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Abstract Surface waves of a shallow liquid layer confined in an annular channel of length L̃ are generated
by periodic acceleration of the channel along its azimuthal direction. We show that if the oscillations are
anharmonic, e.g., having the form of a saw tooth, a mean mass flow is generated and even the mean
speed over one period is zero. The flow is studied both experimentally and numerically. In the experiment,
the velocity field and surface deflection are derived from the frames of videos recorded with a Go-Pro
Hero 4 camera with custom rectilinear lens. We show resonance curves of the mean square of the water
surface deflection and of the averaged mass flow. Both curves show almost coinciding maxima for multiples
of the fundamental resonance frequency f̃r = c̃0/(2L̃), where c̃0 is the shallow water wave velocity. The
measurements are confirmed by numerical solutions of an integrated boundary layer model including inertia
and dissipation.

1 Introduction

Propagation of waves in fluids can produce not only energy transfer from one point to another, but also a displace-
ment of the fluid along the propagation axis (a wave matter transport). This drift is a nonlinear effect investigated
theoretically in Refs. [1–5], which can explain, for example, the formation of stellar winds in cosmic space [2–5].

The transport of the media can be also realized through waves excited by horizontal vibrations of the channel
walls or ground. In earlier work [6], we showed that such a mean mass flow emerges if the lateral excitation
are asymmetric under time reversal, e.g., taking a ratchet shape instead of a harmonic one. Another symmetry
breaking mechanism can be provided by a lateral temperature gradient [7, 8].

In the present study, we shall focus on an asymmetric periodic vibration of a liquid channel with an immersed
mirror-symmetric obstacle fixed to the bottom, extending our previous work from Ref. [9]. The obstacle is always
completely covered by the fluid. Such problems might have widespread applications for controlled sediment trans-
port in rivers, lakes or oceans. Our investigation is mainly motivated by experiments outlined in the first part. In
the second part, we derive a long-wave model adjusted to our experimental device and present numerical solutions
of the wave shapes and of the mean flow, depending on the driving frequency and the asymmetry parameter of
the acceleration.
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2 Experiments

2.1 Statement of the problem and experimental apparatus

We aim to study quasi-two-dimensional water waves propagating and interacting with themselves. This kind of
interaction commonly leads to a resonant response. The experiments are performed in a narrow channel filled with
water, as presented in Fig. 1a. To avoid reflections at endwalls in the flow direction, an ideal choice would be
periodic boundary conditions. Although easily realized in theoretical or numerical studies, it is not straightforward
in experiments. To close the domain, we use an annular channel placed on a rotating table (Fig. 1b). The rotation
axis and the channel symmetry axis coincide. Rotation implies the existence of centrifugal and Coriolis forces.
However, if the fluid velocities are moderate and the curvature of the channel is small, the effect of these forces
can be neglected.

The channel is filled with a 5 cm deep water layer, its length (measured in the middle of the channel) is L̃ = 476
cm and its width is 8.5 cm. An obstacle of 2 cm height and 30 cm width is placed on the channel’s bottom (see
Fig. 1a). The obstacle is mirror symmetric and plays the role of a wave maker during the periodic oscillations
of the channel along its length. To produce a net mean flow (mass transport), a left/right asymmetry must be
introduced in the system. For the actual investigation, the asymmetry will be produced by anharmonic channel
oscillations. The acceleration of the oscillatory rotating tank with respect to the laboratory frame ã(t̃) has a shape
inspired from the saw tooth. To violate the symmetry ã(t̃) = ã(t̃0 − t̃), it is sufficient to take only the first two
terms of the Fourier series which converge to the saw tooth function, namely, to add to the fundamental harmonic
of frequency f̃ a second one of double frequency:

ã(t̃) = ã0(sin(ω̃t̃) + α sin(2ω̃t̃)), (1)

where ω̃ = 2πf̃ is the angular excitation frequency and α = ±1/2 for the saw tooth function expansion.
We wish to study the formation of waves for a wide region of the excitation frequency f . For technical reasons,

we keep the maximum velocity of the excitation constant and by taking

ã0 = b f̃ (2)

with b = 0.65 m/s leads to the maximal velocity of ṽmax1 = b/(2π) for the fundamental harmonic and ṽmax2 =
b/(4π) for the double frequency. This results in a maximal total velocity of about 0.16 m/s. The maximal centrifugal

Fig. 1 (a) The sketch of
the setup. A
two-dimensional problem
under periodic boundary
condition is considered.
(b) General view of the
tank placed on a rotating
table. The outer channel
marked with a red arrow is
used to study surface waves
and their interactions (for
more details regarding the
experimental setup, see Ref.
[10])
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Fig. 2 One frame from the
Go-Pro camera. The lighter
regions designate the
channel’s bottom and the
water surface in the middle
of the circular channel. The
arrows represent the
velocities calculated with
the PIV method. The
boundary layer of around
hb = 2 mm has been
eliminated from the flow
calculation

acceleration is thus two orders of magnitude smaller than the gravity. Therefore in our study, the curvature can
be neglected. For this study, we use only data from videos recorded with a Go-Pro Hero 4 camera with a 8 mm
rectilinear custom objective. The camera is located on the opposite side of the obstacle, and the channel is
illuminated with a green 75 mW MediaLas laser sheet. The resolution is 1920 × 1800 pixels, and the frame rate
is 60 frames/s. A mixture of 1 μm silver-covered and non-covered glass spheres is diffused in water and used as
PIV trackers. Close to the bottom and the water/air interface, the light intensity is higher, see Fig. 2. The PIV
velocities are calculated applying PIVmat app of MATLAB R2021a.

2.2 Experimental results

From the surface deflection h̃ − h̃0, one finds the quantity:

〈(h̃ − h̃0)2〉(x̃) =
1
T̃

∫ T̃

0

(h̃(x, t) − h̃0)2 dt̃, T̃ = 2π/ω̃, (3)

which is related to the potential energy. During the wave–wave interaction, we expect to have regions with nodes
(with minimum of amplitude and energy) and antinodes (with maximum of amplitude and energy) whose positions
may vary with frequency. To reduce this effect, we plot the maximum value of (3) along the x coordinate from the
camera cut across from the obstacle of about 23 cm (blue curve in Fig. 3).

The question is now to see how far an anharmonic lateral excitation of the form (1) can cause a mass transport
through the channel. To this end, a method measuring the mean flow is developed. The mean flow is expected
to be much smaller than the instantaneous flow produced by the tank oscillations. Therefore, a lot of attention
should be paid to minimize the errors. We first calculate the instantaneous flux with the camera time resolution
of 1/60 s. For our experiments, the boundary layer is of the order hb = 2 mm. The PIV measurements of the
horizontal velocity component ũ are not precise near the bottom boundary and near the surface. Also, we found
that the velocity profile in the fluid bulk is almost constant in the vertical direction and is well resolved by the
PIV algorithm. The surface deformation is taken into account at each moment of time and each horizontal x̃
coordinate. To calculate the instantaneous flux

Φ̃(x̃, t̃) =
∫ h̃

hb

ũ(x̃, z̃, t̃) dz̃, (4)

we apply a linear extrapolation in the vertical direction of the velocity field from the boundary layer limit to the
surface. If the flow is time periodic, the time mean

Φ̃(x̃) =
1
T̃

∫ T̃

0

Φ̃(x̃, t̃) dt̃, (5)

should not depend on x̃ due to mass conservation. Finally, the flux (5) is averaged with respect to x̃ to minimize
the errors. The x̃ and t̃ averaged measured volume flux is plotted in red in Fig. 3.
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Fig. 3 Experimentally
found resonance curves.
Blue: mean square of
surface displacement (3).
Red: averaged flow through
the channel

Resonance curves in terms of mean square surface deflection have been already studied in [9]. Because the study
has been performed for the case of solid barriers, only reflection modes were found. Those modes correspond to
odd multiples of the fundamental frequency f0. Using a simple intuitive model, it was shown that the period of the
fundamental mode is roughly the time for the wave to travel forth and back along the channel: T̃0 = 2L̃/c̃0, where
c̃0 is the shallow water wave velocity. Mean flow was not possible due to the barriers that completely blocked the
flow. For the actual study, the bottom elevation permits also wave transmission and mean flow. For this reason,
also even multiples of the fundamental frequency f0 can be found. The first transmission mode has a period given
by the one time travel of the channel length (T̃1, transm = L̃/c̃0 and f̃1, transm = 2f̃0). The wave will reach the
bottom elevation when both move in the same direction and thus will be enhanced. Because of the non-linear
effects, a flow can be driven by waves. We expect stronger waves to produce higher mean flows. However, one can
see in Fig. 3 that although one has the same number of maxima for the mean flow as for wave mean square surface
deviation, the mean flow resonance frequencies are always a little smaller than those of wave mean square surface
deviation.

3 Theoretical framework

3.1 Long wave integrated boundary layer model

Because the centrifugal and Coriolis forces are small with respect to gravity, we consider in our numerical inves-
tigation a straight channel with periodic boundary. The ratio of depth of the layer to horizontal wavelength is of
the size h̃0/L̃ ≈ 0.01 and a long wave approximation seems to be in order. With the non-dimensional variables
(without tildes)

(x̃, z̃) = h̃0 (x, z), (ũ, w̃) = c̃0 (u, w), t̃ = (h̃0/c̃0) t = τ t, ã = a g,

the Navier–Stokes eqs. in the accelerated frame of the channel reduce to

∂tu + ∂xu
2 + ∂z(uw) =

1
Re

∂zzu − ∂xh + a(t), (6)

where ∂xh denotes the gradient of the hydrostatic pressure P = P0 + (h − z) and the surface tension effects are

neglected. In (6), Re = c̃0h̃0/ν is the Reynolds number and c̃0 =
√

gh̃0 the shallow water wave velocity. The
position of the free surface h(x , t) is determined by the kinematic boundary condition

∂th = wz=h − uz=h∂xh. (7)

Let the ground be described by the function f (x ). The boundary conditions for the velocity read

u = w = 0 at z = f(x), ∂zu = 0 at z = h(x, t).
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Fig. 4 Flow profiles. Blue:
parabolic, red: boundary
layer, β = 50, black:
inviscid

According to (4), we introduce the flow rate

q(x, t) =
∫ h(x, t)

f(x)

dz u(x, z, t)

and the local depth

H(x, t) = h(x, t) − f(x).

Integrating (6) over z from f to h yields

∂tq + ∂x〈u2〉z = − 1
Re

∂zu|z=f−H∂x(H + f) + H a(t) (8)

∂tH = − ∂xq, (9)

where 〈u2〉z =
∫ h

f
dz u2.

The two Eqs. (8,9) can be considered as an integrated boundary layer model (IBL), they are (1+1)-dimensional
and will be discussed in the following. To close the system, we need an explicit profile u(z ). Assuming a parabolic
profile (thin film equation), one finds ∂zu|z=f= 3q/H2 and 〈u2〉z = 6q2/(5H). Taking the values of the experiment,
we have Re ≈ 3.5 · 104, which would lead to a rather long viscous dissipation time of Reτ/3 ≈ 1000 s, much longer
than that observed in the laboratory. A possibility to obtain a smaller effective Reynolds number is by changing
the velocity profile to a boundary layer profile (Fig. 4)

u =
q

H
K

(
1 − cosh β(h − z)

cosh βH

)
. (10)

The profile (10) is a solution of a viscous fluid on a laterally oscillating plane with 1/β =
√

2ν/(ω̃h̃2
0) as the size of

the boundary layer [11–13]. In our case, 1/β ≈ 0.02, leading to an effective viscous damping enlarged by a factor
50. In addition, we compute K ≈ 1 from

∫ h

f
dz u = q and ∂zu|z=f= βq/H, 〈u2〉z = q2/H.

3.2 Numerical method

Assuming the profile (10), Eqs. (8,9) turn into

∂tq + ∂x

(
q2

H

)
= − β

Re

q

H
− H∂x(H + f) + H a(t) (11)

∂tH = − ∂xq. (12)
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To integrate this set numerically, a semi-implicit pseudo-spectral method is established; for details see [14]. Due to
the periodic lateral boundary conditions, fast Fourier transform of (11,12) can be applied and parts of the linear
terms on the r.h.s. are treated at the time t + δt, where δt is the time step. The scheme has the form

M ·
(

q̂(k, t + δt)
Ĥ(k, t + δt)

)
=

(
Q̂(k, t)

Ĥ(k, t)/δt

)
, (13)

where q̂, Ĥ are the spatial Fourier transforms of q , H , respectively, Q̂ denotes the Fourier transform of

Q(x, t) = −∂x

(
q2

H

)
− β

Re

(
1
H

− 1
)

q − (H − 1)∂xH − H∂xf +
q

δt
(14)

and the matrix M reads

M =

⎛
⎜⎝

1
δt

+
β

Re
, ik − a(t)

ik,
1
δt

⎞
⎟⎠. (15)

The derivatives in real space of (14) are approximated by finite differences. The semi-implicit method allows for a
rather large time step δt = 0.5 · 10−4 and the code performs on small computers.

3.3 Results

The obstacle is modulated by the function

f(x) =

⎧⎨
⎩

hm cos2
(

π


m
(x − L/2)

)
, L/2 − 
m/2 < x < L/2 + 
m/2

0, else

with h̃m = 2 cm and 
̃m = 0.6 m, corresponding to a symmetric elevation of height hm and length 
m. The lateral
excitation is chosen with (1). Figure 5 shows a frequency scan of the 5 cm depth liquid. The frequency runs from
0.03 Hz to 0.33 Hz in 100 steps, the driving amplitude a0 is adjusted according to (2).

A quite high agreement with our experiments concerning the mean square amplitude perturbations is achieved.
At least a qualitative agreement is found for the flow rates. Note that the absolute values from Fig. 5 must be
multiplied by the channels’ width (8.5 cm) to compare with those of Fig. 3. The absolute values of the flow rate,
however not the positions of their maxima, depend sensitively on the damping rate β/Re, which was chosen larger
here by a factor 3 to ensure numerical stability. The maxima of the flow rates are always oriented left from those
of the surface elevations, in agreement with the measurements. As expected, the flow rate changes sign for α = 1/2
and vanishes for α = 0.

The surface structures depend strongly on the driving frequency. They are pronounced best close to a resonance.
Figure 6 shows space–time plots for three different α just before the first strong resonance at f̃ = 0.13 Hz. Isolines

Fig. 5 Numerically found
resonance curves from the
IBL (8, 9). Blue: mean
square of surface
displacement measured
opposite to the obstacle,
similar to the experiment.
Red: averaged flow through
the channel for α = −1/2
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Fig. 6 Space–time plots close to resonance f̃ = 0.13 Hz. For α < 0, mass is transported to the right side. Green: wave
troughs, red: wave crests

of the surface function h̃(x, t) = c are plotted for several c, where green colors correspond to c < h̃0 (troughs) and
red to c > h̃0 (crests).

4 Conclusion

Wave resonances in terms of surface displacement and averaged mass flow generation have been investigated in
an annular channel. The waves are generated by mechanical anharmonic periodic oscillations of the walls and the
ground with given frequency f in the direction of the channel. An immersed mirror symmetric obstacle moves with
the channel. In this way, periodic boundary conditions are realized in the experiment. We found that an averaged
mass flow occurs if the symmetry a(t) = a(t0 − t) is violated.

Due to the fact that in the periodic channel not only transmission, but also reflection at the obstacle occur,
resonances are expected at frequencies multiple of f̃r = c̃0/(2L̃). As we have discussed in [9], odd multiples of f0
correspond to reflection modes, and even multiples appear only when transmission occurs. Both resonances emerge
clearly in our experiment as well as in the numerical solutions based on a long wave model.

We found that the peak maxima of surface displacement and mass flow are slightly shifted for both experimental
data and numerical results. The peak of the mean flow occurs always at a smaller frequency than that of the mean
square displacement. This demonstrates that mass flow generation depends in a rather sophisticated way on the
wave amplitude. Thereby, the (nonlinear) inertia terms play a fundamental role. For small Reynolds numbers, i.e.,
high viscosity and/or very thin layers, inertia can be neglected and our numerical solutions show neither resonances
nor net mass flow for periodic oscillations, independently of the symmetry of the shape a(t) of the excitations.
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