensionality and complexity, it is often possible to find a low-

dimensional model to represent the input-output characteristics of the system. This
observation is well-known in the field of dynamical systems, specifically within the
model reduction community. Identifying the correct, qualitative types of solutions
from complex systems is the primary objective of normal forms [1]. The analysis
of solutions from higher dimensional systems such as those found in fluid dynam-
ics led to model reduction techniques such as the Proper Orthogonal Decomposition
(POD) [2–8] which have been extended to numerous other fields such as animal loco-
motion [9,10], vibrational analysis [11–13], and damage analysis [14,15]. Combining
POD with known governing equations via Galerkin projections produces Reduced-
Order Models (ROMs) that have been used to analyze fluid flows [3,4,6,16], optical
systems [17–19], and fluid flows with control [20–22]. Recent advances have illus-
trated how POD/Galerkin projections can be extended to more efficiently handle
the model reduction component involving the nonlinearities of partial differential
equations [23–25].
For engineered systems, discovering advantageous dynamical regimes is impor-

tant for objective-based control. The rich literature of system identification within
the control theoretic community has taken a parallel perspective to POD. In fact,
the Singular Value Decomposition (SVD), which is the dimensionality-reduction
technique utilized in POD, is also prominently used to construct low-dimensional
subspaces where controller design is computationally tractable [6,26–33]. Balanced
truncation is a foundational technique that produces ROMs that are constructed
to balance input-output characteristics such as controllability and observability [26].
Generalizations of this method, such as Balanced Proper Orthogonal Decomposi-
tion (BPOD), utilize the SVD on high-dimensional measurement data to produce
balanced ROMs of complex systems, but the method still requires a difficult lin-
ear adjoint calculation [29,34–36]. System identification methods do not rely on this
adjoint calculation and were developed to aid in the discovery of input-output mod-
els for systems with control [27,37–41]. Further, these system identification meth-
ods can be considered equation-free since they do not rely on a set of governing
equations such as with POD/Galerkin projection and BPOD. A fundamentally im-
portant observation by Ma et al. demonstrated that the Eigensystem Realization
Algorithm (ERA), a system identification method, reproduces balanced input-output
models similar to BPOD, thus linking equation-based and equation-free methods [42].
We briefly review POD and BPOD in the Background section because of the his-
torical context and the direct relationship to current equation-free methods. Other
system identification methods called subspace identification methods bypass the iden-
tification of Markov parameters to produce input-output models from measurement
data [43–46].
Dynamic Mode Decomposition (DMD) is a data-driven methods that operates on

snapshot measurement only and is considered an equation-free architecture [47–52].
Early success for DMD has been achieved on fluid dynamics problems [52–57], and
has been subsequently extended to epidemiology [58], neuroscience [59], and fore-
ground/background separation in video streams [60]. DMD has been shown to be
connected to system identification methods such as ERA [51] and equation-based
methods such as BPOD [42]. ERA has been predominantly used on systems where
the number of measurements is assumed to be low and the system linear whereas
DMD excels on high-dimensional measurement data from complex, nonlinear sys-
tems [61]. The architecture also lends itself to enabling extensions that take advan-
tage of innovative sampling strategies in space and time [57,62–64], multi-resolution/
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multi-scale phenomenon [65], de-noising [66,67], and data fusion [68], extended and
kernel DMD [69,70]. The method was also extended to handle data from complex
systems with inputs [61]. DMD has been shown to be a linear, finite-dimensional
approximation of a powerful spectral analysis method for nonlinear dynamical sys-
tems called Koopman operator theory [48,71,72]. Koopman operator theory has been
rapidly permeating a number of scientific and engineering fields [73,74]. Further, the
Koopman architecture is being extended to investigate systems with input-output
characteristics [75,76].
Due to the ubiquitous use of the SVD for equation-based methods such as POD

and BPOD as well as equation-free methods such as DMD and Koopman, we be-
gin the background section with a mathematical description of the SVD. We then
describe traditional model-based reduction techniques for dynamical systems with
POD/Galerkin projection and input-output systems with BPOD. These equation-
based methods are fundamentally linked to equation-free methods such as the re-
cently developed DMD [42,51]. The background also provides a review of both DMD
and Koopman operator theory. The subsequent sections highlight, in more specific
detail, three recent developments that extend these equation-free methods to allow
for input-output systems.

2 Background and method implementation

We begin with a standard linear algebra method utilized in model-based dimen-
sionality reduction and equation-free techniques: the SVD. This technique is es-
sential to the formulation of POD/Galerkin models for dynamical systems, BPOD
for input-output systems, and DMD for time-series data. We begin the background
section by describing traditional model-based methods such as POD/Galerkin pro-
jections and BPOD. Despite the fundamental difference between equation-based
methods such as BPOD and equation-free methods such as DMD, these tech-
niques are theoretically connected via the Eigensystem Realization Algorithm (ERA)
and have been shown to produce similar balanced models [42,51]. We follow the
description of BPOD with a review of DMD and it’s theoretical connections to
Koopman operator theory, a data-driven perspective on analyzing nonlinear dynam-
ics. We present the historical context of these methods as well as the mathematical
formulation.

2.1 The singular value decomposition

The SVD is a model reduction technique that is essential to POD and DMD. The
SVD has a rich history in data analysis and is being used in a diverse set of fields such
as statistics, biology, computer science, and applied engineering [77–79]. The SVD is
a factorization of a data matrix X given by:

X = UΣV∗ =
[
Ũ Ũrem

] [ Σ̃ 0

0 Σrem

][
Ṽ∗

Ṽ∗rem

]
≈ ŨΣ̃Ṽ∗ (1)

where X ∈ Rn×m is the data matrix with n features and m samples, U ∈ Rn×n are
the left singular vectors, Σ ∈ Rn×m are the singular values ranked by magnitude,
and V ∈ Rm×m are the right singular vectors. Choosing a truncation value r, where
r � n, allows for a low-rank approximation of X ≈ ŨΣ̃Ṽ∗ with matrices Ũ ∈ Rn×r,
Σ̃ ∈ Rr×r, and Ṽ∗ ∈ Rr×m with rank at most r [16,79,80]. If the low-rank approxi-
mation is exact, the matrix Σrem will contain all zeros.



2416 The European Physical Journal Special Topics

D
at

a 
C

ol
le

ct
io

n
Experiments

Numerical

Historical

X =

⎡
⎣x1 x2 · · · xm

⎤
⎦· · ·

Data Matrices

· · ·

Data Snapshots

State Measurements

Input Measurements

Υ =

⎡
⎣u1 u2 · · · um

⎤
⎦
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Fig. 1. The top panel illustrates the data collection aspect of equation-free methods. The
data can come from experiments, numerical simulations, or historical records. In this case,
the historical records illustrate google flu trends in the United States with the location
on the y-axis and time on the x-axis. The bottom panel presents the three recently de-
veloped perspectives on characterizing nonlinear input-output systems using equation-free
techniques.

Choosing the appropriate truncation value r has a long and extensive history.
There are a number of statistical methods and heuristics that have been used for
truncation criteria [81]. The Eckart-Young theorem is one of the most commonly uti-
lized methods for choosing r [77–79]. The theorem states that the best approximation
of X with k modes can be found by retaining the k largest singular values and respec-
tive modes. Recent theoretical developments attempt to optimally identify r when X
may have additive noise [82,83].
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2.2 The proper orthogonal decomposition and galerkin projection

POD and Galerkin projections is a model reduction technique that has been integral
in the analysis of dynamical systems. The goal of POD is to discover a low-dimensional
subspace on which solutions of complex systems evolve. POD is known in other fields
as Principal Components Analysis (PCA) [84] (with the mean subtracted out), the
Hotelling transform [85], Empirical Orthogonal Functions (EOF) [86,87], and/or the
Karhunen-Loéve (KL) decomposition [88]. The method has been utilized in a large
and diverse set of scientific and engineering applications [2–13].
POD combined with Galerkin projection can also be used to construct ROMs.

If a low-rank approximation of the subspace is available, governing equations can
be projected on to the POD-discovered subspace [3,6]. This perspective is inher-
ently equation-based requiring knowledge of the governing equations in order to
perform the model reduction procedure. These ROMs have been successfully ap-
plied to a number of nonlinear fluid dynamics problems [16,89–93] including those
with inputs and control [20–22]. A recent development, Discrete Empirical Inter-
polation Method (DEIM), has notably extended POD and Galerkin projections to
more efficiently handle general nonlinear terms in the vector field [24,25], which is
a discrete version of [23]. In this subsection, we describe the basic methodological
foundation of POD and POD with Galerkin projections applied to complex sys-
tems. A description of BPOD follows this subsection describing model reduction for
input-output models.

2.2.1 Implementation

POD uses measurement data from numerical models, experiments, or historical
records to discover a low-dimensional subspace. POD produces a projection P
that takes the state x(t) from the high-dimensional phase space and projects to
a low-dimensional subspace. We present the formulation of POD in the context
of continuous variables such that x(t) ∈ Rn for t ∈ [0, T ]. The error between
the full-state trajectories and the trajectories on the low-dimensional subspace is
defined by:

∫ T
0

||x(t)− Px(t)||22dt. (2)

The projection P can be solved for by defining the following representation of the
data:

R =

∫ T
0

x(t)x(t)∗dt (3)

where ∗ is the complex-conjugate transpose. Solving the eigenvalue problem for R:

Ruk = λkuk, (4)

provides a subspace spanned by the eigenvectors uk also known as the POD modes of
the data matrix R. Using the eigenvectors uk and choosing a truncation parameter r,
the projection P can be constructed:

P =
r∑
k=1

uku
∗
k. (5)
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Data often comes discretized in time such that x(tj) = xj for j = 1, 2, . . . ,m. The
method of snapshots utilizes the SVD to efficiently compute POD modes from data
matrices when n� m.

Method of Snapshots
The discretized data xj , also called snapshots, can be concatenated in to a data
matrix:

X =

⎡
⎢⎣
| | |
x1 x2 . . . xm

| | |

⎤
⎥⎦ . (6)

The discretized description of R from (3) is R = XX∗, which is size n × n. The
method of snapshots refers to solving a related, but computationally smaller problem
involving R̃ = X∗X, which is m×m [94]. The eigenvalue problem for R̃ is

R̃vk = λkvk (7)

where vk ∈ Rm. The nonzero eigenvalues for R and R̃ are equivalent and the eigen-
vectors are related by:

U = XVΛ−1/2 (8)

where uk and vk form the singular vectors of U and V respectively. These results
follow from the fact that X∗XV = VΣ2 and XX∗U = UΣ2.

Galerkin Projection

The POD/Galerkin method involves using the POD modesU of the data matrixX to
project a nonlinear dynamical system onto the low-rank subspace. Given a nonlinear
dynamical system

ẋ = f(x), (9)

the singular vectors U can be used to project the state x and the vector field onto
the low-dimensional subspace

˙̃x = U∗f(Ux̃), (10)

where the dynamical system is now defined on a state x̃. The ROM can then be used
to investigate bifurcation parameters and design controllers. However, POD/Galerkin
expansions have issues with input-output systems [4].

2.3 Balanced proper orthogonal decomposition

The POD methodology has been quite successful in the analysis of dynamical sys-
tems, but has been problematic for input-output systems [4,5,7]. Choosing the trun-
cation value r by the energy of singular values has been shown to incorrectly identify
input-output characteristics [36]. BPOD combines POD and balanced truncation, a
classic method from the control theoretic community that balances observability and
controllability [26]. Related developments involving Hankel-norm approximations also
propose to balance these input-output characteristics [95–97]. Balanced truncation is
a coordinate transformation that finds states that are both strongly controllable and
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observable [26]. A balanced realization truncates weakly observable and controllable
states and constructs a ROM of an input-output system.
Balanced truncation for complex systems with large number of states can be com-

putationally expensive requiring solving Lyapunov equations with dimensions of the
state n× n. Data-driven methods involving POD were proposed to bypass this com-
putational difficulty for nonlinear systems [28,34]. For large numbers of outputs, the
snap-shot based methods require a large number of adjoint simulations. BPOD is
a computationally tractable method that reduces the number of adjoint simulations
and approximates balanced truncation [29,35]. BPOD has been successfully applied
in a number of fluid control systems [36,98–103] and wind farm control systems [104].

2.3.1 Implementation

Consider a stable linear input-output system

ẋ = Ax+Bu (11a)

y = Cx (11b)

where u ∈ Rl is the vector of inputs, and y ∈ Rz is the output vector. Balanced
truncation is a control theoretic model reduction technique that balances controlla-
bility and observability [26]. The objective is to construct a coordinate transformation
which diagonalizes the controllability and observability Gramians, defined by

Wc =

∫ ∞
0

eAtBB∗eA
∗tdt, Wo =

∫ ∞
0

eA
∗tC∗CeAtdt (12)

where ∗ indicates the corresponding linear-adjoint system:

ż = A∗z+C∗v. (13)

For BPOD, the method calls for collecting data through impulse responses of (11)
and the adjoint system (13). Note that data is being collected from both the direct
and adjoint systems. The impulse response data from (11) is collected into a data
matrix X. The impulse response data from (13) is collected into Y. The data ma-
trices are constructed similarly to the discrete-time version of POD and method of
snapshots [94]. The Gramians can be approximated using the impulse response data
matrices X and Y:

Wc ≈ XX∗, Wo ≈ YY∗, (14)

which are called empirical Gramians [34]. The goal of BPOD is to find a transforma-
tion that balances these empirical Gramaians. The method of snapshots helps find
a transformation without computing the Gramians themselves. The SVD is used to
discover the balancing transformation

Y∗X = UBΣBV∗B (15)

from which the transformation Φ and Ψ are computed by

Φ = XVBΣ
−1/2
B , Ψ = YUBΣ

−1/2
B . (16)

The balancing modes Φ and the adjoint modes Ψ are biorthogonal. The singular
values of ΣB are known as Hankel singular values. A truncation can be performed
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on the Hankel singular values similar to SVD which helps produce a ROM of the
input-output system. A number of large-scale systems, including fluid dynamics face
another computational challenge around simulating the adjoint. Each output requires
one simulation, resulting in a significant number of simulations when the number of
output measurements is large. A projection on the output is performed to alleviate
this challenge resulting in the decrease of the effective number of simulations required.
A POD projection P from the impulse-state responses minimizes the error between
the original input-output transfer function and the output-projected transfer func-
tion [29]. A truncated output projection Pr and a truncated set of biorthogonal modes
Φr and Ψr can be used to construct a balanced reduced order model

˙̃x = Ψ∗rAΦrx̃+Ψ
∗
rBu (17a)

y = P∗rCφrx, (17b)

which both balances the input-output characteristics of controllability and observabil-
ity and is computationally feasible. Note that the formulation of BPOD presented is
from [29]. This formulation differs from an earlier version of BPOD [35] in which the
empirical Gramians are separately reduced and then balanced.

2.4 The dynamic mode decomposition

DMD is a data-driven, equation-free methodology that discovers coherent spatial-
temporal modes from measurement data collected from complex systems [47–49].
These spatial-temporal patterns, called dynamic modes and their associated tempo-
ral frequencies offer diagnostic insight into the dynamic behavior of a complex system.
The dynamic modes are constructed under the fundamental assumption that snap-
shots of measurement data are connected by the flow of a dynamical system [48,49].
This assumption leads to the discovery of modes that are more dynamically rele-
vant than those produced by POD; see [105] for a enlightening comparison between
DMD and POD for fluids example of a lid-driven cylindrical cavity. Other equation-
free techniques are also being developed that are trying to find macroscopic level
equations that describe the evolution of a set of microscopic processes without the
need for POD or Galerkin projections [92,106,107]. DMD has also been rigorously
connected to Koopman operator theory, which focuses on the analysis of nonlinear
vector fields [48,74].
The connection to the analysis of nonlinear systems, the requirement of only mea-

surement data, and the computational tractability of the algorithm has led to a
growing number investigations with DMD on a diverse set of engineering and sci-
entific applications. DMD has been developed and applied extensively in the fluid
dynamics community where numerically solving a set of complex governing equa-
tions for the purpose of bifurcation analysis or development of controllers is com-
putationally prohibitive [49,51,54,55,57]. Other fluid dynamics applications include
shockwave-turbulent boundary layer interactions [53], cavity flows [105,108], detona-
tion waves [109] and jets [110]. The method has also been applied to problems where
the underlying governing equations are not well-described, such as epidemiology [58],
neuroscience [59], and computer vision problems such as foreground/background sep-
aration in video streams [60].
The architecture of DMD allows for methodological extensions that allow for even

wider adoption by experimentalists, engineers, and scientists. Innovative measure-
ment strategies utilizing recent developments in compressive sensing [111] allow for
experimentalists to collect less data in time [57] and in space [63,112,113] while still
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reconstructing relevant dynamic characteristics. Other relevant innovations include
memory-efficient algorithms for BPOD based on DMD [102], error and uncertainty
analysis of growth rates [114], and more accurate low-order models via optimal mode
decomposition [115]. DMD has also been extended to include inputs and control
expanding the method to complex systems that allow for exogenous inputs and non-
autonomous dynamical systems [61]. DMD and DMDc have been connected to sys-
tem identification methods like ERA [51,61] and the Observer Kalman Identification
method (OKID) [61]. In Sect. 3, we highlight how this equation-free architecture can
be generalized to allow inputs and control.
Despite the growing popularity, a number of open challenges remain for DMD-

based methods. For example, the application of DMD to data gathered from a com-
plex system with a single traveling wave produces a set of oscillatory modes and
frequencies that help characterize the wave data, but produces incorrect predictive
models. Long-term predictions constructed from data from nonlinear systems is diffi-
cult for reduced-order models built with DMD modes and frequencies, due in general
to the finite-dimensional, linear approximation of the Koopman operator inherent in
the DMD formulation. Recent innovations that augment the data with kernel trans-
formations, which increases the dimensionality of the input data effectively adding
more measurements, may help solve these challenges and provide a far better approx-
imation of the infinite-dimensional Koopman operator [69,70]. These innovations,
though, introduce computational difficulties in automatically choosing the appropri-
ate kernel. Ultimately, data-driven prediction of nonlinear systems is an open chal-
lenge to all methods. DMD and it’s innovative variants may help solve a number
of these important issues while also providing insight into a large-variety of modern
applications.

2.4.1 Implementation

Consider a set of snapshots xj where j = 1, 2, . . . ,m which are collected from a
complex system. Instead of constructing a single data matrix as in the case of POD,
DMD constructs a a snapshot matrix X and a time-shifted snapshot matrix X′:

X =

⎡
⎣
| | |
x1 x2 . . . xm−1
| | |

⎤
⎦ , X′ =

⎡
⎣
| | |
x2 x3 . . . xm
| | |

⎤
⎦ . (18)

For these data matrices, define the operator

A � X′X† (19)

where † is the pseudoinverse. The DMD of the measurement matrix pair
(X,X′) is given by the eigendecomposition of A. The dynamic modes and
eigenvalues are the eigenvectors and eigenvalues of A. The data xj need
not be collected from a single trajectory from phase space [51], but can in-
stead be collected from a diverse set of locations as long as the jth column
of X is temporally related to the jth column of X′.
To solve for the pseudoinverse, we compute the SVD of X with truncation value

r giving X ≈ ŨΣ̃Ṽ∗. The operator A can then be approximated by

A ≈ X′ṼΣ̃−1Ũ∗. (20)

For applications with a large number of states n, the computation of A can be in-
feasible since A ∈ Rn×n. Instead, a low-rank approximation of A can be computed



2422 The European Physical Journal Special Topics

using the POD modes Ũ of X

Ã = Ũ∗X′ṼΣ̃
−1
, (21)

allowing a smaller memory footprint where X̃ ∈ Rr×r. The eigenvectors and eigen-
values of Ã, given by the standard formulation ÃW =WΛ, can be used to discover
the dynamic modes and eigenvalues of A:

Φ = X′ṼΣ̃
−1
W, (22)

where Φ are the dynamic modes and Λ are the eigenvalues of A for λ �= 0. If λ = 0,
then Φ = ŨW [51]. A solution of the system can be constructed through linear
superposition of the dynamic modes and eigenvalues

xk = ΦΛ
kb (23)

where the initial condition is computed by projecting a data snapshot on to the
dynamic mode xk: b = Φ

†x1. Note that the dynamic modes and eigenvalues can
be used as a diagnostic to investigate the dynamic characteristics of the data. These
same modes and eigenvalues can also be used to construct a model for prediction as
seen in (23).

2.5 Koopman operator theory

Koopman operator theory is a powerful, popular, and distinctly promising set of
ideas allowing the analysis of complex, nonlinear dynamical systems. The theory
illustrates how a nonlinear dynamical system can be transformed into an infinite-
dimensional linear system allowing solutions of the system to be constructed with
traditional linear operator methods [48,71,72,116]. DMD, a more recent development
from 2008 [47], was shown to be a computation of the Koopman mode decomposi-
tion for linear observable functions [48]. Koopman operator theory, though, stretches
back to the early twentieth century with the foundational work of Bernard Koop-
man on measure-preserving flows [71,116]. These ideas have resurfaced for a number
of reasons: the seminal work of Igor Mezić et al. [72,73] has demonstrated that the
theory can be utilized as a spectral analysis of nonlinear dynamical systems; we now
have the computational capabilities to actually perform these analyses. There are a
number of comprehensive reviews on the application of Koopman analysis [73,117].
The Koopman/DMD connections have led to a number of investigations within fluid
dynamics [48,73] including a bifurcation analysis of flow past a cylinder [56].
The connections between DMD and Koopman have also inspired a number of

engineering-oriented, methodological advances. DMD has been shown to be a method
that implements a numerical framework for Koopman mode decomposition on a finite-
dimensional set of linear observable functions. For numerical fluids problems, this
practically translates to using the entire fluid-flow state as the data for DMD, see [51]
for an example. Recent advances have illustrated how augmenting the data for DMD
via a larger set of observable functions including nonlinear functions offers a richer
input data and can more accurately capture the nonlinearities of the data [69,70].
Choosing the correct set of nonlinear observable functions to augment the data set is
an exciting, open research question [75]. Koopman theory is also being extended for
the explicit purpose of constructing a set of input-output models for control [75,76].
The later sections of this review highlight research that generalizes Koopman and
DMD for the characterization of input-output models of nonlinear systems.
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2.5.1 Implementation

We briefly describe the formulation of Koopman operator theory for the analysis of
nonlinear dynamical systems. Consider the discrete nonlinear dynamical system:

xk+1 = f(xk), (24)

evolving on a smooth manifoldM where xk ∈M. The map f is fromM to itself and
k is an integer index. There is a continuous-time formulation that could also be pre-
sented, but here we focus on the discrete perspective in line with engineering-oriented
applications. We define a set of scalar valued observable functions g : H → R, which
forms an infinite-dimensional Hilbert space. We define this set as the Lebesque square-
integrable functions on H. The Koopman operator K acts on this set of observable
functions as:

Kg(x) � g(f(x)). (25)

The Koopman operator K is linear and infinite-dimensional. Linear operator theory
allows the eigendecomposition of K:

Kϕj(x) = λjϕj(x), j = 1, 2, . . . ,∞. (26)

The definition of the Koopman operator and the infinite expansion can be used to
represent a vector-valued observable function g :M → Rny in terms of the span of
K given by the eigenfunctions ϕj :

g(x) =

⎡
⎢⎢⎢⎢⎣

g1(x)
g2(x)
g3(x)
...

gny (x)

⎤
⎥⎥⎥⎥⎦
=

∞∑
j=1

ϕj(x)vj , (27)

where the vector valued coefficients vj are called Koopman modes. Applying the
Koopman operator to g(x) gives

Kg(x) = g(f(x)) =
∞∑
j=1

λjϕj(x)vj , (28)

where the Koopman eigenvalues λj provide the growth/decay and frequency con-
tent of the Koopman modes, vj . The Koopman modes correspond to the dynamic
modes of DMD. The eigenfunctions ϕj(x) of the Koopman operator are consid-
ered constants and are typically absorbed in to each of the dynamic modes for
DMD [48,51].
The Koopman operator can be viewed as a propagator on observable functions.

In fact, the Koopman operator is a propagator for all observable functions in H.
To actually compute a representation of the operator K, though, a much smaller
set of observable functions are typically chosen. The observable functions for DMD
are usually the identity, providing an approximate operator A on only the measure-
ments available. The finite-dimensional approximations of the Koopman operator
with more observable functions than identity will be denoted by K, and is explored
in Sect. 4 and 5. Recent work has illustrated the benefits of augmenting the ob-
servables with nonlinear functions [69,70,75]. We believe this is an exciting research
direction as it presents theoreticians and practitioners a challenge in how to choose
observable functions.
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3 Dynamic mode decomposition with control

The characterization and control of high-dimensional, complex systems remains a
challenging task. DMDc is a recent methodological extension of the DMD equation-
free architecture developed to analyze complex systems that also have inputs and
disturbances [61]. The method utilizes measurements of the system and the applied
external control inputs in order to disambiguate the underlying dynamics and the
impact of inputs. DMD and DMDc are related to system identification methods such
as ERA and OKID [27,37], which were originally developed for linear systems with
few measurements [51,61]. DMDc inherits a number of the advantageous character-
istics of DMD. The method operates on snapshot data and handles large numbers
of measurements from complex systems. DMDc was recently applied to a rapidly
pitching airfoil to predict forces and pressures [118]. Further, DMD extensions, simi-
lar to DMDc, are utilizing techniques from the subspace identification community in
order to find low-order models of wind-farms [119]. Combining the control architec-
ture with the advantages of DMD offers an equation-free control strategy in complex
systems, computationally tractable for experimentalists and theoreticians. In this sec-
tion, we highlight the formulation and apply the method on a high-dimensional system
with inputs.

3.1 Method: DMDc on state and input data

Consider the dynamical system with inputs

xk+1 ≈ Axk +Buk, (29)

where xj ∈ Rn, uj ∈ Rl, A ∈ Rn×n, and B ∈ Rn×l. Note that the relationship in (29)
does not need to hold exactly. The snapshot matrices X and X′ are collected similar
to DMD. The control input snapshots compose an input data matrix:

Υ =

⎡
⎣
| | |
u1 u2 . . . um−1
| | |

⎤
⎦ . (30)

Using the snapshot matrices, (29) can be rewritten in matrix form:

X′ ≈ AX+BΥ, (31a)

X′ ≈ GΩ, (31b)

whereG = [A B] and Ω =

[
X
Υ

]
. The Dynamic Mode Decomposition with control of

the measurement trio (X,X′,Υ) is the eigendecomposition of the operator A defined
by the following

G =
[
A B
]
= X′Ω†. (32)

We seek a best-fit solution of the operator G. The SVD is utilized to compute the
pseudoinverse on the augmented data matrix giving Ω ≈ ŨΣ̃Ṽ∗. The truncation
value of the SVD for Ω will be defined as p which should be larger than a truncation
value for X′. The approximation is

G ≈ Ḡ = X′ṼΣ̃−1Ũ∗, (33)



Temporal and Spatio-Temporal Dynamic Instabilities 2425

where G ∈ Rn×(n+l). A and B can be found by breaking the unitary operator Ũ in
to two separate components:

[A, B] ≈ [Ā, B̄] (34a)

≈ [X′ṼΣ̃−1Ũ∗1, X′ṼΣ̃
−1
Ũ∗2] (34b)

where Ũ1 ∈ Rn×p, Ũ2 ∈ Rl×p, and Ũ∗ = [Ũ∗1 Ũ∗2]. The nonsquare operator G is
size n × n + l which could be computationally prohibitive to compute. A reduced
order version can be computed, but not with the left singular vectors of Ω. To find
a linear transformation for a reduced order subspace on which x evolves, we utilize
a subspace constructed from the output data matrix X′. The SVD of X′ is given by
ÛΣ̂V̂∗ where the truncation value is r and Û ∈ Rn×r, Σ̂ ∈ Rr×r, and V̂∗ ∈ Rr×m−1.
The following reduced-order approximations of A and B can be computed:

Ã = Û∗ĀÛ = Û∗X′ṼΣ̃
−1
Ũ∗1Û (35a)

B̃ = Û∗B̄ = Û∗X′ṼΣ̃
−1
Ũ∗2 (35b)

where Ã ∈ Rr×r and B̃ ∈ Rr×l. The relationship between the eigenvectors of Ã and
the dynamic modes of A is:

φ = X′ṼΣ̃
−1
Ũ∗1Ûw, (36)

which is slightly modified from the dynamic modes of DMD.

3.2 Example: Disambiguating dynamics from inputs

In this example, we construct a high-dimensional non-autonomous dynamical sys-
tems with a low-rank solution. A similar example was also described in [61,63]. The
spatial domain is of size 128 × 128 with periodic boundaries. Five two-dimensional
fourier modes are chosen at random to be nonzero. The dynamical system on these
five fourier modes is also chosen at random with the constraint that the eigenvalues
for each mode are near the unit circle with a temporally evolving frequency and a
small damping rate. Five oscillating spatial fourier modes creates a high-dimensional
dynamical system in space. A random disturbance is applied as an external input
to a single spatial pixel. A snapshot of one realization of this dynamical system is
illustrated on the torus is shown in Fig. 2.
After the dynamical system is constructed and data collected, we use DMDc to

disambiguate the underlying dynamics with the external inputs. The data matrices
(X,X′,Υ) are of size 1282×200. DMDc discovers the underlying temporal frequencies
and damping coefficients of the dynamical systems. The middle panel of Fig. 2 shows
that DMD would incorrectly predict eigenvalues outside of the unit circle, indicating
growth of the dynamical system. DMDc accurately finds the eigenvalues of the un-
derlying dynamical system. Moreover, the dynamic modes, shown in right panel, are
accurately reconstructed by DMDc.
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Fig. 2. Numerical results using DMD and DMDc on spatial-temporal data given in the
left plot. The middle plot shows the actual eigenvalues with the computed eigenvalues from
DMD and DMDc. The right plot shows the actual dynamic modes, the DMD modes, and
the DMDc modes plotted on the torus.

4 Koopman observable subspaces and finite linear representations
of nonlinear dynamical systems for control

Koopman operator theory has primarily focused on the characterization and iden-
tification of important dynamical properties of complex systems [48,51,72]. There
is also significant interest in discovering a finite-dimensional approximation of the
Koopman operator that acts as a propagator for the observable functions. This ap-
proximate operator could be used to predict the future observables allowing for the
design of controllers on the set of observables [75]. However, many dynamical systems
do not admit a finite-dimensional Koopman-invariant subspace that includes direct
measurements of the original state. If the nonlinear system contains more than a sin-
gle fixed point, a finite-dimensional Koopman-invariant subspace explicitly containing
the original state does not exist [75]. In this section, we highlight how to obtain a
Koopman-invariant subspace for a nonlinear system.

4.1 Method: Koopman observable subspaces containing the state

A Hilbert spaceH can be spanned by an infinite set of basis functions y1(x), y2(x), . . . ,
and any finite subset of these observable functions will form a finite-dimensional
subspace. A Koopman-invariant observable subspace is defined as the span of a subset
of observable functions ys1 , ys2 , . . . , ysm such that any function g(x) in this subspace

g = α1ys1 + α2ys2 + · · ·+ αmysm (37)

remains in this subspace after being acted on by the the Koopman operator:

Kg = β1ys1 + β2ys2 + · · ·+ βmysm . (38)

The operator K can be restricted to this subspace of observable functions, in which
case it defines a finite-dimensional operator K and linear dynamical system, even
though the observables are nonlinear. Any subset of eigenfunctions of the Koopman
operator form an invariant subspace, by definition. However, these eigenfunctions may
be arbitrarily complex, as they are intricately related to the phase space geometry of
the dynamical system [120–122].
Similar to DMD, we would like the Koopman-invariant subspaces to include the

state variables x directly as observables. Then the Koopman operator restricted to
this subspace provides a linear propagator for the original state. Including the state
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variables requires the right hand side of the nonlinear vector field to be included in
the subspace:

d

dt

⎡
⎢⎢⎣

x1
x2
...
xn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

f1(x1, x2, · · · , xn)
f2(x1, x2, · · · , xn)

...
fn(x1, x2, · · · , xn)

⎤
⎥⎥⎥⎥⎦
. (39)

We may define the first n observable functions to be the components of the state
variable x, and the remaining observables are chosen to span the right hand side of
(39):

fk(x1, x2, · · · , xn) = ck,1ys1 + ck,2ys2 + · · ·+ ck,mysm , . (40)

However, it is unclear whether or not the time derivative of these additional nonlinear
observable functions can be expressed in terms of the functions in the subspace, or
whether they will require additional observable functions to be included in the span:

d

dt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
...
yn
yn+1
...
ym

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1,1 c1,2 · · · c1,n c1,n+1 · · · c1,m
c2,1 c2,2 · · · c2,n c2,n+1 · · · c2,m
...
...
. . .

...
...
. . .

...
cn,1 cn,2 · · · cn,n cn,n+1 · · · cn,m
? ? · · · ? ? · · · ?
...
...
. . .

...
...
. . .

...
? ? · · · ? ? · · · ?

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
...
yn
yn+1
...
ym

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (41)

In general, the first n rows are a direct representation of the vector field from (39).
The next m − n rows can be computed analytically by successively computing d

dt
yk

for k > m. If the number of observable functions continues to grow recursively, the
dynamical system does not close to a finite-dimensional representation on a Koopman
invariant subspace. See [75] for more details about the challenge of closure for these
dynamical systems.

4.2 Example: A Koopman perspective on a nonlinear dynamical system

In this example, we illustrate the method on a dynamical system with a slow manifold
illustrated in Fig. 3. The system is given by:

ẋ1=μx1

ẋ2, =λ(x2 − x21). (42)

Choosing the observable functions y=
[
y1 y2 y3

]T
=
[
x1 x2 x

2
1

]T
results in a

Koopman-invariant subspace that explicitly includes the state. The induced linear
system obtained by restricting the Koopman operator to this subspace is given by:

d

dt

⎡
⎣
y1

y2

y3

⎤
⎦ =

⎡
⎣
μ 0 0

0 λ −λ
0 0 2μ

⎤
⎦
⎡
⎣
y1

y2

y3

⎤
⎦ . (43)

Consider the embedding of the nonlinear dynamical system into a higher-dimensional,
linear observable subspace. The right panel of Fig. 3 illustrates how the quadratic
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Fig. 3. The left panel shows the slow manifold (in dashed red line) with two trajectories
of (43). In the right panel, the Koopman-invariant observable subspace is illustrated. The
dashed red line is the slow manifold between observables y2 and y3. The blue and green lines
are trajectories with same initial conditions as the left panel.

nonlinearity in the system can be linearized (dashed red line). Two trajectories are
represented for the underlying nonlinear system in the left panel. The same two trajec-
tories are shown in the linearized system in the right panel. The restricted Koopman
operator of (43) can be used to construct a controller on the observables for some
types of inputs [75]. The dynamical system investigated in this section has a single
fixed point. When more than one fixed point exists, the finite-dimensional closure is
not possible for subspaces containing the state, creating the need for an ever-growing
set of rows in (41) to represent the new nonlinearities.
For this example, the nonlinear embedding is known a-priori allowing a clear depic-

tion of a Koopman-invariant subspace for a nonlinear dynamical system. In general,
the nonlinear embedding is not known, requiring an exploration of nonlinear observ-
ables. Further, incorrect observable functions can create a misleading characterization
of the dynamics and incorrect predictive models. One current line of research is fo-
cused on augmenting the input data with nonlinear observable functions based on
kernel expansions, thus spanning a larger space of nonlinear functions [69]. Alter-
natively, another research perspective is focused on identifying a sparse number of
nonlinear functions from a large library of possible functions to fit the nonlinear dy-
namics [123]. Choosing the correct set of observable functions is a fundamental and
open-challenge for using Koopman operator theory for control.

5 Koopman with inputs and control

Koopman with inputs and control (KIC) is a generalization of Koopman operator
theory allowing for the analysis of complex systems with inputs and control [76].
DMDc restricts the observable functions to the identity map on the state. The ex-
tension of Koopman operator theory allows for the consideration of a wider set of
observable functions, which can include nonlinear observable functions of the state,
the input, and mixed terms. Similar to the close connections of DMDc to sub-
space identification methods, the algorithm for KIC has strong numerical similari-
ties with system identification methods such as nonlinear autoregressive exogenous
model (NARX) [124]. This generalization of Koopman operator theory, though, is a
step toward data-driven characterization and control of complex input-output sys-
tems from an operator theoretic perspective. We describe the formulation of KIC and
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illustrate how the infinite-dimensional operator can be approximated for a nonlinear,
finite-dimensional dynamical system with inputs.

5.1 Method: Koopman with inputs and control

Consider the following non-autonomous dynamical system

xk+1 = f(xk,uk), (44)

where x ∈ M and u ∈ N where both M and N are smooth manifolds. The
scalar-valued observable functions are now dependent on the state and the inputs
g :M⊗N → R. The set of observable functions comprise a Hilbert space H. Sim-
ilar to the previous section on Koopman-invariant-subspaces, H can be partitioned
in to different subspaces. For example, three separate Hilbert subspaces can be con-
structed where the functions g(x,u) = g(x) are in HX , g(x,u) = g(u) are in HU ,
and finally the complement HXU which contain observable functions that offer mixed
terms such as gx,u = x1u1. The partitioning is sufficiently general that is also includes
linear identity observables, i.e. g(x) = x1 where x1 is the first element of x, in addi-
tion to nonlinear observables i.e. g(x) = x21. Considering only the subspace of linear
observable functions leads to the formulation of DMDc [76].
The Koopman operator with inputs and control K : H → H acts on the Hilbert

space of observable functions given by the following:

Kg(x,u) � g(f(x,u), ∗) (45)

where ∗ indicates a choice of definition. If ∗ = u, then the definition allows for the
recovery of dynamics on the inputs, as is the case for state feedback controllers. If
∗ = 0, then the operator does not specify dynamics on the inputs as in the case with
exogenous forcing and random disturbances. RestrictingH to linear observables on the
state and inputs and choosing ∗ = 0 reduces KIC to DMDc. The linear characteristics
of the Koopman operator allow us to perform an eigendecomposition of K given in
the standard form:

Kϕj (x,u) = λjϕj (x,u) , j = 1, 2, . . . . (46)

The operator is now spanned by eigenfunctions that are defined by the inputs and
state. Using the infinite expansion shown in Eq. (26), the observable functions gj can
be rewritten in terms of the right eigenfunctions ϕj ,

g(x,u) =

⎡
⎢⎢⎣

g1(x,u)
g2(x,u)
...

gny (x,u)

⎤
⎥⎥⎦ =

∞∑
j=1

ϕj (x,u)vj , (47)

where ny is the number of measurements. The new Koopman operator can be applied
to this representation of the measurement

Kg(x,u) = g(f(x,u),u) =
∞∑
j=1

λjϕj (x,u)vj . (48)

A number of promising research directions result from this definition of KIC. If ∗ = 0
in (45), a Koopman operator can be constructed on a restricted set of observable
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functions that include nonlinear functions of the state, inputs, and mixed terms. The
output of the Koopman operator is only the state. For a DMD-like computation
on real data, the Koopman operator becomes a nonsquare operator allowing for a
large set of observable nonlinear functions without trying to fit input dynamics. This
perspective can be taken one step further to propose different domains and ranges
for a restricted Koopman operator. This introduces a number of new and exciting
challenges such as how to pick the right observable functions for the states and inputs
for a specific application. Recent work has utilized sparsity-promoting methods to pick
the right nonlinear functions for characterization of the dynamical systems [125].

5.2 Example: Recovering nonlinear dynamical systems from data

In this example, we illustrate how inputs can be included to discover an approximation
of the Koopman operator that is a propagator of the system observables even when
exogenous forcing is present. Here, we have chosen an underlying system that has a
Koopman-invariant subspace. Similar to the notation for Koopman operator theory
without inputs, we denote the finite approximation with inputs by K. An input term
αu is included that consists of random disturbances. We choose the definition in (45)
to be ∗ = 0. Consider the system

⎡
⎢⎢⎢⎣

y1

y2

y3

0

⎤
⎥⎥⎥⎦
k+1

=

⎡
⎢⎢⎢⎣

μ 0 0 0

0 λ −λ α
0 0 2μ 0

0 0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

y1

y2

y3

γ1

⎤
⎥⎥⎥⎦
k

for

⎡
⎢⎢⎢⎣

y1

y2

y3

γ1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x1

x2

x21
u

⎤
⎥⎥⎥⎦ (49)

where λ = .5, μ = 2, and α = 2. The initial condition is x = [5, 2]T . To show how to
discover this Koopman operator from data, we collect a ten snapshots of data from
the system given an input data matrix Ω and output data X′. The first few snapshots
of each data matrix gives the following:

Ω =

⎡
⎢⎢⎢⎣

5 10 20 40

2 −11.3 54.7 −226.4
25 100 400 1600

.1 .5 .5 2.2

⎤
⎥⎥⎥⎦ X′ =

⎡
⎣
10 20 40 80

−11.3 54.7 −226.4 −908.9
100 400 1600 6400

⎤
⎦ . (50)

Using the DMDc numerical procedure, the restricted Koopman operator can be ex-
actly recovered with K = X′Ω†. The tractable computational procedure discovers a
linear input-output system for a nonlinear dynamical system:

K =
[
KAKB

]
,

yk+1 = KAyk +KBγk. (51)

The example can be changed to investigate both other definitions of KIC, including
∗ = uk+1, and systems with a higher-dimensional state, as in Sect. 3.2. For example,
the inputs would have dynamics based on feedback controllers or possibly multi-scale
modeling.
Similar to the example in Sect. 4, the nonlinear embedding is known in (49). We

specifically choose an analytic example to illustrate KIC on a nonlinear dynamical
system. In general for equation-free modeling, the nonlinear observables will not be
conveniently available. Current research is focused on how to discover the nonlinear
functions from a large library [123] or by transforming the problem using kernel
functions [69].
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6 Discussion and conclusions

The characterization and control of high-dimensional, complex systems is becoming
increasingly important as we engineer and build ever larger systems such as the electri-
cal grid, internet infrastructure, distribution of goods, and coordinated autonomous
driving platforms. Many of these systems do not have well-characterized, physics-
based governing equations that lend themselves to traditional analyses. Our ability
to collect high-fidelity data and perform targeted experiments with these systems,
though, offers significant opportunities for data-driven, equation-free modeling to dis-
cover low-dimensional models of the dynamics. We highlight that recent adaptations
of these data-driven methods for handling systems with inputs offers a promising fu-
ture for the design of objective-based controllers for these equation-free models.
We have offered two perspectives on analyzing complex systems: model-based

dimensionality reduction and equation-free methods. The model-based dimension-
ality reduction has a substantial and rich history with POD and Galerkin projec-
tions [2,6]. Balanced POD, a recent innovation, inherits advantages from POD on
high-dimensional data while balancing important input-output characteristics such
as controllability and observability [29,34–36]. BPOD requires both the direct and
adjoint calculations. Equation-free methods such as DMD and Koopman operator
theory operate solely on measurement data, are connected to the analysis of nonlin-
ear systems, and scale favorably computationally to a large number of measurements.
These equation-free methods have only recently been extended to handle input-output
systems [61,75,76,118].
We began the article with a review of model-based dimensionality reduction and

equation-free methods including the context and formulation. In dimensionality re-
duction, POD and Galerkin methods are presented, followed by the BPOD innova-
tions around handling high-dimensional input-output systems. We then consider the
equation-free methods of DMD and Koopman operator theory for autonomous dy-
namical systems.
To demonstrate how data-driven, equation-free methods can be extended to han-

dle input-output systems, three examples are presented that generalize DMD and
Koopman operator theory. The first example illustrates how DMD can be extended
to handle input data. The inclusion of input data allows DMDc to disambiguate the
effects of the underlying dynamics and the exogenous forcing. The second two exam-
ples involve methodologically extending Koopman operator theory to handle nonlin-
ear data and inputs. Establishing that systems with a single fixed-point can often be
described by a restricted Koopman invariant subspace that includes linear measure-
ments allows for a nonlinear vector-field to be transformed in to a finite-dimensional
linear model that propagates the original state. Linearizing the model allows for stan-
dard control-theoretic techniques to construct objective-based controllers. The final
example illustrates how to include inputs within the Koopman architecture. A Koop-
man operator can be discovered that disambiguates the effect of nonlinear dynamics
from inputs.

JLP would like to thank Bill and Melinda Gates for their active support of the Institute for
Disease Modeling and their sponsorship through the Global Good Fund. SLB and JNK
acknowledge generous support from the Defense Advanced Research Projects Agency
(DARPA contract HR0011-16-C-0016). JNK also acknowledges support from the U.S. Air
Force Office of Scientific Research (FA9550-15-1-0385).

References

1. P. Holmes, J. Guckenheimer, Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields, Vol. 42 of Applied Mathematical Sciences (Springer-
Verlag, Berlin, Heidelberg, 1983)



2432 The European Physical Journal Special Topics

2. J. L. Lumley, Stochastic Tools in Turbulence (Academic Press, 1970)
3. G. Berkooz, P. Holmes, J.L. Lumley, Ann. Rev. Fluid Mech. 23, 539 (1993)
4. T. Colonius, J. Freund, AIAA Paper 2002–0072 (2002)
5. T. Smith, Ph.D. thesis, Princeton University, 2003
6. P.J. Holmes, J.L. Lumley, G. Berkooz, C.W. Rowley, Turbulence, coherent structures,
dynamical systems and symmetry, 2nd edn. Cambridge Monographs in Mechanics
(Cambridge University Press, Cambridge, England, 2012)

7. M. Rathinam, L. Petzold, SIAM J. Numer. Anal. 5, 1893 (2003)
8. B. Epureanu, L. Tang, M. Paidoussis, Int. J. Non-Linear Mech. 36, 977 (2004)
9. L.S.C. Raptopoulos, M.S. Dutra, F.A. de Noronha Castro Pinto, A.C. de Pina Filho,
J. Biomech. 39, 2898 (2006)

10. D. Riskin, et al., J. Theoretical Biol. 254, 604 (2008)
11. M. Azeez, A. Vakakis, J. Sound Vib. 240, 859 (2001)
12. J. Cusuman, B. Bai, Chaos Solitons Fractals 3, 515 (1993)
13. J. Cusuman, B. Bai, Phil. Trans. Roy. Soc. of Lond. 347, 421 (1994)
14. U. Feldmann, E. Kreuzer, F. Pinto, Nonlinear Dynamics 22, 183 (2000)
15. D. Boe, J. Golinval, Structural Health Monitoring 2, 137 (2003)
16. C.W. Rowley, T. Colonius, R.M. Murray, Physica D 189, 115 (2004)
17. E. Shlizerman, E. Ding, M. Williams, J.N. Kutz, Int. J. Opt. 2012, 831604 (2012)
18. M. Williams, E. Shlizerman, J.N. Kutz, J. Opt. Soc. Am. B 27, 2471 (2010)
19. E. Ding, E. Shlizerman, J.N. Kutz, Phys. Rev. A 82, 023823 (2010)
20. B.R. Noack, K. Afanasiev, M. Morzynski, G. Tadmor, F. Thiele, J. Fluid Mech. 497,
335 (2003)
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33. M. Fardad, F. Lin, M. Jovanović, IEEE Trans. Automatic Control 29, 2281 (2014)
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