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Abstract Time-dependent dynamics is ubiquitous in the natural world and beyond. Effectively analysing
its presence in data is essential to our ability to understand the systems from which it is recorded. However,
the traditional framework for dynamics analysis is in terms of time-independent dynamical systems and
long-term statistics, as opposed to the explicit tracking over time of time-localised dynamical behaviour.
We review commonly used analysis techniques based on this traditional statistical framework—such as
the autocorrelation function, power-spectral density, and multiscale sample entropy—and contrast to an
alternative framework in terms of finite-time dynamics of networks of time-dependent cyclic processes.
In time-independent systems, the net effect of a large number of individually intractable contributions
may be considered as noise; we show that time-dependent oscillator systems with only a small number of
contributions may appear noise-like when analysed according to the traditional framework using power-
spectral density estimation. However, methods characteristic of the time-dependent finite-time-dynamics
framework, such as the wavelet transform and wavelet bispectrum, are able to identify the determinism and
provide crucial information about the analysed system. Finally, we compare these two frameworks for three
sets of experimental data. We demonstrate that while techniques based on the traditional framework are
unable to reliably detect and understand underlying time-dependent dynamics, the alternative framework
identifies deterministic oscillations and interactions.

1 Introduction

A fundamental problem in the analysis of experimen-
tal time-series data is the identification and filtering of
“noise”, which is considered to obscure the real underly-
ing dominant mechanisms responsible for the function-
ing of the particular system from which the time-series
was recorded [1–3]. This is therefore relevant to a huge
range of scientific fields and physical problems, includ-
ing, to name a few: engineering [4], quantum and par-
ticle physics [5, 6], geophysics [7], biology and medicine
[8–11], power grids [12], and economics [13]. Although
it is well known that there are some dynamical phe-
nomena in which the randomness of “noise” actually
itself plays an integral part in the functioning of the
system [14–16], generally speaking one seeks to sep-
arate deterministic functioning from the fog of back-
ground processes that simply impede the visibility of
the deterministic functioning (“observational noise”),
or even the actual efficiency of the deterministic func-
tioning (“dynamical noise”). Indeed, in general, it is
precisely this connotation of being “present but not
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positively functional” that is generally conjured in the
usage of the word “noise” [17–27].

Despite the wide relevance and significant impact of
this problem, there is neither a unified mathematical
characterisation nor consensus physical explanation for
the existence of noise. For instance, noise has been var-
iously defined as follows:

1. A random process [4, 8, 17–21] that can be defined
by

(a) an uncorrelated evolution [20, 22],
(b) incoherence [7, 23],
(c) a lack of deterministic reproducibility [24].

2. Any behaviour that cannot be explained by consid-
eration of the physical system itself [8, 11, 25–27].

In this paper, we propose an alternative physical mech-
anism through which the so-called “1/f noise” can be
generated and a corresponding mathematical frame-
work through which it can be understood.

Noise in its most common definition is a phenomenon
whose constituent frequencies each contribute signifi-
cant power, with no single frequency contributing far
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more than every other, and with contributions from a
broad range of frequencies. We now outline the origin
and development of this definition.

• In 1905 and 1906, Einstein and Smolochowski charac-
terised Brownian motion, a paradigmatic example of
noise, as due to the impact of intractably many water
molecules on pollen grains [28, 29]. This is emblem-
atic of one of the dominant understandings of the
physics of noise as a very high-dimensional process.

• In the 1920s, Johnson and Schottky observed broad-
frequency current fluctuations in a vacuum tube.
Many explanations for this were proposed, including
atomic impurities [30, 31].

• In the 1960s, Mandelbrot suggested that ‘1/f’ noise
and multifractals are related to the same physical
phenomena, characterised by an extension of correla-
tions globally throughout the system (‘wildness’) and
by obeying some law or symmetry that holds across
scales (‘self-affinity’) [32]. It was more recently shown
that ‘1/f’ noise and fractals can be unified in a self-
similar hierarchy [33].

• In 1976, Hasselmann proposed that determinis-
tic chaotic forcing of a faster timescale than the
timescales of the forced system can be an origin of
noise-like behaviour in climate contexts, with the
forcing dynamical system being a “weather” system
and the forced dynamical system being a “climate”
system [34].

• In 1987, once again, the field of dynamics is applied
to try and explain the origin of noise [35]. In this
framework, noise is thought to arise in high-spatial-
dimensional dissipative systems with self-organised
critical states. Such systems form minimally stable
states on a range of length scales. It was argued that
small perturbations to the system, propagating exclu-
sively within these differently scaled states, produced
a response on a range of temporal scales, i.e., noise.

In all of these physical explanations for noise, no
role is played by the possibility of temporal varia-
tions in the parameters of the processes underlying
the mechanism of noise emergence; rather, to generate
the broad-frequency spectrum, these mechanisms rely
on either the superposition of many time-independent
components, i.e., high-dimensionality , or on very fast-
timescale aperiodic dynamics.

As a result of its inscrutability under traditional
analysis techniques, noise is commonly associated with
a random evolution where there is little correlation
between subsequent values in time. Hence, rather
than constructing a high-dimensional time-independent
deterministic model, noise is often represented by (sta-
tionary) stochastic processes.

Our alternative explanation is instead based on the
observation that the vast majority of real physical sys-
tems are open to matter and energy exchanges, and
as a result exhibit time-dependent dynamics. We will
demonstrate that models based in this principle can
generate a noise-like spread of power contributions

across a wide frequency range while being both low-
dimensional and consisting of an entirely deterministic,
highly correlative, evolution rule.

The deterministic rules by which this apparent noise
arises provide much more useful information about a
system than assuming it to be a stochastic process.
However, the deterministic nature of this supposed
noise only becomes apparent when the dimension of
time is explicitly incorporated in the analysis. Hence,
in systems where this mechanism is possible, which we
will outline further in Sect. 2.2, accounting for it may
lead to much more informative data analysis and mod-
elling approaches.

Due to the time-dependence of this mechanism, tra-
ditional and widely used analysis techniques that are
based on the assumption of time-independence, such
as the power-spectral density, can produce misleading
results in this context. This problem also cannot gen-
erally be resolved by methods based in the theory of
nonstationary stochastic processes, as we will discuss
further in the next section. We will hence outline the
theoretical (in Sect. 2) and practical (in Sects. 3 and
4) need for an alternative analysis framework based in
deterministically time-dependent dynamics, in addition
to demonstrating its aforementioned advantages.

2 Two frameworks for describing physical
systems and their output time-series

In this section, we introduce an alternative frame-
work for analysing time-series data, named the “non-
autonomous phase network dynamics” (NPND) frame-
work. This framework assumes the networks of underly-
ing processes responsible for producing the time-series
to be deterministically non-autonomous, particularly
via time-varying frequency parameters. This is in con-
trast to the classical analysis framework, which instead
treats time-series as sample realisations of a stochastic
process.

A very common mode of analysis in the classical
framework is the estimation of the power-spectral den-
sity (PSD) of a time-series. This analysis may be used
to identify the frequency of deterministic processes evi-
dent in the time-series (through identification of clear,
isolated spectral peaks). It may alternatively be used
to classify the time-series as “noise” by the absence of
such peaks, with the spectral power instead conform-
ing to a certain linear gradient on a log–log plot of
PSD against frequency. For example, a time-series is
considered to be “white noise” if its PSD linear gradi-
ent is constant, while it is considered “pink noise” if the
power is proportional to 1/fβ for some β ∈ (0, 2), and
“blue noise” for some β ∈ (−2, 0), where f is the fre-
quency. This classical framework is described in more
detail in Appendix A.

The emergence of noise in the classical framework is
commonly explained by two physical origins:
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Fig. 1 A physical analogy for the difference between two
mechanisms for the generation of signal components that
may be identified as noise by a typical analysis as described
in Appendix A. On the left, representing a classical mech-
anism of noise emergence, we have the classical Brownian
motion experiment of pollen grains on undisturbed water,
performing highly complex motion due to the large number
of small mesoscopic-scale interactions with water molecules.
On the right, metaphorically representing our NPND frame-
work described in Sect. 2.1, we have a less complex motion
arising from water currents induced by an external pump
whose strength has the freedom to modulate according to
external factors. In the latter case, an entirely macroscopic-
level deterministic description of the origin of the motion in
terms of the time-dependent behaviour of the pump would
be obtainable by suitable time-resolved time-series analysis
of the motion

• as the net effect of many individually intractable
small influences (e.g., Brownian motion of pollen par-
ticles [28]);

• as a chaotic process (e.g., turbulent “subgrid” pro-
cesses in climate models [34, 36]).

Our framework identifies a third possible origin
for apparent noise: few, analytically tractable, non-
autonomous processes, appearing like noise when anal-
ysed under the assumptions of the classical framework.
Such processes can be found wherever there is a thermo-
dynamically open system, which is to say, throughout
all natural systems.

The emergence of these systems can be explained
through a physical analogy of an adaptation to the
classical Brownian motion experiment, which is closely
identified with the idea of noise as intractably many
small influences. In this analogy, presented in Fig. 1, we
replace the mesoscopic water-molecule collisions with
a macroscopic pump that disturbs the surface of the
water with a non-strictly-periodic rhythm, modulat-
ing the motion of the pollen grains in a deterministic
but temporally irregular manner. This, hence, confers a
time-dependent aspect to the pollen grains’ dynamics.

2.1 Non-isolated systems and the NPND framework

The classical analysis framework, as discussed above
and in Appendix A, treats time-series as products of a
stochastic process, but models the underlying physical
system as autonomous differential equations.

This modelling choice represents a physical assump-
tion that the system can be treated either as (a) entirely
isolated from the rest of the universe, or at least as
(b) unable to have any interaction with its environment
besides dissipation of energy into its environment. In
other words, an autonomous differential equation can
only describe an unforced physical system.

However, this is a restriction that rules out all natural
physical systems. If one wishes to incorporate the time-
dependent external forcing that is present in all such
systems into a dynamical model, as in our framework,
then this model cannot be an autonomous differential
equation.

A “classical” way to incorporate such external forc-
ing is to model it as dynamical noise with a station-
ary probability distribution, and another approach is
to model it as periodic or quasiperiodic. However, one
cannot typically expect that a system open to influence
from an ever-changing environment will exhibit charac-
teristics that are time-independent or that follow some
indefinite-time pattern such as quasiperiodicity.

One approach towards overcoming this issue when
analysing time-series is to generalise concepts from the
theory of stationary stochastic processes and estima-
tion of their time-independent statistical parameters
to the broader theory of nonstationary stochastic pro-
cesses and estimation of their time-dependent statistical
parameters. However, a difficulty with this approach is
that one must assume that there is a time scale on which
the stochastic process is approximately an ergodic sta-
tionary process. This requires that the time scale be suf-
ficiently slow that the approximate ergodicity is mani-
fested in individual sample realisations, and the non-
stationarity itself must then take place on an even
slower time scale. In short, the framework of parame-
ter estimation for generic nonstationary processes really
assumes that the process represents an adiabatically
slow parameter drift through a parameter-dependent
ergodic stationary stochastic process.

An example of how this framework may be applied
is in the use of methods such as moving-window auto-
correlation for early warning of a bifurcation-induced
critical transition, when a parameter of an autonomous
dynamical system subject to stationary noise is being
slowly forced. A specific example is the anthropogenic
forcing of climate tipping elements, when the unforced
tipping element is modelled as an autonomous system
subject to stationary noise [37]. In this approach, the
temporal variation of external forcing, typically bound
to be present in systems that are freely open to general
influences from the surrounding world, is not consid-
ered.

In seeking to solve the problem of analysis of non-
isolated systems, rather than adopting the classical
approach for stationary processes to nonstationary
stochastic processes, we re-derive the physical princi-
ples on which any such framework is based.

We consider the observation that the thermodynamic
openness of natural systems implies a time-dependent
forcing on these systems, which leads to bounded, non-
static system behaviour. An important role will be
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played by cyclic or oscillatory processes within such
a system. However, in contrast to the classical model
of cyclic processes that posses a stable periodic orbit
resulting from an autonomous dynamical system, these
processes do not necessarily possess any internal strict
periodicity. Instead, they progress through the cycle in
a way that is inextricably linked to their ever-changing
environment. Further important functions of the system
will be played by interactions between these processes,
which themselves may vary in time.

The basis of our framework naturally leads to a model
of networks of non-autonomous oscillatory differential
equations.

Assuming the system’s evolution can be modelled
by a finite-dimensional differential equation, we can
express our above physical description in mathemati-
cal language as follows:

X(t) = H(θ1(t), . . . , θn(t), t)
[maybe + noise, maybe + other components]

(1)

θ̇i(t) = Fi(2πfi(t), θ1(t), . . . , θn(t), t)
[maybe + noise], i = 1, . . . , n, (2)

where θ1(t), . . . , θn(t) are angles between 0 and 2π each
representing the phase of a cyclic process, and f1(t),
. . . , fn(t) are these cyclic processes’ “time-localised
internal frequency”. Note that the angular velocity θ̇i(t)
is not the same concept as time-localised frequency.

A simple example of a model within this abstract
framework is to take

H(θ1, . . . , θn, t) =
1
n

n∑

i=1

Ai(t)hi(θi)

Fi(ω, θ1, . . . , θn, t) = ω + Ci(θ1, . . . , θn, t),

where Ai is a potentially time-dependent amplitude
measuring how strongly the ith cyclic process influ-
ences the time-series, hi represents the shape of how
the phase of the ith cyclic process appears in the time-
series, and Ci is a time-dependent phase coupling func-
tion, which we take as 0 if there is no coupling; so, the
model becomes

X(t) =
1
n

n∑

i=1

Ai(t)hi(θi(t)) [maybe + noise] (3)

θ̇i(t) = 2πfi(t) + Ci(θ1(t), . . . , θn(t), t)
[maybe + noise]. (4)

A standard example of the observable function H is the
mean field , where Ai = 1 and hi = sin, that is

H(θ1, . . . , θn, t) =
1
n

n∑

i=1

sin(θi);

and a standard example of a phase coupling function is
the Kuramoto coupling

Ci(θ1, . . . , θn, t) =
∑

j∈{1, ...,n}\{i}
aij(t) sin(θj − θi).

The cyclic processes θ1, . . . , θn are governed by a
non-autonomous differential equation. In contrast to
autonomous differential equations, which may be con-
sidered over any given time period, including an asymp-
totic one, non-autonomous processes may only be con-
sidered in finite time. Furthermore, shifting this finite-
time period will alter the evolution of the system itself.

The implication of this is that while the time-
independent nature of autonomous processes allows for
the application of stationary stochastic theory inher-
ent to the classical analysis framework, nonstationary
stochastic processes may not be analogously applied to
understand non-autonomous deterministic dynamics.
This point is explored in further detail in Appendix A

The theory of finite-time dynamical systems has been
growing in popularity in recent decades [38–46]. Our
framework above is particularly concerned with oscil-
latory dynamics on finite-time scales. A model for cell
energy metabolism that already serves to exemplify our
NPND framework has been developed in [47]. A finite-
time framework for qualitative analysis of dynamical
stability of oscillatory processes subject to slow-time-
scale external influences has also been developed in [46].
Our present paper illustrates how the NPND framework
can, in fact, serve as a general overarching framework
for the study of complex systems in terms of interacting
oscillatory components.

2.2 Reconsideration of apparent “noise”
via the NPND framework

We previously mentioned two classical mechanisms for
the emergence of noise from deterministic fundamen-
tal laws of physics. Considering these mechanisms in
the context of autonomous networks of oscillators,
expressed in the same way as in our framework above
except without the time-dependence in Fi and fi, a sig-
nal X(t) = H(θ1(t), . . . , θn(t)) could produce noise-like
results if

• n is extremely large (i.e. the system is very high-
dimensional), or

• the system of equations

θ̇i(t) = Fi(2πfi, θ1(t), . . . , θn(t))

is chaotic.

In both cases, even though the original equation is
deterministic, one cannot practically obtain a deter-
ministic description from time-series analysis, and so,
probabilistic modelling is chosen instead.

The central point of this paper is the observation
that without the need either for very large n [28, 48,
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49], or for chaotic behaviour [50–53], the incorporation
of time-dependence into the model can lead to results
that a typical PSD approach will characterise as noise.
Thus, for analysis of experimental time-series data aris-
ing from a thermodynamically open system, a different
methodology is needed to distinguish prominent, func-
tionally important oscillatory components from noise.

2.3 Deterministic time–frequency analysis

Just as there is a plethora of well-known time-series
analysis methods based on the traditional framework
of stationarity, so there also exist many—currently
not-quite-as-widely used—time-series analysis tools
designed for gaining an understanding of time-
dependent oscillatory dynamics; see [54] for an overview
of several such methods. At the heart of many of
these methods lies deterministic time–frequency anal-
ysis, which we will now describe.

We have explained how the classical framework
makes use of PSD estimation as the means of separating
oscillatory processes from noise. For our model in the
form of Eqs. (3)–(4), the analogous natural tool to use
is deterministic linear time–frequency analysis. In our
phrase “deterministic linear time-frequency analysis”:

• “Time-frequency analysis” refers to time-evolving
time-localised description of the frequency content of
the signal. There are many different time–frequency
analysers, such as the windowed Fourier transform
and the continuous wavelet transform [55].

• By “deterministic”, we mean a time–frequency anal-
yser that can be applied to an individual signal, as
opposed to a time–frequency analyser defined theo-
retically in terms of the probabilistic law of a stochas-
tic process from which the recorded signal is assumed
to arise as a sample realisation.

• By “linear”, we mean that for signals X1, . . . , Xn

linearly superposed to form a new signal Y = c1X1 +
. . . + cnXn, we have

AmplY (f , t)ei.PhaseY (f , t)

=
n∑

i=1

ciAmplXi
(f , t)ei.PhaseXi

(f , t),

where AmplX(f , t) and PhaseX(f , t) denote, respec-
tively, the amplitude and the phase assigned by the
time–frequency analyser to the frequency f around
time t for a signal X .

The key difference between classical time-independent
frequency-domain representations of a signal (such
as the Fourier transform and PSD estimators
derived therefrom) and representations given by
time–frequency analysis is that

• the former representations do not resolve in time but,
in a sense, blur all time together;

• the latter representations enable a “two-dimensional
resolving of the frequency content” in which the fre-
quency decomposition is itself resolved in the time
dimension.

It is precisely this distinction that plays the key role
in the phenomenon that we will present in this paper,
where the apparent time-domain complexity of a signal
is concluded to be deterministically intractable noise by
a frequency-domain representation, but is resolved into
clear deterministic components by a time–frequency-
domain representation. The link between our frame-
work in the form of Eqs. (3)–(4) and deterministic linear
time–frequency analysis is expounded in more detail in
Appendix A.

3 Comparisons of the two frameworks
with numerical models

In this section, we

• illustrate numerically how signals arising from not-
very-high-dimensional oscillator networks according
to our framework can be identified as 1/fβ noise
when analysed by the typical procedure of computing
its PSD and looking for a roughly linear downward
trend in a log–log plot;

• show that applying the continuous wavelet trans-
form resolves the true “determinism”—i.e., that the
signal has a relatively small number of individually
tractable components, as opposed to a large number
of individually intractable components for which only
statistical rather than deterministic analysis is possi-
ble;

• illustrate how the continuous wavelet transform, and
higher order spectral analysis based thereon, can
reveal further features of the underlying deterministic
behaviour, such as the presence of coupling between
oscillators.

We consider signals of the form

X(t) =
1
n

n∑

i=1

sin(θi(t)), (5)

where the system of oscillators θi evolves according to
the non-autonomous differential equation

1
2π

θ̇i = fi(t) +

⎡

⎣A

n

n∑

j=1

sin(θj − θi)

⎤

⎦, (6)

where A > 0 corresponds to the presence of coupling,
and A = 0 to the absence of coupling. We take the
time-dependence of fi(t) itself to be relatively slow com-
pared to the internal time-periods 1

fi(t)
of the oscilla-

tions themselves. Note that it is precisely the addition

123



3440 Eur. Phys. J. Spec. Top. (2023) 232:3435–3457

of this new relatively slow time scale, without the need
of any fast time scale, that will be responsible for caus-
ing the signal to become “noise-like” when analysed
by typical traditional spectral analysis. As discussed
in Sect. 2.1, time-dependence arises physically from the
system being subject to influence from its ever-changing
environment.

In several of our simulations, for the sake of simplic-
ity, we take fi(t) to be a relatively low-frequency peri-
odic function

fi(t) = f0i + f0iAωi sin(2πtfωi); (7)

but (as we will see) the periodicity itself is not at all a
requirement for our results.

For the simulations in this section, we numerically
integrate Eq. (6) with various parameter values of the
model, using a fourth-order Runge–Kutta algorithm
and an integration step of 0.001 s, and with the initial
phase values θ1(0), . . . , θn(0) of the oscillators evenly
distributed in the range [0, 2π]. The models are sim-
ulated up to different times generally corresponding
to around the longest time computationally feasible.
For the PSD computations, zero padding is then added
symmetrically at the start and end of the signal, such
that the total number of points in the resulting time-
series is the nearest power of two above the original
number of points before the zero padding was added.
This is to make the size of the time-series equal to a
power of two, and enable the PSD to be obtained from
the same size for all time-series considered [56]. The
wavelet transform and wavelet bispectrum computa-
tions were carried out in MODA, for which formulae
can be found in [57].

3.1 Autonomous vs non-autonomous noise

First, in the absence of coupling (i.e. A = 0), we con-
sider the dependence of “noise-like” behaviour in a sig-
nal on the number of oscillatory components n and
their range of frequencies, in the autonomous case (i.e.,
without time-dependence) versus the non-autonomous
case, as defined by Eqs. (5)–(7) with Aωi = 0 in the
autonomous case and Aωi > 0 in the non-autonomous
case. This is examined in Fig. 2. We will first consider
the PSD plots and then the wavelet transform plots.
(In Fig. 2 and everywhere else in this paper, all wavelet
transform plots show the magnitude —W (t , f )— of the
wavelet transform W (t , f ) plotted over time–frequency
space.)

We see in Fig. 2a the PSDs of the autonomous models
become more noise-like, with fewer discernible isolated
peaks, as the number of components n is increased. This
is consistent with the traditional understanding of the
generation of noise. This is in contrast to the PSDs
of the non-autonomous model in (b), where even for
n = 5, the PSD appears noise-like. This immediately
demonstrates our central point that the introduction
of time-dependent determinism can easily appear to be
noise when analysed in the traditional framework, such

as through a PSD, without the need for a large number
of components. This is not significantly changed either
by decreasing the time-dependent modulation ampli-
tude in (c), or increasing it in (d). It is the presence
of time-dependence that is the most significant factor,
rather than its magnitude.

In accordance with Sect. 2.3, we now analyse the
time-series produced from the above models using
time–frequency analysis; specifically, we use the contin-
uous wavelet transform because of its logarithmic fre-
quency resolution that enables the simultaneous resolv-
ing of oscillatory components of a wide range of time
scales. (We use the lognormal wavelet as the mother
wavelet for the wavelet transform, since this provides
particularly good time–frequency resolution [58, 59].)

These wavelet transforms provide much more infor-
mation about the dynamics of all the models than the
PSDs. At low numbers of components, each individual
mode can be distinguished, and in the non-autonomous
models, the presence of time-dependence is evident.
At larger numbers of components, the modes begin
to merge, but remain clearly deterministic and time-
(in)dependent, in contrast to the noise-like conclusions
suggested by the corresponding PSDs.

3.2 Networks of interacting components

While the uncoupled ensemble models that we have
discussed thus far have already been instructive in
illustrating the problem with applying the classical
PSD approach of noise characterisation to systems with
time-dependent characteristics, systems with multiple
oscillatory components will often have some coupling
between oscillatory components. Detection of coupling
between components of a signal serves as a particu-
larly strong indicator that these components are not
“noise” to be discarded, but rather represent function-
ally significant deterministic processes. Understanding
a system’s coupling relationships can also reveal much
about its physical behaviour, representing the means
by which systems exchange energy, as occurs through-
out the physical world [61–63]. In our framework, we
consider phase–phase coupling between oscillatory com-
ponents; specifically, here, we will consider phase–phase
coupling in which oscillators attract each other’s phases
to their own.

We analyse non-autonomous networks consisting of
n = 10 oscillators of distinct time-dependent internal
frequency, with all-to-all coupling of Kuramoto form,
according to Eq. (6). In Fig. 3, we analyse such a net-
work with three coupling strengths A: A = 0 in (a),
reducing back to the uncoupled ensemble case; A = 5
s−1 in (b), providing an intermediate-strength coupling;
and A = 10 s−1 in (c), representing strong coupling.

To detect and analyse the coupling present in these
models, after calculating the wavelet transform, we
additionally consider the wavelet bispectrum [57, 64].
This is designed to detect non-linearities, such as cou-
pling, within or between signals [57, 59]. Bispectra are
defined over frequency–frequency space, such that the
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Fig. 2 Power-spectral densities and wavelet transforms of autonomous and non-autonomous oscillator models. The PSD
S(f ) and the magnitude —W (t , f )— of the wavelet transform W (t , f ) are computed for different time-series X (t) as given
by Eqs. (5)–(7) for different parameter values, all without coupling (i.e., A = 0). All wavelet transforms are computed using
the lognormal wavelet. a Ensembles of n = 10, 102 and 103 autonomous oscillators (i.e., Aωi = 0 for all i). The frequencies
f0i are linearly distributed in the range [1, 10] Hz. The log–log PSDs of the mean fields of the oscillator ensembles are
calculated, with the exponent β of their linear best fit indicated, where S(f) ∼ 1/fβ . The wavelet transforms are calculated
with a frequency resolution of 5. The n = 10 and n = 102 ensembles are simulated for 10,000 s, and the n = 103 for 1000 s.
b The same analyses as in a applied to non-autonomous ensembles of varying sizes, with centre frequencies f0i linearly
distributed in the range [1, 10] Hz, modulation amplitude factor Aωi = 0.2 and modulation frequency fωi = 0.05 Hz. The
n = 102 ensemble is simulated for 20,000 s, and the n = 10 and n = 5 for 200,000 s. The wavelet transform is calculated
with a frequency resolution of 2. (c) n = 5 non-autonomous oscillators, with f0i = 5.05 Hz for each i = 1, . . . , 5, and
otherwise identical parameters to b. d n = 5 non-autonomous oscillators with identical parameters to c, but with larger
modulation amplitude f0iAωi = 4.95 Hz

presence of a bispectral peak around a frequency pair
(f1, f2) may indicate a coupling between two oscilla-
tory components of frequencies in the vicinity of f1
and f2. (However, on the diagonal, i.e., f1 = f2, or
more generally for rationally dependent f1 and f2, bis-
pectral peaks may indicate just a single non-sinusoidal
oscillatory component, with the bispectral peaks aris-
ing from harmonics of this non-sinusoidal component.)
Here, in Fig. 3, and in all other bispectra plots in this
paper, we calculate a biamplitude value (i.e., modu-
lus of the time-averaged instantaneous wavelet bispec-
trum) at each point in frequency–frequency space as in
[57], and apply a statistical significance test to decide at

which points in the frequency–frequency space we deem
the biamplitude value to be “significant”. More specif-
ically, at each point in frequency–frequency space, we
subtract from the wavelet biamplitude value a critical
threshold (at 95% significance) calculated from the bis-
pectra of wavelet iterative amplitude adjusted Fourier
transform (WIAAFT) surrogates generated from the
time-series under investigation, according to the pro-
cedure described in [60]. Hence, the strictly positive
(i.e., non-grey) values shown in these bispectra plots
correspond to where the bispectrum value is considered
“significant”.
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Fig. 3 PSDs, wavelet transforms, and wavelet bispectra of
non-autonomous oscillator networks with varying coupling
strengths. PSDs (top left), wavelet transforms (bottom left),
and wavelet bispectra (right) of the mean field of networks of
n = 10 non-autonomous oscillators are plotted. Specifically,
the wavelet bispectra results show the wavelet biamplitude
associated with each point in frequency–frequency space
after subtraction of the 95% significance critical threshold
given by a surrogate test involving 59 numerically gener-
ated WIAAFT surrogate signals [60]. The wavelet trans-
forms and wavelet bispectra are calculated using a lognor-
mal wavelet with frequency resolution 5. Centre frequen-
cies f0i of the oscillators are distributed equidistantly over
the range [1, 10] Hz, with an addition of a random num-
ber between 0 and 1 Hz to reduce harmonic relationships
between the frequencies. The modulation amplitude factor
is Aωi = 0.3 and the modulation frequency is fωi = 0.05
Hz. The network coupling strengths A are a 0 s−1, b 5 s−1,
and c 10 s−1. The models are simulated for 200,000 s

Let us now discuss both the wavelet transform results
and the wavelet bispectrum results. In Fig. 3a, where
we have reduced back to the uncoupled ensemble case,
the results we expect based on the previous subsection
are confirmed: the PSD is noise-like and the wavelet
transform appears to indicate non-noise-like frequency
modes with a deterministic time-dependence. When
medium-strength coupling is introduced in (b), the PSD
continues to be noise-like. The wavelet transform shows
periods of asynchrony where the oscillations cluster
around three dominant modes, and shorter periods of
synchrony where the oscillations cluster around just one
dominant mode. One of the three modes in the asyn-
chronous case lies roughly at the frequency value indi-
cated by the black ticks; another lies within the green-
marked frequency band; and the third lies within the
purple-marked frequency band (where we see the fun-
damental frequency of this mode and also harmonics
arising from different combinations of the three fre-
quency modes). In the periods of synchrony, the one
frequency mode appears to represent the coinciding of
the upper two of the three previous frequency modes,
while the lowest of the three previous frequency modes
vanishes in amplitude. This alternation between three
dominant modes and one dominant mode is indicative
of the intermittent synchronisation phenomenon of non-
autonomous systems [65]. In (c), the wavelet transform
shows that the network has become highly synchronised
around a single frequency mode, and yet despite this
coherent behaviour the PSD of this mode still appears
noise-like. Therefore, we see in all these cases that non-
autonomous networks of a small number of interacting
oscillators can also appear to be noise-like when anal-
ysed by the classical PSD approach, even when syn-
chronised.

Now, we discuss the wavelet bispectrum results, espe-
cially with a view to considering what we can learn from
this analysis tool that would be difficult or impossible
to learn from classical spectral analysis under the tradi-
tional framework. As expected, no significant bispectral
content is found in (a), where there is no coupling. In
(c), the full synchronisation of the system into a single
mode masks the underlying coupling, leading to only
one significant bispectral amplitude peak (indicated by
the black-marked frequency band), which occurs on the
diagonal and thus cannot indicate coupling between dif-
ferent frequency modes. With non-synchronising cou-
pling in (b), however, we detect large areas of signif-
icant biamplitude, which are mostly contained within
the frequency regions of the dominant modes identi-
fied in the wavelet transform. Significant biamplitude
values in areas of the frequency–frequency space corre-
sponding to two distinct such frequency regions indi-
cate coupling between the modes represented by those
frequency regions.
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Results indicative of coupling or the absence thereof
between frequency modes would have been obtainable
from classical bispectral analysis if the network were
an autonomous dynamical system (i.e., if there were no
frequency modulation or other form of time-dependent
characteristics); but as seen in the various PSD compu-
tations shown in this section, the presence of frequency
modulation drastically alters the classical spectral prop-
erties to the point that individual oscillators look like
noise.

The bispectral results shown here (and also later
for experimental data) are the most basic wavelet bis-
pectral analysis computations, which do not explicitly
show the time-evolution of bispectral properties. Hav-
ing performed such computations and identified signif-
icant biamplitude peaks, one can further examine the
genuineness of the apparent presence of coupling, as
well as further properties of such coupling and its time-
dependence, using methods described in [57, 59].

4 Comparisons of the two frameworks
with experimental data

We now investigate the physical appropriateness of our
framework as contrasted with the classical framework
for three physical systems from which experimental
data have been recorded; specifically, we will see how
deterministic time–frequency analysis reveals impor-
tant information not yielded by methods within the
classical framework’s approach to time-series analysis.
In particular,

• we will indicate how time–frequency analysis can
avoid the mischaracterisation of deterministic func-
tioning as “noise” that would arise from applying
to these experimental time-series a traditional PSD
approach to separating oscillatory components from
noise;

• and furthermore, for illustrative purposes, we will
show how one might derive from our wavelet trans-
form analysis a preliminary form of approximate
model of the time-series according to our framework
in Sect. 2.1 as represented by Eqs. (3)–(4).

By a “preliminary” form of model, we mean that this is
simply based on our present analyses of the time-series;
one can work towards more accurate and precise models
through a combination of (a) applying additional time-
resolved analysis methods to the signal, (b) recording
further signals from the system or type of system being
considered and applying suitable time-resolved analy-
sis methods to those signals as well, and (c) incorpo-
rating any relevant already-existing physical knowledge
regarding the system from which the signal is recorded.

We analyse, in Fig. 4, the height of water recorded by
a monitoring station located at Lancaster Quay, United
Kingdom; in Fig. 5, the magnetic field strength at the
Earth’s surface recorded by an observatory in Norway

[66]; and in Fig. 6, the interplanetary magnetic field
strength, indicative of solar wind activity, recorded by
a satellite in between the Earth and the Sun. All three
of these systems are thermodynamically open systems
with time-variable external influences—whether they
be the gravitational force of the moon or the plethora
of electromagnetic forces that affect the magnetic fields
at the Earth’s surface and throughout the solar sys-
tem, from solar winds, to electric currents in the Earth’s
atmosphere to plasma processes in the core of both the
Earth and the Sun. These systems, therefore, all have
the theoretical potential to have deterministic function-
ing that appears noise-like under a traditional PSD
analysis.

The River Lune, the subject of Fig. 4, is known to be
tidal at the point of measurement in Lancaster Quay.
We would, therefore, expect to see the water levels oscil-
late with two peaks a day, and the wavelet transform
therefore to show a significant oscillatory mode with
a period of approximately 12 h. The time-series itself,
shown in plot (a), immediately makes clear that the
river is indeed tidal, oscillating through two peaks and
two troughs each day. The wavelet transform [plot (c)]
shows three clear frequencies present in the signal, cor-
responding to periods of approximately 12 h, 6 h, and
4 h, in descending order of amplitude. The 6-h and 4-h
peaks correspond to twice and three times the frequency
of the fundamental 12-h peak; they are harmonics aris-
ing from the fact that the 12-h-period oscillations in the
time-series are not of sinusoidal shape. (The bispectrum
in plot (d) shows significant peaks at rationally related
frequency-pairs arising from these harmonics. A proce-
dure to determine whether frequency modes are har-
monically related in less clear-cut cases is described in
[67].)

From looking just at the wavelet transform, one could
build a preliminary form of model for the time-series as

X(t) = A(t)h(θ(t))

θ̇(t) = 2π/(12 h),

where h is a non-sinusoidal function as reflected by
the presence of the harmonics of the 12-h fundamen-
tal period, and A(t) has fairly slow time-dependence on
t as reflected by varying wavelet amplitude over time
seen at the frequency 1/(12 h) (and similarly at the har-
monic frequencies). Of course, in this relatively simple
example, we can see the behaviour directly from the
time-series itself in plot (a), but in more complicated
systems this would not be so. Since there is not much
time-dependence in the frequency—although there is
still significant time-dependence in the amplitude—the
peaks at 12, 6, and 4 h that we saw in the wavelet
transform are also present in the power-spectral den-
sity, indicated on plot (b) by the dotted lines. However,
such simple examples can be rare. In subsequent fig-
ures, we will consider cases with increasingly complex
frequency dynamics.

Magnetic field strength fluctuations at the Earth’s
surface are the subject of Fig. 5. There are many forces
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Fig. 4 Tidal time-series recorded at Lancaster Quay, United Kingdom. The readings were made every 15 min from
16th–25th February 2022 (see the data availability statement for the data). The sensor is placed at 2.15 m, and unable to
detect levels below this. a The time-series of the height of the water. b The PSD. c The multiscale sample entropy with
m = 2 and r = 0.15. d The wavelet transform using the lognormal wavelet with a frequency resolution of 1.5. e The wavelet
bispectrum using the lognormal wavelet with a frequency resolution of 1.5, tested (at 95% significance) against 59 WIAAFT
surrogates generated from the data [60]

Fig. 5 x -Component of the ionospheric magnetic field recorded by UiT The Arctic University of Norway’s KAR magne-
togram station every hour for a period of 39 days and 23 h, from 2nd December 2021 to 10th January 2022 [66]. a The
time-series of the strength of the x -component of the ionospheric magnetic field. b The PSD. c The multiscale sample
entropy, with m = 2 and r = 0.15. d The wavelet transform using the lognormal wavelet with a frequency resolution of 3.
e The wavelet bispectrum using the lognormal wavelet with a frequency resolution of 3, tested (at 95% significance) against
59 WIAAFT surrogates generated from the data [60]

known to affect the magnetic field in the Earth’s atmo-
sphere, not least solar winds. It is already known that
significant variations in the atmosphere, such as dur-
ing a geomagnetic storm, also lead to variations at the
Earth’s surface, but the magnitude and significance of

these surface variations, even during storm events, is
still a matter of open research [69].

There are a variety of periodic fluctuations that have
been found to take place in the geomagnetic field in
absence of any solar event, primarily driven by elec-
tric currents resulting from solar winds and the moon’s
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gravitational field moving against the geomagnetic field
[70]. Such periods include 6 h, 8 h, 12 h, 24 h, 4 months,
and a year [71, 72].

In Fig. 5, we analyse magnetometer recordings over
the space of 39 days and 23 h, from the IMAGE mag-
netometer network. The purpose of this network is
to detect ionospheric auroral electrojet events, but we
have chosen a period in which no such events were
detected. This period is hence more characteristic of
so-called ‘solar quiet’ dynamics. The time-domain of
these recordings in (a) again does not immediately clar-
ify whether the system is deterministic or noise-like,
and the PSD in (b) shows no peaks. The wavelet trans-
form in (c), while more complex than in Fig. 4, shows
four frequencies where a significant amplitude is main-
tained for a large majority of the examined time, cor-
responding to periods of approximately 24 h, 12 h, 8 h,
and 35 h in descending order of amplitude. Three of
these, 24 h, 12 h, and 8 h, are well-known already, as
mentioned above. The 35-h period, however, does not
correspond to any known geomagnetic phenomenon.
Besides these four frequency modes, the wavelet trans-
form appears to show much other content in the sig-
nal that is somewhat noise-like, although with time-
dependent intensity that is perhaps correlated with
the amplitude of the 35-h-period and/or 24-h-period
mode. The bispectrum in (d) shows very significant
peaks at ((24 h)−1, (24 h)−1) and ((24 h)−1, (12 h)−1);
but since the system contains distinct oscillatory pro-
cesses of period 24 h, 12 h and 8 h, it is difficult to
conclude with confidence that the 24-h component is
significantly non-sinusoidal or that there is coupling
between the 24-h component and the 12-h component,
until first carrying out a much more detailed investi-
gation of time-localised phase bicoherence [59] (prefer-
ably with a longer time-series recording). The other
regions where the bispectrum plot shows values slightly
above the critical threshold may be due to the inher-
ently far-from-sinusoidal nature of the apparent noise,
or it could be that this “noise” genuinely includes many
temporally intermittent cyclic processes with couplings
between them. These are all issues that could be inves-
tigated with further time-resolved analysis of this time-
series and further magnetic field strength time-series
recordings together with physical considerations of the
system itself; but as a preliminary model according to
our framework, we could model the time-series as

X(t) =
n∑

i=1

Ai(t) sin(θi(t)) + εξ(t)ξ(t)

θ̇i(t) = 2π(fi + εi(t)),

where the frequencies f1, . . . , fn include the four fre-
quencies (8 h)−1, (12 h)−1, (24 h)−1 and approximately
(35 h)−1, the εi(t) are functions representing the appar-
ent slight time-dependence of the frequency in the
wavelet transform, and εξ(t)ξ(t) represents a noise pro-
cess with intensity proportional to a function εξ(t). Sim-
ilarly to our first example in Fig. 4, the variations in
amplitude Ai(t) are much more substantial than the

variations in frequency εi(t). As we have indicated, it
could be that εξ(t) itself should be taken to be pro-
portional to one of the Ai(t). Note that while our
framework allows for a separation between determinis-
tic oscillations and noise just like the traditional frame-
work does, the classical PSD approach based on the
traditional framework does not at all clearly detect the
four oscillatory modes and risks leading to the whole
signal being characterised as noise.

Finally, in Fig. 6, we analyse how the magnitude of
the interplanetary magnetic field changes over time,
measured at Lagrange point 1 in orbit of the Earth.
This measures the varying strength of the solar wind,
which causes the solar magnetic field to spread through-
out the solar system. The wavelet transform in (c) in
this case shows arguably the most complex behaviour
of all three examples. There are two clear lower modes,
of approximately 14.5 and 9.6 day periods, with clear
time-variability. However, at shorter periods, the modes
become so time-variable and similar that they are dif-
ficult to distinguish. Such a situation is another reason
to next check for harmonic relations between potential
modes using a harmonic finder, which will help to iden-
tify what the independent modes are, even despite their
time-variability. Despite this complication of significant
variability and intermittency, it remains the case that
in this frequency region, the wavelet transform shows
continuous deterministic modes that persist for hun-
dreds of days. This is in contrast to the higher frequen-
cies of the plot, which are hardly sustained at all and
often spread their power vertically over many different
frequencies. Both of these behaviours are indicative of
temporary noisy fluctuations, and are not seen within
the turquoise region. Hence, while identifying the pre-
cise dynamics in this regime is far from trivial, it is still
safe to say that it is deterministic and time-varying.

The lower modes identified here can be seen from
other solar wind wavelet analysis investigations, such
as in [73]. The higher modes, however, are less evident
and studied, with most attention being shown to much
longer periods more on the timescale of the solar period
of 11 years. In the bispectrum in (d), however, there is
shown to be significant potential interactions between
these faster modes, and even these modes and the slower
ones, that could be worth further investigation. This
is indicated by the many peaks of significance located
within the turquoise region, and the few in the overlap
between this and the purple and black regions. Indeed,
while other wavelet-based approaches have been used,
the use of PSDs to identify solar wind events and mech-
anisms is widespread [74–76]. In the case of Fig. 6b,
we see once again that the PSD gives no indication of
the complexities identified in the wavelet transform and
bispectrum, instead presenting a profile very similar to
pink noise. Hence, adopting a solely or predominantly
PSD approach could again lead to missing potentially
key aspects of solar wind dynamics.

We have given three examples of open systems where
determinism can be missed or even misidentified as
noise under the traditional PSD analysis. The time-
dependent dynamics at the heart of this mischarac-

123



3446 Eur. Phys. J. Spec. Top. (2023) 232:3435–3457

Fig. 6 Average magnitude of the interplanetary magnetic field recorded by the WIND satellite, stationed at Lagrange
point 1 of the Earth’s orbit, for every hour for a period of 1 year, from 1st January 2022 to 31st December 2022 [68]. a The
time-series of the strength of the magnitude of the interplanetary magnetic field. b The PSD. c The multiscale sample
entropy, with m = 2 and r = 0.15. d The wavelet transform using the lognormal wavelet with a frequency resolution of 3.
e The wavelet bispectrum using the lognormal wavelet with a frequency resolution of 3, tested (at 95% significance) against
59 WIAAFT surrogates generated from the data [60]

terisation is typical of thermodynamically open sys-
tems, where external forces influence the evolution of
the system. These systems are the norm in the natural
world, outside of any environment that is not artifi-
cially isolated. Therefore, it is essential that a suitably
time-resolved framework of analysis is employed when
analysing any such system. For one example from the
field of biology, there has been much work to include
noise in the Hodgkin–Huxley model on an understand-
ing of the behaviour of cells as partially stochastic [10].
However, it may be the case that this complex dynam-
ics could be produced by a model based in the time-
dependent theory we have presented here, which may
form both a more simple and experimentally accurate
model. The advantages of this kind of model over high-
dimensional autonomous ones in the context of cellular
dynamics have already been demonstrated in [47].

5 Summary and conclusion

In this paper, we have shown that

• an ensemble of phase oscillators can produce a
“(1/fβ)-noise-like” mean field time-series without
the need for either a larger number of oscillators
in the ensemble or the presence of chaotic dynam-
ics, merely as a result of the presence of time-
dependence in the parameters of the system (even if
this time-dependence occurs on only relatively slow
timescales);

• the same mischaracterisability of time-dependent,
relatively non-complex, non-chaotic oscillatory

dynamics as noise can occur in actual experimentally
obtained time-series;

• in both cases, deterministic time–frequency analysis
and related methods can be used to gain a picture
of what is really going on in the behaviour of the
system.

By “noise-like”, we mean that the typical basic method
of investigating noise in a signal in terms of a roughly
linear trend in a log–log plot of a PSD estimate—as
used widely by practitioners across the sciences—will
yield results that look like white (β = 0) or pink
(β ∈ (0, 2)) noise. We have identified and discussed
in detail the key mathematical assumptions under-
lying this approach to investigating noise in a sig-
nal, and the key physical assumptions giving rise to
those mathematical assumptions, that are fundamen-
tally responsible for the mischaracterisation of rela-
tively simple deterministically functioning signal com-
ponents as noise in the numerical and experimental
scenarios considered in this paper. In essence, classi-
cal power-spectral density is a concept defined within
the framework of stationary stochastic processes, whose
application to time-series in turn presupposes that
deterministic components in the time-series arise from
autonomous dynamics, which itself in turn is the math-
ematical modelling assumption corresponding to the
physical modelling assumption that the system does not
have physical characteristics being modulated over time
by external influences.

By contrast, systems throughout nature are ther-
modynamically open, exchanging matter and energy
with their environment, and thus are bound to have
temporally modulating characteristics. Starting from
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Table 1 How different types of processes within a system may be identified as being deterministically functional versus
being noise, when their manifestation as components in a time-series is analysed from the perspective of the classical
framework versus from the perspective of our framework. As has been evidenced in this paper, typical power-spectral density
methodology based on the classical framework may fail to distinguish the manifestation of prominent forced oscillatory
processes in a time-series form the manifestation of classical noise-emergence mechanisms

Component Appearance in traditional framework Appearance in our
framework

Isolated small collection of oscillatory processes Determinism Determinism

Forced small collection of oscillatory processes Noise Determinism

Net effect of immeasurably many independent microscopic
influences

Noise Noise

this observation, we have built a fairly general concep-
tual framework for describing the dynamics of ther-
modynamically open complex systems, in terms of
non-autonomous finite-time oscillatory dynamics, rep-
resented by Eqs. (1)–(2). We have shown how deter-
ministic time–frequency analysis can naturally arise as
the appropriate methodology for analysing time-series
generated by dynamics for which our framework is
suitable; and we have both (a) used our framework
to generate the numerical time-series in Sect. 3, and
(b) in the inverse direction, used the experimental time-
series in Sect. 4 to derive preliminary models within
our framework, all towards illustrating what is learnt
by deterministic time–frequency analysis that is pro-
foundly obscured by classical PSD analysis (along with
the entire rest of the toolbox of time-series analysis
methods based on the assumption that the time-series
comes from a stationary stochastic process). As dis-
cussed in some detail within Secs. 2.1 and 2.3, merely
generalising the classical framework of parameter esti-
mation for stationary stochastic processes to that of
time-dependent parameter estimation for nonstation-
ary stochastic processes is not the appropriate treat-
ment for time-series coming from general open systems.

The contrast between how signal components may be
characterised when analysed by traditional PSD analy-
sis as motivated by the classical framework for dynam-
ical systems and their output time-series, versus when
analysed by time–frequency analysis as motivated by
our framework of finite-time non-autonomous oscilla-
tory dynamics, is summarised in Table 1. In conclusion,
as we have evidenced through numerics and experimen-
tal time-series data, apparent “noise to be filtered out”
in a signal may provide crucial insight into the deter-
ministic properties of a system when analysed by meth-
ods that explicitly resolve the dimension of the progres-
sion of time such as time–frequency analysis and other
methods described in, e.g., [54] and references therein.
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Sodankylä Geophysical Observatory of the University of
Oulu (Finland), and Polar Geophysical Institute (Russia),
for the data. Additionally, the authors would like to thank
GOV.UK for the data of water levels in the UK, and Alan
Lazarus and Justin Casper for their contribution to the
OMNI WIND data collection. This is TiPES contribution
#173. This project received funding from the European
Union’s Horizon 2020 research and innovation programme
under Grant Agreement 820970 (TiPES) and the EPSRC
grant EP/M006298/1. JRA’s PhD is funded by Lancaster
University Faculty of Science and Technology. The High
End Computing facility at Lancaster University was used
for most of the computations. The development of MODA
toolbox used for analyses has been supported by the
Engineering and Physical Sciences Research Council (UK)
Grants No. EP/100999X1 and No. EP/M006298/1, the EU
projects BRACCIA [517133] and COSMOS [642563], the
Action Medical Research (UK) MASDA Project [GN1963],
and the Slovene Research Agency (Program No. P20232).

Data availability statement Code used for numerical
integration, power-spectral density, autocorrelation, and
multiscale sample entropy and all time-series analysed in
each figure can be found at https://doi.org/10.17635/lanc
aster/researchdata/609. The wavelet transform and wavelet
bispectrum analyses can be conducted using the Multi-
scale Oscillatory Dynamics Analysis (MODA) toolbox found
at https://github.com/luphysics/MODA [57]. The source
of the data in Fig. 4 is https://check-for-flooding.service.
gov.uk/river-and-sea-levels, and the OMNI data analysed
in Fig. 6 were obtained from the GSFC/SPDF OMNIWeb
interface at https://omniweb.gsfc.nasa.gov.

123

https://doi.org/10.17635/lancaster/researchdata/609
https://github.com/luphysics/MODA
https://check-for-flooding.service.gov.uk/river-and-sea-levels
https://omniweb.gsfc.nasa.gov


3448 Eur. Phys. J. Spec. Top. (2023) 232:3435–3457

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which per-
mits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in
this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative
Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creative
commons.org/licenses/by/4.0/.

A: Further mathematical details of the two
frameworks

The simplest kind of quantitative model of a determin-
istic continuous-time system is an autonomous differ-
ential equation

ẋ(t) = F (x(t)), (8)

where F is a deterministic vector field with no depen-
dence on t . A time-series X (t) recorded from such a
system can then be expected to take the form

X(t) = H(x(t)),

where H is some observable function and x (t) is a solu-
tion of Eq. (8). Now, if we define the time “t = 0” to
be the start of the recording, then this time is typically
random relative to the actual functioning of the physi-
cal system itself. Accordingly, if the solution x (t) being
observed is modelled as having its long-time-asymptotic
statistics as being given by some ergodic invariant prob-
ability measure μ of the system (8)—i.e., μ represents
the probability distribution of where x (t) will be at a
very large random time t 1—then one may regard the
initial condition x (0) as itself a random variable of dis-
tribution μ, in which case the recorded time-series X (t)
then becomes a sample realisation of an ergodic station-
ary stochastic process. The “stationarity” here means
that the probabilistic law of the process is invariant
under time-translations, while the “ergodicity” means
that parameters of the probabilistic law of the process
can be estimated just from the statistics of an indi-
vidual sample realisation provided that the duration of
the recorded segment of the sample is sufficiently long.
In the case that x (t) is simply a stable periodic orbit,
representing a fixed-frequency deterministic oscillatory

1This can be expressed rigorously as saying that
for every bounded continuous observable function h,
1
t

∫ t

0
h(x(s)) ds → Eμ[h] as t → ∞; this property is invariant

under translation of the time-axis, i.e., under recalibration
of “t = 0”.

process, the invariant measure μ is just the temporally
uniform distribution along the orbit.

Now, one may assume that there is noise in either
the behaviour of the system itself (“dynamical noise”)
or the time-series measuring equipment (“observational
noise”) or indeed both, so that the time-series X (t)
takes a form such as (in the case of “additive noise”)

X(t) = H(x(t)) + ξobs, (9)

ẋ(t) = F (x(t)) + ξdyn. (10)

The deterministic component F in (10) still represents
the functional component in the progress of the sys-
tem, while both ξobs and ξdyn are the pseudorandom net
result of background processes that affect the system or
its recording. The observational noise can, once identi-
fied, simply be filtered out of the signal through linear
filtering; by contrast, the dynamical noise is insepara-
ble from the actual progression of the state of the sys-
tem, leading to the branch of science and mathematics
known as stochastic filtering [77]. Nevertheless, if the
vector field F simply represents an oscillatory process
(i.e., has a stable limit cycle) and the noise is not too
strong, one can expect a basic linear frequency decom-
position of X (t) to yield a clear distinction between
background noise (whether observational or dynamical
or both) and a relatively narrow peak representing the
approximate natural frequency of the oscillatory pro-
cess.

Now, if one assumes that there is noise, then one can
usually expect little further harm to be done by assum-
ing, as a reasonable approximation, that this noise is a
stationary noise process (again, meaning that its law is
invariant under time-translations). Hence, if the time-
series X (t) is assumed to arise from a model such as
(9)–(10), then it will often be natural to treat this time-
series as a finite-time segment of a sample realisation
of an ergodic stationary stochastic process.

Accordingly, the main traditional framework of time-
series analysis—upon which a vast range of time-series
analysis methods is based—is indeed to

• regard the time-series as a finite-time segment of a
sample realisation of an ergodic stationary stochastic
process,

• and view the aim of time-series analysis as being to
estimate parameters of the probabilistic law of this
underlying stochastic process.

(Such parameters can be single numbers, such as mean
and standard deviation, but can also include functions
of one or more variables, such as power-spectral density,
which is a function of frequency.)

Noise in the classical framework

Throughout various disciplines in the natural and social
sciences, when one records a time-series (X(t) : t ∈ [0,
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T ]), it is common to investigate the presence of deter-
ministic oscillations and/or noise through computation
of the squared magnitude of the Fourier transform

EX(f) =
∣∣∣∣
∫

e2πiftX̃(t) dt

∣∣∣∣
2

, (11)

where X̃ is obtained from the original X through some
combination of detrending and padding. Then:

• Peaks that stand out at a set of isolated frequencies
are regarded as representing deterministic oscillatory
processes either at those frequencies or at fundamen-
tal frequencies of which those frequencies appear as
harmonics due to non-linearities.

• In a log–log plot of EX(f) against f , roughly linear
trends across a large range of frequencies are taken
as representing noise of a “colour” determined by the
gradient of the trend.

The theory of stationary stochastic processes gives rise
to the defining of various kinds of stationary noise—in
particular, of various “colours” as defined by their
power-spectral density (PSD). Roughly speaking, the
PSD of a stationary stochastic process (X(t) : t ∈ R) is
the function PX defined on the frequency axis by

PX = lim
T→∞

P(T )
X

P(T )
X (f) = E

⎡

⎣ 1
T

∣∣∣∣∣

∫ T

0

e2πiftX(t) dt

∣∣∣∣∣

2
⎤

⎦.

The process X is considered “white noise” if PX is con-
stant, while it is considered “pink noise” if PX(f) ∝
1/fβ for some β ∈ (0, 2), and “blue noise” for some
β ∈ (−2, 0). Such “1/f ” behaviour has been observed
in diverse processes [78–83], especially biological and
electronic, and questions regarding the origin of this
behaviour have been much-researched [35]. Assuming
sufficient ergodicity properties, one can estimate the
PSD from a single time-series recording, provided that
the recording is of sufficiently long duration. In practice,
a typical procedure is to compute the quantity inside
the expectation in the definition of P(T )

X —namely

1
T

∣∣∣∣∣

∫ T

0

e2πiftX(t) dt

∣∣∣∣∣

2

,

where (X(t) : t ∈ [0, T ]) is the actual time-series record-
ing, with T the total duration of the recording (or one
can first detrend and add some padding for the sake
of more effective Fast Fourier Transform computation).
In other words, up to a constant time-normalisation,
the function EX as defined in Eq. (11) is taken as the
PSD estimate; noise in the signal is then investigated
by looking for a roughly linear trend in the graph of
EX plotted on a log–log plot, with the β-value for the

1/fβ law of the noise being estimated by the negated
gradient of a best-fit straight line.

An expert statistician may prefer somewhat more
advanced PSD estimators than simply taking the time-
normalised deterministic energy-spectral density EX of
the entire signal recording (X(t) : t ∈ [0, T ]). Nonethe-
less, this simple approach is already perfectly reason-
able as a PSD estimator: second-order spectra and
second-order correlations are Fourier transform pairs
(up to normalisation), and ergodicity implies that the
sample autocorrelation function for the recorded time-
series is a good approximation of the underlying “popu-
lation” autocorrelation function for the stochastic pro-
cess from which the recording is sampled.

There also exist other methods for experimental anal-
ysis of noise besides PSD estimation, such as autocorre-
lation functions (the Fourier counterpart to PSD) and
detrended fluctuation analysis [84]. However, in this
paper, we apply PSD estimation for the analysis of
‘noise’, as it is generally the most standard and widely
applied method for this purpose.

Finite-time dynamics and nonstationary stochastic
processes

• If the system being modelled is open to freely time-
varying influence from its environment, then there is
no reason at all to expect the t-dependence in fi(t) or
Fi(ω, θ1, . . . , θn, t) to follow any indefinite-time pat-
tern such as periodicity or almost-periodicity. Thus,
our framework is to be understood as a framework
for studying dynamics on explicitly finite-time scales,
in contrast to the classical theory of autonomous
dynamical systems where “qualitative analysis of
dynamics” is understood in terms of coordinate-
invariant long-time-asymptotic properties. Indeed, in
our framework, the differential equations describing
the cyclic processes θ1, . . . , θn need not be well
defined on infinite time at all: outside the assump-
tion of a specified form of time-dependence, a non-
autonomous dynamical system can perfectly well be
defined to exist only on a bounded time-interval [42,
46], just as real physical systems often only exist and
operate on bounded time intervals. Such dynamical
systems are called finite-time dynamical systems.

• If the time-dependence does strictly follow some
indefinite-time pattern, such as periodicity or almost-
periodicity, then one can extend the phase space to
incorporate the forcing (physically corresponding to
“taking the system and its external forcing as one
larger system”), so as to give an autonomous dynam-
ical system. A common misconception is that even
outside such assumptions on the time-dependence,
simply adding time itself as a new dimension in
the phase space enables non-autonomous dynami-
cal systems to be reduced to the domain of appli-
cability of autonomous dynamical systems theory.
However, the problem with this is that the theory
of autonomous dynamical systems concerns bounded
invariant objects (e.g., fixed points, periodic orbits,
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compact attractors and their natural invariant mea-
sures, etc.) rather than being concerned with sys-
tems whose state grows unboundedly; obviously, if
time itself is regarded as part of the state of the sys-
tem, then this “state” will grow unboundedly [85,
Remark 2.5].

• We have explained that for autonomous dynami-
cal systems, the time-independence naturally gives
rise to the applicability of stationary stochastic pro-
cesses theory for the analysis of a time-series, even in
the complete absence of noise. However, for a non-
autonomous dynamical system, changing the time
of recording will change the actual law of the sys-
tem relative to the time of recording, and so there
would generally be no analogous logic justifying the
use of nonstationary stochastic processes theory to
describe a time-series taken from a deterministic non-
autonomous dynamical system. When there is also
noise present, then stochastic processes theory may
be appropriate for studying an isolated noise compo-
nent; but as we have already said, seeking to apply a
framework of time-dependent parameter estimation
for nonstationary stochastic processes to the actual
time-series recording X (t) would be problematic.

Linking to deterministic linear time–frequency
analysis

Linearity implies that, first in the absence of coupling
(i.e., Ci = 0) and with hi being sinusoidal, the individ-
ual oscillations

Ai(t) sin
(

θi(0) + 2π
∫ t

0

fi(s) ds

)

will appear as single modes of time-dependent fre-
quency. Then,

• if hi is non-sinusoidal, the ith oscillator will con-
tribute a “non-linear” oscillatory component

Ai(t)h
(

θi(0) + 2π
∫ t

0

fi(s) ds

)

to the time-series, appearing in the linear
time–frequency analysis as a fundamental mode
plus harmonics that are multiples of the fundamen-
tal mode;

• if there is coupling, then as we have described, the
presence of this coupling not only affects the fre-
quency with which the individual oscillators com-
plete their cycles, but also distorts the relative rates
at which different parts of the cycle are progressed
through—this makes the oscillations “non-linear”,
again resulting in the presence of harmonics in the
linear time–frequency analysis.

Consequently, the presence of coupling can be inves-
tigated through higher order spectral analysis such as
bispectral analysis (which will also detect individual

non-linear oscillatory components even without cou-
pling). But once again, under our framework, one
should not use the classical definitions defined for sta-
tionary stochastic processes (nor even generalised ver-
sions for time-locally stationary stochastic processes),
but should use higher order spectra derived from deter-
ministic time–frequency analysis [59, 64]. To infer more
about the causality and origins of couplings identified
by bispectral analysis, additional analysis techniques
such as dynamical Bayesian inference (see, e.g., [86] and
the references therein) can also be used.

The Heisenberg uncertainty principle also plays an
important role in time–frequency analysis: in the
time–frequency analyser, one must decide upon a suit-
able trade-off between precision of the frequency axis
and precision of the time-axis; an arbitrarily high-
precision description in time–frequency space of the
time-localised frequency content of a signal is concep-
tually impossible.

Let us return to our earlier point that in generic
deterministic non-autonomous dynamical systems,
there is no basis for describing solutions in terms of
nonstationary stochastic processes. Traditional time-
series analysis is essentially centred around the con-
cept of estimation of parameters from sample data,
either time-independent if the time-series is assumed
to come from a stationary process or time-dependent
if the time-series is assumed to come from a nonsta-
tionary process. However, time-series analysis method-
ologies suited to our framework, such as determinis-
tic time–frequency analysis, do not seek to “estimate”
any quantities associated with some “population” of
which the time-series is considered a “sample”. In the
mathematics of deterministic time–frequency analysis,
time itself plays a somewhat mathematically analogous
role to “the underlying probability space” in the tradi-
tional theory of stochastic processes. In other words,
in deterministic time–frequency analysis, the actual
recorded time-series is its own population. (Determinis-
tic time–frequency analysers can also be used to define
time-dependent parameters of nonstationary stochastic
processes, e.g., “wavelet power” defined as the expected
squared magnitude of the continuous wavelet transform
at a given frequency. However, as we have already indi-
cated, in the absence of an assumption on the spe-
cific form that the nonstationarity takes or an assump-
tion of extremely low variance, the ability to estimate
such time-dependent parameters from a single sam-
ple realisation would require such slow variation in the
time-localised frequency content that one could simply
instead apply classical estimation of time-independent
parameters to large-duration segments of the signal.)

Further numerical details of the two
frameworks

Next, we demonstrate that this phenomenon is not
exclusive to periodic time-dependence of the oscillators’
internal frequencies, but can readily occur for aperiodic
forms of time-dependence. In Fig. 7 we analyse a single
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Fig. 7 The production of noise-like behaviour by aperi-
odic deterministic oscillations. One non-autonomous oscil-
lator with an aperiodically modulated natural frequency,
simulated over a 200,000 s period, is analysed in its power-
spectral density and wavelet transform. The wavelet trans-
form is constructed using the lognormal wavelet with fre-
quency resolution 2. The analysed signal is X(t) = sin(θ(t))

where θ(t) evolves according to the equation 1
2π

θ̇(t) = f(t)

with f(t) = 5.5 Hz +4.51 Hz sin
(
2π10−2t + sin(0.13t)

)

(n = 1) aperiodically frequency-modulated oscillator,
demonstrating that the power-spectral density is still
noise-like. Once again, the wavelet transform resolves
the true nature of the signal as being not at all like
“noise” but rather a simple oscillation whose frequency
is gradually modulated, with the form of frequency
modulation also clearly seen in the wavelet transform.

As discussed in Sect. 1, the theoretical power-spectral
density is defined over an infinite time span. Thus, an
approximation of the “true” PSD must be calculated
over finite time, but this approximation becomes less
accurate the shorter the finite-time interval. In Fig. 8,
we examine the length of time required to reach a
convergent gradient of the power-spectral density for
every model considered in this section; the largest value

shown on the time-axis in each of the plots in Fig. 8 is
equal to the simulation time that was used for the PSD
estimation in the corresponding figure in this section
where the model was analysed (which, as we have said,
corresponds to around the longest time computation-
ally feasible). We see in Fig. 8 that for most cases,
this time is sufficient to reach convergence. Therefore,
the mischaracterisation of relatively simple determin-
istic but time-dependent dynamics as noise-like is not
based on insufficient accuracy of empirical PSD estima-
tors, but is based truly on the concept itself of using a
linear trend in a log–log plot of PSD as an indicator
of noise when the signal comes from a system subject
to time-dependent influences in a manner that makes
the framework of stationary stochastic processes inap-
propriate. Rather than seeking to gain a better under-
standing of the system by improving the supposed pre-
cision or accuracy of PSD estimation, instead, to gain
even a basic correct understanding of the system, one
must incorporate the time dimension explicitly into the
analysis, as exemplified in the wavelet transform.

Finally, in this subsection, we demonstrate the prac-
tical implications of the Heisenberg uncertainty prin-
ciple, as discussed in Sect. 2.3, for the wavelet trans-
form. Specifically, for this analysis method, the fre-
quency resolution parameter determines the trade-
off between precision in the time-domain and the
frequency-domain. In Fig. 9, we see that for the highest
frequency resolution considered, the higher frequencies
are finely resolved in time–frequency space, while the
lower frequencies have a more blurry representation in
the time-domain; then, as the frequency resolution is
decreased, the lower frequencies become less blurry in

Fig. 8 The amount of time each model requires to obtain convergence of the gradient of the PSD. The β factor of the 1/fβ

gradient of the PSD of a model is calculated from time-series of a range of lengths, tf . The model to which each plot refers
is indicated by the legend specifying the figure in which that model was first introduced
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Fig. 9 The role of the frequency resolution in the wavelet transform, using the lognormal wavelet. Considered for the
aperiodic model of Fig. 7. In order, from left to right along the upper row and then left to right along the lower row, a
frequency resolution of R = 0.5, 1, 1.5, 2.5, 3, 3.5 was used, rather than R = 2 as in Fig. 7

the time-domain, but the higher frequencies start to
become more blurry in the frequency domain; and at
the lowest frequency resolution values, all frequencies
are very poorly resolved in the frequency-domain. This
illustrates how, in time–frequency analysis, the param-
eter controlling the trade-off between time localisation
and frequency resolution needs to be carefully opti-
mised, on a case-by-case basis, to the combination of
how quickly the time-dependent characteristics of oscil-
lations change and how large the distance in frequency
is between different oscillatory contributions that one
seeks to resolve; otherwise, the number and the nature
(e.g., noise versus oscillation) of the components present
in the signal may be unnecessarily misidentified.

Entropy and autocorrelation

What we call the “traditional framework of time-series
analysis”, as described in Sect. 2, can be summarised
as the approach in which one regards a recorded time-
series as being a finite-duration segment of a sample
realisation of an ergodic stationary stochastic process,
and uses this recording to seek to estimate statistical
parameters or properties of the underlying stochastic
process so as to help learn more about the physical
system from which the time-series was measured. PSD
analysis is a common tool for understanding noise that
is based on the traditional framework; but as we have
said, the full “toolbox” of time-series analysis meth-
ods based on the traditional framework is vast. Here,
we now illustrate how including more of these meth-
ods in the analysis of a time-series does not help to
gain an understanding of the underlying behaviour of
the system if there is significant time-dependence in
the properties of oscillatory components of the time-
series, and hence, time-resolved methods such as the

wavelet transform and other methods described in [54]
are still needed. Specifically, as two examples of well-
known analysis tools that are intended to gain certain
types of information about a time-series—and yet which
are ultimately based on the traditional framework and
do not resolve in time—we will consider first multi-
scale sample entropy [87] and second autocorrelation
(the Fourier counterpart to PSD).

Entropy measures are intended to give a quantifi-
cation of the “complexity” of a time-series. Multi-
scale sample entropy is particularly designed to avoid
characterising randomness as inherently a behaviour
of high complexity, such that, for example, stationary
white noise will appear as being of relatively low “com-
plexity” compared to other forms of complex-looking
behaviour [87–89]. Multiscale sample entropy gener-
alises the established sample entropy calculation to
multiple time scales, identifying over which of these the
time-series may be more or less complex.

To define multiscale sample entropy, we first need
to define sample entropy [90], which is defined for
discrete-time signals (xn)n=1, ...,N . Heuristically, for a
fixed positive-integer parameter m, the sample entropy
is the negative of the natural logarithm of the probabil-
ity that two randomly selected distinct length-(m + 1)
segments of the signal will share approximately the
same (m + 1)th entry conditional on the event that
they share approximately the same first m entries; thus,
a larger value of the sample entropy corresponds to
the time-series being “less predictable” and thus “more
complex”. To be more precise: given a signal length
N , an integer m ∈ {1, . . . , N − 1} (often chosen as
m = 2) and a “tolerance” parameter ρ > 0, letting
CN−m be the set of all pairs (i , j ) of integers i and j
with 1 ≤ i < j ≤ N −m, the sample entropy of a signal
(xn)n=1, ...,N is defined as

SampEn(m, ρ, N , (xn)n=1, ...,N ) := log
#{(i, j) ∈ CN−m : d[ (xi, . . . , xi+m−1) , (xj , . . . , xj+m−1) ] < ρ}

#{(i, j) ∈ CN−m : d[ (xi, . . . , xi+m) (xj , . . . , xj+m) ] < ρ} ,
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Fig. 10 Multiscale sample
entropy of autonomous and
non-autonomous oscillator
ensembles. In a, the
autonomous models in
Fig. 2a; in b the same
models as in (a) but with
the addition of a random
number between 0 and 1 Hz
to each frequency f0i; in c,
the non-autonomous models
in Fig. 2b; and in d, the
same models as in c but
with the addition of a
random number between 0
and 1 Hz to each centre
frequency f0i. In each case,
the multiscale sample
entropy is calculated for the
time-series simulated up to
a duration of T = 200 s.
The parameters of the
multiscale sample entropy
are m = 2 and r = 0.15

where d is a function for measuring distances between
vectors (in the calculation of Fig. 10, we use Euclidean
distance). From a statistical point of view within the
above-described traditional framework of time-series
analysis, as in [90], the quantity SampEn(m, ρ, N ,
(xn)n=1, ...,N ) is a statistic seeking to estimate—for
the underlying ergodic stationary stochastic process
(Xn)n∈Z from which the time-series (xn)n=1, ...,N is
assumed to arise as a sample—the value of the param-
eter

lim
N→∞

E[SampEn(m, ρ, N , (Xn)n=1, ...,N )].

Whereas the sample entropy of a discrete-time signal
is a single number, the multiscale sample entropy of a
discretely sampled signal is a function whose input vari-
able is the “time scale” s under consideration; the cor-
responding output is the sample entropy of the sequence
of mean averages of consecutive time-windows of dura-
tion s. To be precise: for a discretely sampled signal
(xt)t= 1

fs
, 2
fs

, ..., fsT−1
fs

,T of duration T and sampling fre-
quency fs, fixing a positive-integer parameter m and a
parameter r > 0 and setting ρ = rσ, where σ is the
standard deviation of the set of all points x 1

fs
, x 2

fs
. . . ,

xT in the signal, the multiscale sample entropy asso-
ciates with each “time scale” s > 0 (where s is a mul-
tiple of 1

fs
that is much smaller than T ) the sample

entropy of the signal (yn)n=1, 2, ..., �T
s � where yn is the

mean over the nth time window of length s, that is

yn =
fs
s

s
fs∑

i=1

x(n−1)s+ i
fs

,

and �·� is the rounding-down operation.
Now, for sample entropy, it is advised that one ensure

a signal length N of at least 10m. For multiscale sample
entropy, since a larger scale s corresponds to a smaller
number of points �T

s � in the downsampled signal for
which the sample entropy is calculated, it is necessary
to limit the scale s to achieve the above advice. Accord-
ingly, in this paper, we present the multiscale sample
entropy up to the maximum such permissible scale.

In Fig. 10, we present the multiscale sample entropy
of models considered in the previous sections, and mod-
ifications thereof. Figure 10(a) shows results for the
autonomous cases analysed in Fig. 2(a), and Fig. 10(c)
shows results for the non-autonomous cases analysed in
Fig. 2(b). The results in plot (a) are of a qualitatively
fairly similar nature to those in plot (c), apart from
the relatively sharp drops in entropy as a function of
scale seen at certain scale values in the n = 10 case.
There is no indication from these plots that multiscale
sample entropy can be used to help distinguish time-
independent (i.e., autonomous) from time-dependent
(i.e., non-autonomous) dynamics.

However, perhaps not too much should be deduced
from plots (a) and (c) due to the rational ratios
between the frequencies fi(t) of the different oscillators
present in the model, which could significantly affect
the entropy analysis. Accordingly, just as we added ran-
dom numbers to the centre frequencies to reduce ratio-
nal relationships when considering bispectra, so likewise
now in plots (b) and (d) of Fig. 10, we show results for
the same models as in plots (a) and (c), respectively,
except with the addition of random numbers between 0
and 1 Hz to the centre frequencies f0i of the oscillators.
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Fig. 11 Autocorrelation of
autonomous and
non-autonomous oscillator
ensembles analysed in
Fig. 10 with n = 10. Each
plot corresponds to the
same model as that of the
same letter in Fig. 10. The
window size is a 0.028 s,
b 0.044 s, c 0.034 s, and
d 0.044 s, in each case equal
to the greatest entropy
peak in the corresponding
model in Fig. 10

Now, in this more generically representative scenario,
we actually see results indicating similar conclusions to
what we saw in Fig. 2 when considering power-spectral
density: The sample entropy as a function of scale shows
a similar picture to that seen for white noise in Fig. 3
of [87] and Fig. 1 of [89]; but,

• in the autonomous case shown in plot (b), for the
relatively low-dimensional case n = 10, the deviations
away from the monotonically decaying “noise-like”
curve are fairly clear, while for larger n, the result
more closely follows a monotonically decaying curve
resemblant of “noise-like” behaviour;

• however, in the non-autonomous case shown in
plot (d), n = 10 is already sufficient to follow remark-
ably closely the “noise-like” picture.

Therefore, whereas the cases shown in plots (a) and (c)
merely indicate the insufficiency of multiscale sample
entropy to be able to distinguish autonomous from non-
autonomous dynamics, the more generically representa-
tive results shown in plots (b) and (d) indicate not only
the insufficiency of multiscale sample entropy in this
regard (since the results in (b) and (d) are quite similar
to each other) but furthermore the potential for pos-
itive mischaracterisation of relatively low-dimensional
deterministic behaviour as noise, just as has been seen
for power-spectral density.

Autocorrelation analysis is also a widely applied
time-series analysis method, that describes the “statis-
tical memory” of a signal across different time scales.
The sample autocorrelation function (which seeks to
estimate the “population” autocorrelation function of

the ergodic stationary stochastic process from which
the time-series is assumed to be a sample) calculates
the correlation between values in the time-series sep-
arated in time by a given “lag” (the input variable
of the autocorrelation function). Here, we work with
a slight adaptation of the standard definition of sam-
ple autocorrelation, that sometimes gives more suit-
able results that the standard definition: for a dis-
cretely sampled signal (xt)t= 1

fs
, 2
fs

, ..., fsT−1
fs

,T of dura-
tion T and sampling frequency fs, we fix a window-
length L ∈ (0, T ) independent of the lag under inves-
tigation, and then associate with each lag k ∈ [−T−L

2 ,
T−L
2 ] (where k is a multiple of 1

fs
) the cosine of the angle

between the vector (x i
fs

) i
fs

∈[T−L
2 , T+L

2 ] and the vector
(x i

fs
+k) i

fs
∈[T−L

2 , T+L
2 ], as calculated by the normalised

dot product. (The difference from the usual definition of
the sample autocorrelation function is as follows: in the
usual definition, for each lag k , one considers correlation
between the time-windows [0, T − |k|] and [—k—, T ],
whereas, in our approach, one considers the correlation
between the time-windows [T−L

2 , T+L
2 ] and [T−L

2 + k,
T+L
2 + k].)
In Fig. 11, we calculate the autocorrelation of the

models in Fig. 10 with n = 10, using a window size L
equal to the time scale at their greatest entropy peak.
We see that plots (a) and (c) slightly reveal a qualita-
tive difference, namely a constant lower envelope in the
autonomous case and a slightly variable lower envelope
in the non-autonomous case, but these observations are
peculiar to the precise setup considered in (a) and (c)
where the frequencies fi(t) have rational ratios; once we
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Fig. 12 The multiscale
sample entropy, with m = 2
and r = 0.15, of the
time-series analysed in
a Fig. 4, b Fig. 5, and
c Fig. 6

move to the much more generically representative cases
in plots (b) and (d), we see no clear qualitative differ-
ence between plots (b) and (d) that might indicate that
one is generated by time-independent dynamics and the
other by time-dependent dynamics. In conclusion, as is
to be expected, there is no clear way in which non-
time-resolved autocorrelation functions can be used to
help distinguish between time-independent and time-
dependent dynamics.

Just like power-spectral density, the two analysis
methods that we have considered in this subsection
do not resolve the time dimension: just as classical
power spectra are defined over the frequency axis with-
out an axis for the progression of time, so likewise
the multiscale sample entropy and the autocorrelation
are defined as a function of a variable representing
a “width of time-gap”, while still effectively treating
the actual progression of time as of no more signifi-
cance than an atemporal set of statistical re-trials (the
essence of ergodicity). Accordingly, as we have evi-
denced, they cannot be expected to provide a suitable
methodology for gaining even a basic understanding
of the behaviour of systems subject to temporal mod-
ulation of characteristics (such as frequency of oscil-
latory components)—nor indeed can any other tools
based on the classical framework of time-series analysis.
Instead, time-resolved methodologies, such as determin-
istic time–frequency analysis, are truly necessary for
successfully analysing signals recorded from such sys-
tems.

In Fig. 12, we consider the multiscale sample entropy
of the experimental time-series analysed in Sect. 4. This
indicates that our three examples, in the order that we
have presented them, are of increasing complexity; and
this would seem to agree with the pictures indicated
by the wavelet transforms in Figs. 4, 5, 6. Still, we
would not have been able to arrive at a basic descrip-
tion of what is going on in each of these examples if
we had not employed time-resolved methods such as
the wavelet transform and had instead restricted our-
selves to classical-framework methodologies, such as
power-spectral density and non-time-resolved statisti-
cal entropy measures.
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