Skip to main content
Log in

Cytoskeletal turnover and Myosin contractility drive cell autonomous oscillations in a model of Drosophila Dorsal Closure

  • Regular Article
  • Papers
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Oscillatory behaviour in force-generating systems is a pervasive phenomenon in cell biology. In this work, we investigate how oscillations in the actomyosin cytoskeleton drive cell shape changes during the process of Dorsal Closure (DC), a morphogenetic event in Drosophila embryo development whereby epidermal continuity is generated through the pulsatile apical area reduction of cells constituting the amnioserosa (AS) tissue. We present a theoretical model of AS cell dynamics by which the oscillatory behaviour arises due to a coupling between active myosin-driven forces, actin turnover and cell deformation. Oscillations in our model are cell-autonomous and are modulated by neighbour coupling, and our model accurately reproduces the oscillatory dynamics of AS cells and their amplitude and frequency evolution. A key prediction arising from our model is that the rate of actin turnover and Myosin contractile force must increase during DC in order to reproduce the decrease in amplitude and period of cell area oscillations observed in vivo. This prediction opens up new ways to think about the molecular underpinnings of AS cell oscillations and their link to net tissue contraction and suggests the form of future experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.B. Blanchard, R.J. Adams, Curr. Opin. Genet. Dev. 21, 653 (2011)

    Article  Google Scholar 

  2. R. Levayer, T. Lecuit, Trends Cell Biol. 22, 61 (2012)

    Article  Google Scholar 

  3. G. Salbreux, G. Charras, E. Paluch, Trends Cell Biol. 22, 536 (2012)

    Article  Google Scholar 

  4. D.A. Fletcher, R.D. Mullins, Nature 463, 485 (2010)

    Article  ADS  Google Scholar 

  5. N. Gorfinkiel, S. Schamberg, G.B. Blanchard, Genesis 49, 522 (2011)

    Article  Google Scholar 

  6. M.S. Hutson, et al., Science 300, 145 (2003)

    Article  ADS  Google Scholar 

  7. G.B. Blanchard, et al., Development 137, 2743 (2009)

    Article  Google Scholar 

  8. D.J.V. David, A. Tishkina, T.J.C. Harris, Development 137, 1645 (2010)

    Article  Google Scholar 

  9. J. Solon, et al., Cell 137, 1331 (2009)

    Article  Google Scholar 

  10. N. Gorfinkiel, et al., Development 136, 1889 (2009)

    Article  Google Scholar 

  11. Q. Wang, J.J. Feng, L.M. Pismen, Biophys. J. 103, 2265 (2012)

    Article  ADS  Google Scholar 

  12. J. Sedzinski, et al., Nature 476, 462 (2011)

    Article  ADS  Google Scholar 

  13. A.K. Jayasinghe, et al., Biophys. J. 105, 255 (2013)

    Article  ADS  Google Scholar 

  14. J. Alvarado, et al., Nature Phys. 9, 591 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Kovács, PNAS 104, 9994 (2007)

    Article  ADS  Google Scholar 

  16. A.R. Harris, et al., PNAS 109, 16449 (2012)

    Article  ADS  Google Scholar 

  17. D.P. Kiehart, et al., J. Cell. Biol. 149, 471 (2000)

    Article  Google Scholar 

  18. R Development Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2008)

  19. A. Sokolow, Biophys. J. 102, 969 (2012)

    Article  ADS  Google Scholar 

  20. J. Pinheiro, D. Bates, Mixed-Effects Models in S and S-PLUS (Springer, New York, 2009)

  21. U. Halekoh, S. Højsgaard, J. Statistical Software (submitted)

  22. C.A. Wilson, et al., Nature 465, 373 (2010)

    Article  ADS  Google Scholar 

  23. M. Guha, M. Zhou, Y.L. Wang, Curr. Biol. 15, 732 (2005)

    Article  Google Scholar 

  24. S. Mukhina, Y.L. Wang, M. Murata-Hori, Dev. Cell. 13, 554 (2007)

    Article  Google Scholar 

  25. A.C. Reymann, et al., Science 336, 1310 (2012)

    Article  ADS  Google Scholar 

  26. D.J.V. David, et al., Development 140, 4719 (2013)

    Article  Google Scholar 

  27. A. Carvalho, A. Desai, K. Oegema, Cell 137, 926 (2009)

    Article  Google Scholar 

  28. M. Roh-Johnson, et al., Science 335, 1232 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. F. Machado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, P.F., Blanchard, G.B., Duque, J. et al. Cytoskeletal turnover and Myosin contractility drive cell autonomous oscillations in a model of Drosophila Dorsal Closure. Eur. Phys. J. Spec. Top. 223, 1391–1402 (2014). https://doi.org/10.1140/epjst/e2014-02197-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02197-7

Keywords

Navigation