Skip to main content
Log in

Abstract

We investigate the unexplored regions of the dark photon parameter space to find a search strategy suitable to probe these. We show how displaced track searches at colliders with large 4pi trackers around the interaction point are excellent choices for exploring these uncharted regions. As an example, we study in detail the sensitivity of the Belle II trackers to dark photons which mediate interactions between the visible and dark sectors. We also show that the same strategy can be employed by other experiments to achieve the same goal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

Data sets generated during the current study are available from the corresponding author upon reasonable request.

Notes

  1. Even more so for the \(\Gamma _I=10\Gamma _V\) case which has not been shown in the figure.

  2. The conservative lower limit on the radial distance, \(r>10\) cm, that we allow ourselves effectively vetoes SM backgrounds from \(K_L\) and \(\Lambda\) decays and those from secondary interactions.

References

  1. R.L. Workman, et al. Review of particle physics. PTEP 2022, 083–01 (2022). https://doi.org/10.1093/ptep/ptac097

  2. K. Asai, S. Iwamoto, Y. Sakaki, D. Ueda, New physics searches at the ILC positron and electron beam dumps. JHEP 09, 183 (2021). https://doi.org/10.1007/JHEP09(2021)183. arXiv:2105.13768 [hep-ph]

  3. T. Bose, et al., Report of the topical group on physics beyond the standard model at energy frontier for snowmass 2021 (2022). arXiv:2209.13128 [hep-ph]

  4. S. Sekmen, Highlights on supersymmetry and exotic searches at the LHC (2022). arXiv:2204.03053 [hep-ex]

  5. P.J. Fox, et al. TF08 snowmass report: bsm model building (2022). arXiv:2210.03075 [hep-ph]

  6. H. Georgi, D.B. Kaplan, L. Randall, Manifesting the invisible axion at low-energies. Phys. Lett. B 169, 73–78 (1986). https://doi.org/10.1016/0370-2693(86)90688-X

    Article  ADS  Google Scholar 

  7. L.M. Krauss, D.J. Nash, A viable weak interaction axion? Phys. Lett. B 202, 560–567 (1988). https://doi.org/10.1016/0370-2693(88)91864-3

    Article  ADS  Google Scholar 

  8. H. Fukuda, K. Harigaya, M. Ibe, T.T. Yanagida, Model of visible QCD axion. Phys. Rev. D 92(1), 015021 (2015). https://doi.org/10.1103/PhysRevD.92.015021. arXiv:1504.06084 [hep-ph]

    Article  ADS  Google Scholar 

  9. D.S.M. Alves, N. Weiner, A viable QCD axion in the MeV mass range. JHEP 07, 092 (2018). https://doi.org/10.1007/JHEP07(2018)092. arXiv:1710.03764 [hep-ph]

  10. M. Bauer, M. Neubert, S. Renner, M. Schnubel, A. Thamm, Consistent treatment of axions in the weak chiral lagrangian. Phys. Rev. Lett. 127(8), 081803 (2021). https://doi.org/10.1103/PhysRevLett.127.081803. arXiv:2102.13112 [hep-ph]

    Article  ADS  Google Scholar 

  11. T. Bandyopadhyay, S. Ghosh, T.S. Roy, ALP-Pions generalized. Phys. Rev. D 105(11), 115039 (2022). https://doi.org/10.1103/PhysRevD.105.115039. arXiv:2112.13147 [hep-ph]

    Article  ADS  Google Scholar 

  12. L.B. Okun, Limits of electrodynamics: paraphotons? Sov. Phys. JETP 56, 502 (1982)

    ADS  Google Scholar 

  13. P. Galison, A. Manohar, Two z’s or not two z’s? Phys. Lett. B 136, 279–283 (1984). https://doi.org/10.1016/0370-2693(84)91161-4

    Article  ADS  Google Scholar 

  14. B. Holdom, Two U(1)’s and epsilon charge shifts. Phys. Lett. B 166, 196–198 (1986). https://doi.org/10.1016/0370-2693(86)91377-8

    Article  ADS  Google Scholar 

  15. P. Fayet, On the search for a new spin 1 boson. Nucl. Phys. B 187, 184–204 (1981). https://doi.org/10.1016/0550-3213(81)90122-X

    Article  ADS  Google Scholar 

  16. R. Foot, New physics from electric charge quantization? Mod. Phys. Lett. A 6, 527–530 (1991). https://doi.org/10.1142/S0217732391000543

    Article  ADS  Google Scholar 

  17. X.G. He, G.C. Joshi, H. Lew, R.R. Volkas, New Z-prime phenomenology. Phys. Rev. D 43, 22–24 (1991). https://doi.org/10.1103/PhysRevD.43.R22

    Article  ADS  Google Scholar 

  18. X.-G. He, G.C. Joshi, H. Lew, R.R. Volkas, Simplest Z-prime model. Phys. Rev. D 44, 2118–2132 (1991). https://doi.org/10.1103/PhysRevD.44.2118

    Article  ADS  Google Scholar 

  19. H.-C. Cheng, L. Li, E. Salvioni, A theory of dark pions. JHEP 01, 122 (2022). https://doi.org/10.1007/JHEP01(2022)122. arXiv:2110.10691 [hep-ph]

  20. J.L. Feng, B. Fornal, I. Galon, S. Gardner, J. Smolinsky, T.M.P. Tait, P. Tanedo, Protophobic fifth-force interpretation of the observed anomaly in \(^8\)Be nuclear transitions. Phys. Rev. Lett. 117(7), 071803 (2016). https://doi.org/10.1103/PhysRevLett.117.071803. arXiv:1604.07411 [hep-ph]

    Article  ADS  Google Scholar 

  21. J.L. Feng, B. Fornal, I. Galon, S. Gardner, J. Smolinsky, T.M.P. Tait, P. Tanedo, Particle physics models for the 17 MeV anomaly in beryllium nuclear decays. Phys. Rev. D 95(3), 035017 (2017). https://doi.org/10.1103/PhysRevD.95.035017. arXiv:1608.03591 [hep-ph]

    Article  ADS  Google Scholar 

  22. C. Boehm, P. Fayet, Scalar dark matter candidates. Nucl. Phys. B 683, 219–263 (2004). https://doi.org/10.1016/j.nuclphysb.2004.01.015. arXiv:hep-ph/0305261

  23. P. Fayet, Light spin 1/2 or spin 0 dark matter particles. Phys. Rev. D 70, 023514 (2004). https://doi.org/10.1103/PhysRevD.70.023514. arXiv:hep-ph/0403226

  24. Y. Nomura, J. Thaler, Dark Matter through the Axion Portal. Phys. Rev. D 79, 075008 (2009) https://doi.org/10.1103/PhysRevD.79.075008. arXiv:0810.5397 [hep-ph]

  25. Y. Hochberg, E. Kuflik, R. Mcgehee, H. Murayama, K. Schutz, Strongly interacting massive particles through the axion portal. Phys. Rev. D 98(11), 115031 (2018). https://doi.org/10.1103/PhysRevD.98.115031. arXiv:1806.10139 [hep-ph]

    Article  ADS  Google Scholar 

  26. C.A. Manzari, J. Martin Camalich, J. Spinner, R. Ziegler, Supernova limits on muonic dark forces. Phys. Rev. D 108(10), 103020 (2023). https://doi.org/10.1103/PhysRevD.108.103020. arXiv:2307.03143 [hep-ph]

    Article  ADS  Google Scholar 

  27. D.P. Aguillard et al., Measurement of the positive muon anomalous magnetic moment to 0.20 ppm (2023). arXiv:2308.06230 [hep-ex]

  28. A.J. Krasznahorkay et al., New results on the \(^8\)Be anomaly. J. Phys. Conf. Ser. 1056(1), 012028 (2018). https://doi.org/10.1088/1742-6596/1056/1/012028

    Article  Google Scholar 

  29. A.J. Krasznahorkay, M. Csatlós, L. Csige, J. Gulyás, A. Krasznahorkay, B.M. Nyakó, I. Rajta, J. Timár, I. Vajda, N.J. Sas, New anomaly observed in He4 supports the existence of the hypothetical X17 particle. Phys. Rev. C 104(4), 044003 (2021). https://doi.org/10.1103/PhysRevC.104.044003. arXiv:2104.10075 [nucl-ex]

    Article  ADS  Google Scholar 

  30. T. Aaltonen et al., High-precision measurement of the \(W\) boson mass with the CDF II detector. Science 376(6589), 170–176 (2022). https://doi.org/10.1126/science.abk1781

    Article  ADS  Google Scholar 

  31. T. Bandyopadhyay, A. Budhraja, S. Mukherjee, T.S. Roy, A twisted tale of the transverse-mass tail. JHEP 08, 135 (2023). https://doi.org/10.1007/JHEP08(2023)135. arXiv:2212.02534 [hep-ph]

  32. A. Crivellin, B. Mellado, Anomalies in particle physics (2023). arXiv:2309.03870 [hep-ph]

  33. W. Altmannshofer, et al. The belle II physics book. PTEP 2019(12), 123–01 (2019). https://doi.org/10.1093/ptep/ptz106. arXiv:1808.10567 [hep-ex]. [Erratum: PTEP 2020, 029201 (2020)]

  34. J.P. Lees et al., Search for a dark photon in \(e^+e^-\) collisions at BaBar. Phys. Rev. Lett. 113(20), 201801 (2014). https://doi.org/10.1103/PhysRevLett.113.201801. arXiv:1406.2980 [hep-ex]

    Article  ADS  Google Scholar 

  35. A. Anastasi, et al. Limit on the production of a low-mass vector boson in \({\rm e}^{+}{\rm e}^{-} \rightarrow {\rm U}\gamma\), \({\rm U} \rightarrow {\rm e}^{+} {\rm e}^{-}\) with the KLOE experiment. Phys. Lett. B 750, 633–637 (2015). https://doi.org/10.1016/j.physletb.2015.10.003. arXiv:1509.00740 [hep-ex]

  36. J.R. Batley, et al. Search for the dark photon in \(\pi ^0\) decays. Phys. Lett. B 746, 178–185 (2015). https://doi.org/10.1016/j.physletb.2015.04.068. arXiv:1504.00607 [hep-ex]

  37. J.P. Lees et al., Search for a muonic dark force at BABAR. Phys. Rev. D 94(1), 011102 (2016). https://doi.org/10.1103/PhysRevD.94.011102. arXiv:1606.03501 [hep-ex]

    Article  ADS  Google Scholar 

  38. J.P. Lees et al., Search for invisible decays of a dark photon produced in \({e}^{+}{e}^{-}\) collisions at BaBar. Phys. Rev. Lett. 119(13), 131804 (2017). https://doi.org/10.1103/PhysRevLett.119.131804. arXiv:1702.03327 [hep-ex]

    Article  ADS  Google Scholar 

  39. R. Aaij et al., Search for dark photons produced in 13 TeV \(pp\) collisions. Phys. Rev. Lett. 120(6), 061801 (2018). https://doi.org/10.1103/PhysRevLett.120.061801. arXiv:1710.02867 [hep-ex]

    Article  ADS  Google Scholar 

  40. A. Anastasi, et al. Combined limit on the production of a light gauge boson decaying into \(\mu ^+\mu ^-\) and \(\pi ^+\pi ^-\). Phys. Lett. B 784, 336–341 (2018). https://doi.org/10.1016/j.physletb.2018.08.012. arXiv:1807.02691 [hep-ex]

  41. E. Cortina Gil, et al., Search for production of an invisible dark photon in \(\pi ^0\) decays. JHEP 05, 182 (2019). https://doi.org/10.1007/JHEP05(2019)182. arXiv:1903.08767 [hep-ex]

  42. R. Aaij et al., Search for \(A^{\prime }\rightarrow \mu ^+\mu ^-\) Decays. Phys. Rev. Lett. 124(4), 041801 (2020). https://doi.org/10.1103/PhysRevLett.124.041801. arXiv:1910.06926 [hep-ex]

    Article  ADS  Google Scholar 

  43. J.D. Bjorken, S. Ecklund, W.R. Nelson, A. Abashian, C. Church, B. Lu, L.W. Mo, T.A. Nunamaker, P. Rassmann, Search for neutral metastable penetrating particles produced in the SLAC beam dump. Phys. Rev. D 38, 3375 (1988). https://doi.org/10.1103/PhysRevD.38.3375

    Article  ADS  Google Scholar 

  44. E.M. Riordan et al., A search for short lived axions in an electron beam dump experiment. Phys. Rev. Lett. 59, 755 (1987). https://doi.org/10.1103/PhysRevLett.59.755

    Article  ADS  Google Scholar 

  45. A. Konaka et al., Search for neutral particles in electron beam dump experiment. Phys. Rev. Lett. 57, 659 (1986). https://doi.org/10.1103/PhysRevLett.57.659

    Article  ADS  Google Scholar 

  46. J. Blumlein et al., Limits on neutral light scalar and pseudoscalar particles in a proton beam dump experiment. Z. Phys. C 51, 341–350 (1991). https://doi.org/10.1007/BF01548556

    Article  Google Scholar 

  47. J. Blumlein et al., Limits on the mass of light (pseudo)scalar particles from Bethe-Heitler e+ e- and mu+ mu- pair production in a proton - iron beam dump experiment. Int. J. Mod. Phys. A 7, 3835–3850 (1992). https://doi.org/10.1142/S0217751X9200171X

    Article  ADS  Google Scholar 

  48. Y.-D. Tsai, P. deNiverville, M.X. Liu, Dark photon and muon \(g-2\) inspired inelastic dark matter models at the high-energy intensity frontier. Phys. Rev. Lett. 126(18), 181801 (2021). https://doi.org/10.1103/PhysRevLett.126.181801. arXiv:1908.07525 [hep-ph]

    Article  ADS  Google Scholar 

  49. M. Davier, H. Nguyen Ngoc, An Unambiguous Search for a Light Higgs Boson. Phys. Lett. B 229, 150–155 (1989). https://doi.org/10.1016/0370-2693(89)90174-3

  50. S. Abrahamyan, et al. Search for a new gauge boson in electron-nucleus fixed-target scattering by the APEX experiment. Phys. Rev. Lett. 107, 191804 (2011). https://doi.org/10.1103/PhysRevLett.107.191804. arXiv:1108.2750 [hep-ex]

  51. F. Bergsma et al., Search for Axion like particle production in 400-GeV proton-copper interactions. Phys. Lett. B 157, 458–462 (1985). https://doi.org/10.1016/0370-2693(85)90400-9

    Article  ADS  Google Scholar 

  52. S.N. Gninenko, Stringent limits on the \(\pi ^0 \rightarrow \gamma X, X \rightarrow e+e-\) decay from neutrino experiments and constraints on new light gauge bosons. Phys. Rev. D 85, 055027 (2012). https://doi.org/10.1103/PhysRevD.85.055027. arXiv:1112.5438 [hep-ph]

  53. M. Ablikim et al., Future Physics Programme of BESIII. Chin. Phys. C 44(4), 040001 (2020). https://doi.org/10.1088/1674-1137/44/4/040001. arXiv:1912.05983 [hep-ex]

    Article  ADS  Google Scholar 

  54. S. Adhikari, et al. The GLUEX beamline and detector. Nucl. Instrum. Meth. A 987, 164807 (2021). https://doi.org/10.1016/j.nima.2020.164807. arXiv:2005.14272 [physics.ins-det]

  55. T. Bandyopadhyay, S. Chakraborty, S. Trifinopoulos, Displaced searches for light vector bosons at Belle II. JHEP 05, 141 (2022). https://doi.org/10.1007/JHEP05(2022)141. arXiv:2203.03280 [hep-ph]

  56. P. Ilten, Y. Soreq, M. Williams, W. Xue, Serendipity in dark photon searches. JHEP 06, 004 (2018). https://doi.org/10.1007/JHEP06(2018)004. arXiv:1801.04847 [hep-ph]

  57. T. Fujiwara, T. Kugo, H. Terao, S. Uehara, K. Yamawaki, Nonabelian anomaly and vector mesons as dynamical gauge bosons of hidden local symmetries. Prog. Theor. Phys. 73, 926 (1985). https://doi.org/10.1143/PTP.73.926

    Article  ADS  Google Scholar 

  58. E. Bertholet, S. Chakraborty, V. Loladze, T. Okui, A. Soffer, K. Tobioka, Heavy QCD axion at belle II: displaced and prompt signals (2021). arXiv:2108.10331 [hep-ph]

  59. N. Sabti, J. Alvey, M. Escudero, M. Fairbairn, D. Blas, Refined bounds on MeV-scale thermal dark sectors from BBN and the CMB. JCAP 01, 004 (2020). https://doi.org/10.1088/1475-7516/2020/01/004. arXiv:1910.01649 [hep-ph]

  60. Search for long-lived particles decaying to a pair of muons in pp collisions at \(\sqrt{s}=13.6~{\rm TeV}\) with 2022 data. Technical report, CERN, Geneva (2023). https://cds.cern.ch/record/2868338

  61. Bhattacherjee, B., Konar, P., Ngairangbam, V.S., Solanki, P.: LLPNet: Graph autoencoder for triggering light long-lived particles at HL-LHC (2023). arXiv:2308.13611 [hep-ph]

  62. G. Aad, et al. Search for light long-lived neutral particles that decay to collimated pairs of leptons or light hadrons in pp collisions at \(\sqrt{s}\) = 13 TeV with the ATLAS detector. JHEP 06, 153 (2023). https://doi.org/10.1007/JHEP06(2023)153. arXiv:2206.12181 [hep-ex]

  63. T. Ferber, C. Garcia-Cely, K. Schmidt-Hoberg, BelleII sensitivity to long–lived dark photons. Phys. Lett. B 833, 137373 (2022). https://doi.org/10.1016/j.physletb.2022.137373. arXiv:2202.03452 [hep-ph]

  64. A. Accardi, et al. Strong interaction physics at the luminosity frontier with 22 GeV electrons at jefferson lab (2023). arXiv:2306.09360 [nucl-ex]

  65. H. Abreu, et al. Search for dark photons with the FASER detector at the LHC (2023). arXiv:2308.05587 [hep-ex]

  66. D. Curtin et al., Long-lived particles at the energy frontier: the MATHUSLA physics case. Rept. Prog. Phys. 82(11), 116201 (2019). https://doi.org/10.1088/1361-6633/ab28d6. arXiv:1806.07396 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  67. V.V. Gligorov, S. Knapen, M. Papucci, D.J. Robinson, Searching for long-lived particles: a compact detector for exotics at LHCb. Phys. Rev. D 97(1), 015023 (2018). https://doi.org/10.1103/PhysRevD.97.015023. arXiv:1708.09395 [hep-ph]

    Article  ADS  Google Scholar 

  68. B. Bhattacherjee, H.K. Dreiner, N. Ghosh, S. Matsumoto, R. Sengupta, P. Solanki, Light long-lived particles at the FCC-hh with the proposal for a dedicated forward detector FOREHUNT and a transverse detector DELIGHT (2023). arXiv:2306.11803 [hep-ph]

  69. H. Davoudiasl, R. Marcarelli, E.T. Neil, Displaced signals of hidden vectors at the electron-ion collider (2023). arXiv:2307.00102 [hep-ph]

  70. R. Schäfer, F. Tillinger, S. Westhoff, Near or far detectors? A case study for long-lived particle searches at electron-positron colliders. Phys. Rev. D 107(7), 076022 (2023). https://doi.org/10.1103/PhysRevD.107.076022. arXiv:2202.11714 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledges Sabyasachi Chakraborty and Sokratis Trifinopoulos for their contributions to the development of the analysis techniques and Igal Jaegle for pointing out the suitability of the GlueX experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Triparno Bandyopadhyay.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandyopadhyay, T. Dark photons from displaced vertices. Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01087-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-024-01087-5

Navigation