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Abstract Closed quantum systems far from thermal equilibrium can show universal dynamics near attrac-
tor solutions, known as non-thermal fixed points, generically in the form of scaling behaviour in space and
time. A systematic classification and comprehensive understanding of such scaling solutions are tasks of
future developments in non-equilibrium quantum many-body theory. In this tutorial review, we outline
several analytical approaches to non-thermal fixed points and summarise corresponding numerical and
experimental results. The analytic methods include a non-perturbative kinetic theory derived within the
two-particle irreducible effective action formalism, as well as a low-energy effective field theory framework.
As one of the driving forces of this research field are numerical simulations, we summarise the main results
of exemplary cases of universal dynamics in ultracold Bose gases. This encompasses quantum vortex ensem-
bles in turbulent superfluids as well as recently observed real-time instanton solutions in one-dimensional
spinor condensates.

1 Introduction

Relaxation dynamics of closed quantum many-body
systems quenched far away from equilibrium has been
studied intensively during recent years. Physical set-
tings include the evolution of the early universe after
the inflation epoch [1–3], thermalisation and hadro-
nisation of a quark–gluon plasma [4, 5], as well as
the relaxation of ultracold atomic quantum gases in
extreme conditions studied in table-top experiments
[6–8]. A great variety of different scenarios has been pro-
posed and observed, such as prethermalisation [9–16],
generalised Gibbs ensembles (GGE) [6, 14, 17–21],
critical and prethermal dynamics [22–25], decoherence
and revivals [26], dynamical phase transitions [27–31],
many-body localisation [32–36], relaxation after quan-
tum quenches in quantum integrable systems [37–39],
wave turbulence [40–43], superfluid or quantum tur-
bulence [44–47], universal scaling dynamics and the
approach of a non-thermal fixed point [46–50], and
prescaling in the approach of such a fixed point [51–54].
The broad spectrum of possible phenomena occurring
during the evolution reflects many differences between
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quantum dynamics and the relaxation of classical sys-
tems.

In this brief tutorial review, we focus on universal
dynamics of dilute Bose gases close to a non-thermal
fixed point. Universality here means that the evolution
after some time becomes to a certain extent indepen-
dent of the initial condition as well as of microscopic
details. The universal intermediate state, that develops,
is determined only by symmetry properties and possi-
bly a limited set of relevant quantities and/or functions
pre-determined by the initial configuration. Generically,
this allows categorising systems into universality classes
based on their symmetry properties and the family of
far-from-equilibrium states the initial condition belong
to.

The situation closely resembles the ideas of the classi-
cal theory of critical phenomena. The concepts of uni-
versality and scaling were first introduced in the pio-
neering works of Widom, Kadanoff, and Wilson [55–58]
and almost immediately generalised to the case of
dynamics [59, 60]. This discussion was then extended to
coarsening and phase-ordering kinetics [61, 62], glassy
dynamics and ageing [63], hydrodynamic [64] and wave
turbulence [40, 41], and its variants in the quantum
realm of superfluids [65, 66]. Recently, various possi-
ble realisations of prethermal and universal dynamics
of far-from-equilibrium quantum many-body systems
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were discussed [67–88], of which many considered ultra-
cold atomic quantum gases. The concept of non-thermal
fixed points has been introduced [89, 90] and discussed,
focussing on fluctuations in closed quantum many-body
systems [89–96] and including topological defects, as
well as coarsening phenomena [97–106].

Our article is organised as follows. In Sect. 2, we
introduce the main concepts of non-thermal fixed
points. Section 3 contains a summary of the main
theoretical approaches to describing non-thermal fixed
points in ultracold quantum gases. In Sect. 4, we com-
pare the analytical predictions with numerical sim-
ulations and discuss the role of non-linear (topolog-
ical) excitations. Section 5 summarises experimental
results on non-thermal fixed points. We close our tuto-
rial review with an outlook to future research in the
field, see Sect. 6.

2 Non-thermal fixed points

The concept of non-thermal fixed points is motivated by
the ideas of (near-)equilibrium renormalisation group
(RG) theory. Generalising fixed points of RG flow
equations, which characterise, e.g. critical phenom-
ena in (thermal) equilibrium, non-thermal fixed points
appear in time evolution flows out of equilibrium. This
includes, in particular, universal, self-similar evolution
and the transient appearance of largely scale-free spa-
tial patterns. Associated with relaxation of closed sys-
tems, they are typically subject to conservation laws. In
this chapter, we summarise the main concepts of non-
thermal fixed points.

2.1 Universal scaling

In the RG framework, one studies a physical system in
a way, which resembles looking at it through a micro-
scope at different resolutions. Close to a critical point,
one typically observes that the system looks self-similar,
i.e. it does not change its appearance when varying the
resolution.

As a simple example, consider a two-point correlation
function C (x ; s) of some locally measurable observ-
able, which depends only on the distance x = |r1 − r2|
between two positions ri in space, if the system is homo-
geneous and isotropic. s is a number that defines the
resolution in units of a fixed length scale and repre-
sents the flow parameter of the RG. Changing the value
of s, the correlation function C (x ; s) should change
accordingly. Self-similarity implies that C (x ; s) rescales
as C(x; s) = sζf(x/s). This implies that the correla-
tions are solely characterised by a universal exponent ζ
and scaling function f .

A fixed point of the RG flow equation corresponds to
the case when the system becomes fully s-independent,
which happens when f(x) ∼ xζ . Typically, however, for
a realistic physical system, the fixed point is partially
repulsive. In this case, the scaling function f retains
some information about characteristic scales such as a

correlation length ξ and, therefore, does not assume
a pure power-law form. The system’s RG flow only
approaches the fixed point but generically does not
reach it before being driven away again. Consider, for
example, a continuous phase transition in equilibrium,
at which the correlation length diverges. The (fine-
tuned) system can be precisely at the RG fixed point
only in the thermodynamic limit, which allows having
a diverging correlation length and thus a pure scaling
form describing its correlations at any finite scale.

Taking the evolution time t as the scale parame-
ter, the renormalisation-group idea can be extended
to the time evolution of non-equilibrium systems. The
corresponding fixed point of the RG flow is called a
non-thermal fixed point . In the scaling regime near
a non-thermal fixed point, the evolution of the time-
dependent version of the correlation function intro-
duced above is determined by C(x; t) = tαf(t−βx),
with now two universal exponents α and β that assume,
in general, nonzero values. The associated correlation
length of the system changes as a power of time, ξ(t) ∼
tβ . Note that the time evolution taking power-law char-
acteristics is equivalent to critical slowing down, here in
real time. We remark that, depending on the sign of β,
increasing the time t can correspond to either a reduc-
tion or an increase of the microscope resolution.

In general, the scaling exponents α and β, together
with the scaling function f , allow us to determine the
universality class associated with the fixed point [93],
but they may not form a sufficient criterion for that.
It is, in particular, expected that the evolution of very
different physical systems far from equilibrium can be
categorised by means of their possible kinds of spatio-
temporal scaling behaviour. A full classification of such
universality remains an open problem. However, similar
to the case of equilibrium critical phenomena, underly-
ing symmetries of the system are expected to play a
crucial role.

Although the evolving system, close to a non-thermal
fixed point, forgets about many details of where it
comes from, in analogy to equilibrium RG flows, the
initial conditions of the flow are not entirely irrelevant.
Whether a physical system will approach a non-thermal
fixed point and show universal scaling dynamics, or
which fixed point it will be able to reach, in general
depends on the particular initial state. Going back to
the RG analogy, one can imagine a space of all possi-
ble states. The evolution of one state to another can be
represented as a trajectory in this space. A set of all
the trajectories forms a flow in the state space, similar
to a flow of coupling constants in the RG theory or to
a phase portrait of some dynamical system.

While the asymptotic state is typically expected to
correspond to one of the system’s possible equilibrium
configurations, there can be attractors near which the
evolution is critically slowed down. These attractors are
exactly the aforementioned non-thermal fixed points.
Therefore, in general, the whole space can be divided
into regions that are attracted to different non-thermal
fixed points. At the same time, some initial conditions
may not lead to a non-thermal fixed point at all but
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Direct thermalization

Self-similar dynamics
Far from equilibrium

Close to equilibrium

Fig. 1 Schematics of different scenarios of thermalisation.
Within a subclass of far-from-equilibrium conditions all
the states undergo the same self-similar evolution regime
before reaching equilibrium. In contrast, a generic close-
to-equilibrium initial state thermalises directly without any
universal scaling dynamics in between. Figure adapted from
Ref. [48]

instead to direct thermalisation, see Fig. 1. It is com-
monly accepted, however, that the key precondition
for the system to reach universal self-similar scaling
dynamics is an extreme out-of-equilibrium initial con-
figuration characterised by either strong statistical fluc-
tuations or a strong (inhomogeneous) mean field.

2.2 Self-similar transport

As a relevant example, consider the time evolution
of a single-component dilute gas of bosonic atoms in
three spatial dimensions, described by the classical
Gross–Pitaevskii (GP) field equation of motion,

i∂tψ(x, t) =
[
− ∇2

2M
+ g|ψ(x, t)|2

]
ψ(x, t), (1)

where M is the atom mass, and g = 4πa/M , with
s-wave scattering length a, a coupling constant quan-
tifying the non-linear interaction ‘potential’ depending
otherwise on the local density ρ(x, t) = |ψ(x, t)|2. Here
and in the following, we choose natural units where
� = 1.

The system can approach a non-thermal fixed point
as the result of a strong initial cooling quench [95],
see Fig. 2 as well as Refs. [93, 107–109]. An extreme
version of such a quench can be achieved, e.g. by first
cooling the system adiabatically such that its chemical
potential is 0 < −μ � kBT , where the temperature
T � Tc is just above the critical temperature Tc sep-
arating the normal and the Bose condensed phases of
the gas, and then removing all particles with energy
higher than ∼ |μ|. This leads to a distribution that
drops abruptly above a momentum scale Q ,

n(t0, k) = 〈ψ†(t0, k)ψ(t0, k)〉
≈ n0 Θ(Q − |k|), (2)

see the red dashed line in Fig. 2. If the corresponding
energy is on the order of the ground-state energy of

the post-quench fully condensed gas with uniform den-
sity ρ, Q2/2M � |μ|� gρ, then the majority of the
energy of the gas after the quench is concentrated at
the scale Q � kξ, the healing-length momentum scale
kξ =

√
8πaρ.

Most importantly, such a strong cooling quench leads
to an extreme initial condition for the subsequent
dynamics. The post-quench distribution is strongly
over-occupied at momenta k < Q, as compared to the
final equilibrium distribution. This initial overpopula-
tion of modes with energies ∼ Q2/2M induces inverse
particle transport from intermediate to lower momenta,
while energy is transported to higher wave numbers [93,
107, 108], as indicated by the arrows in Fig. 2. The
overall transport, which subsequently develops is thus
characterised by a bi-directional, in general non-local
redistribution of particles and energy. This transport
requires interactions, i.e. collisions between the parti-
cles in the gas, which give rise to energy and momentum
exchange, allowing certain particles to loose momentum
and energy while others speed up in their motion. This
is illustrated in Fig. 2. For example, particles making up
the over-occupation at intermediate momenta close to

Fig. 2 Self-similar scaling in time and space close to a
non-thermal fixed point. The sketch shows, on a double-
logarithmic scale, the time evolution of the single-particle
momentum distribution n(t , k) of a Bose gas for two differ-
ent times t (solid and short-dashed lines). Starting from
an extreme initial distribution marked by the red long-
dashed line, being the result of a strong cooling quench,
a bi-directional redistribution of particles in momentum
space occurs as indicated by the arrows. Particle transport
towards low momenta as well as energy transport to larger
momenta are characterised by self-similar scaling evolutions
in space and time according to n(t, k) = (t/tref)

αn(tref,
[t/tref]

βk), with universal scaling exponents α and β, dif-
ferent for both directions. Here, tref is an arbitrary reference
time within the temporal scaling regime. The infrared trans-
port (green arrow) conserves the particle number, which is
concentrated at small momenta. In contrast, the energy,
being concentrated at high momenta, is conserved in the
redistribution of short-wavelength fluctuations (blue arrow).
See main text for details. Figure adapted from Ref. [95]
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the scale Q , which are being transferred to increase the
occupancy of modes of lower momenta, loose a consid-
erable part of their kinetic energy (green arrow, note
the logarithmic scales). Hence, in order for the total
energy conservation to be satisfied, other particles need
to be scattered to higher momentum modes within the
tail (blue arrow).

The evolution eventually becomes universal in the
sense that it is then approximately independent of the
precise initial conditions set by the cooling quench as
well as of the particular values of the physical parame-
ters characterising the system. In the vicinity of a non-
thermal fixed point, the momentum distribution of the
Bose gas rescales self-similarly, within a certain range
of momenta, according to

n(t, k) = (t/tref)αn(tref, [t/tref]βk), (3)

with some reference time tref. The distribution shifts
to lower momenta for β > 0, while transport to
larger momenta occurs in the case of β < 0. A bi-
directional scaling evolution is, in general, characterised
by two different sets of scaling exponents. One set
describes the inverse particle transport towards low
momenta whereas the second set quantifies the trans-
port of energy towards large momenta.

2.3 Scaling function

While the spatio-temporal scaling provides the ‘smok-
ing gun’ for the approach of a non-thermal fixed point,
in all cases examined so far, also power-law scaling of
the momentum distribution, n(k) ∼ k−ζ , has been
observed and reflects the character of the underlying
transport, see Fig. 2. In both, the infrared (IR) regime
of inverse transport to lower momenta (β > 0) and the
ultraviolet (UV) range, in which a direct transport to
higher momenta prevails (β < 0), the distribution func-
tion typically assumes a (potentially) different power-
law form. At any finite time after the quench, both, the
IR and the UV distributions are cutoff at some scale
kΛ, below which n(t , k) flattens out, and kλ, above
which it more steeply, e.g. exponentially falls to zero.
Both, kΛ and kλ, in general vary in time as a result of
the transport, as indicated in Fig. 2.

Evaluated at a fixed reference time tref, the fixed-
point solution (3) further defines the universal scaling
function fs(k) = n(tref, k). Within a limited range of
momenta, it satisfies the scaling hypothesis fs(k) =
sζfs(sk), with an additional, in general independent
scaling exponent ζ. A frequently used simple ansatz for
the scaling function fs(Q) in the IR region is given by

fs(k) ∼
[
1 + (k/kΛ)ζ

]−1
. (4)

It interpolates between the universal power-law
behaviour fs(k) ∼ k−ζ for k > kΛ and the plateau
region fs(k) ∼ const. below the running scale kΛ, see
the inset of Fig. 2. Combining the spatio-temporal scal-
ing form (3) with the scaling function (4) gives that the

momentum scale evolves as kΛ(t) ∼ t−β , corresponding
to a characteristic length scale growing as 
Λ(t) ∼ tβ .

2.4 Conservation laws

Global conservation laws—applying within a certain,
extended regime of momenta—strongly constrain the
redistribution underlying the self-similar dynamics in
the vicinity of the non-thermal fixed point. Hence, they
play a crucial role for the possible scaling evolution as
they impose scaling relations between the scaling expo-
nents. For example, the conservation of the total par-
ticle number,

∫
ddk n(t, k) = N(t) ≡ N , with n(t , k)

evolving according to Eq. (3), in d spatial dimensions,
requires that α = dβ.

In a closed system, both, the total energy and par-
ticle number need to be conserved by the transport.
For the bi-directional transport sketched in Fig. 2, the
inverse flow is dominated by particle-number conserva-
tion, while the high-momentum modes accumulate the
major part of the kinetic energy. For this to be the case,
the power-law exponents ζ of n(k) ∼ k−ζ can be within
a certain range of values only [95, 110]. For example, in
the simpler case that ζ is the same everywhere between
the IR and UV cutoff scales, kΛ � k � kλ, one needs
to have d < ζ < d + 2 in d spatial dimensions, for the
particle, ∼ n(t, k), and energy distributions, ∼ k2n(t,
k), to be dominated by IR and UV scales, k � kΛ and
k � kλ, respectively. Note that, only if this condition is
fulfilled, the bi-directional transport can separate parti-
cle number and energy, which is one of the preconditions
for self-similar universal scaling dynamics to occur. In
the opposite case, for values of ζ, which let both, parti-
cles and energy to be concentrated at either side of the
spectral range, scaling evolution will come out differ-
ently. The ensuing shock-wave-type redistributions in
scale space have been discussed in detail in Refs. [95,
110], in the context of the build-up and decay of weak
wave turbulence in classical systems.

2.5 Coarsening and phase ordering

The self-similar transport in momentum space can
emerge from rather different underlying physical con-
figurations and processes. For instance, the dynamics
can be driven not only by the conserved redistribu-
tion of quasiparticle excitations such as in weak wave
turbulence [93, 95] but also by the reconfiguration of
spatial patterns like magnetisation domains [100, 101]
or by the annihilation of (topological) defects populat-
ing the system [102, 107]. The latter dynamics can be
considered as the build-up of an inverse superfluid tur-
bulent cascade [97, 98, 102]. In contrast, if defects are
subdominant or absent at all, which is the case, e.g.
for U(N ) symmetric models in the large-N limit [111],
the strongly occupied modes exhibiting scaling near the
fixed point [93, 95] typically reflect strong phase fluc-
tuations not subject to an incompressibility constraint.
These can be described, e.g. by the re-summed kinetic
theory discussed in Sect. 3.1 or a low-energy effective
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theory, see Sect. 3.2 and Ref. [112]. The associated scal-
ing exponents are generically different for both types of
dynamics, with and without patterns or defects [93, 99,
102].

The concept of non-thermal fixed points thus includes
scaling dynamics which exhibits coarsening and phase-
ordering kinetics [61, 62] following the creation of
defects and non-linear patterns after a quench, e.g.
across an ordering phase transition. In most cases, so
far, such coarsening phenomena have been discussed
within an open-system framework, considering the sys-
tem to be coupled to a particle or heat bath. It is under-
stood that the coupling to an external bath, which is
usually described by means of a driven-diffusive model,
can in general be realised also within a closed system,
where part of the system, e.g. the high-energetic modes
assume the role of the bath. From this point of view,
the theory of non-thermal fixed points includes that of
coarsening and opens an approach for capturing the
entire scaling dynamics within a closed system from
first principles, see, e.g. Refs. [105, 106].

3 Analytical approaches to non-thermal
fixed points

After introducing the basic concept of non-thermal
fixed points in the previous section, we are set to dis-
cuss various methods employed to describe the univer-
sal scaling dynamics, focussing on analytical approaches
in the present section. More detailed presentations of
the formalism can be found, e.g. in Refs. [95, 112].

3.1 Re-summed kinetic theory

A non-thermal fixed point is characterised by algebraic
scaling in space and time towards smaller wave num-
bers, i.e. greater lengths, as formalised by the scal-
ing form (3) for the single-particle momentum distri-
bution, with the typical scaling function (4) defining
the shape of the distribution. This implies the charac-
teristic length scale to scale as kΛ ∼ t−β .

Consider a field theory such as the GP model (1) of a
single-component dilute superfluid. In quantised form,
the bosonic field operators obey the standard commu-
tation relations [ψ(t, x), ψ(t, y)†] = δ(x − y), [ψ(t,
x), ψ(t, y)] = 0. For simplicity, we restrict ourselves to
a homogeneous system, e.g. a gas in a box with peri-
odic boundary conditions, which one may describe in
terms of the energy eigenmodes of some leading-order
quasiparticle Hamiltonian. In the periodic box, these
are plane waves with wave number k, e.g. free particle
excitations with energy, i.e. frequency ω(k) = k2/2M or
collective (sound) modes with ω(k) = cs|k|, with speed
of sound cs = (gρ0/M)1/2, for a flat mean density ρ0.

In the following, we will restrict ourselves to the
universal scaling dynamics of two-point functions. A
simple example is the momentum distribution n(t,
k), cf. Eq. (2). In quantum field theory, the exact

time evolution of (in general unequal-time) two-point
correlators G(x, y) = 〈TCψ(x)ψ(y)†〉, x = (x0, x),
etc., is governed by the Kadanoff–Baym equations, cf.,
e.g. Refs. [70, 94, 113]. These are derived within the
(Baym–Kadanoff–)Schwinger–(Mahanthappa–Bakshi–)
Keldysh formalism [114], typically in a path-integral
setting, involving a closed time path C from some
initial time t0 to infinity and back to t0, along which
the above time ordering TC of the field operators is
defined.

In writing down the equations for G , one hides the
generic dependence on all the arbitrary high correla-
tions developing in the dynamical evolution of the inter-
acting system in expressing the equations in terms of G
(and the one-point function 〈ψ(x)〉) only. This comes at
the cost of a in general infinite series of Feynman dia-
grams made up of G entering the equations. While in
principle exact, a solution of these integro-differential
equations is quite involved in practice, which makes
them cumbersome for a theoretical analysis. For both,
analytical insight and numerical evaluations, one usu-
ally needs to truncate the diagrammatic series and then
still approximate the equations further to exhibit the
mechanisms relevant at a non-thermal fixed point.

In the latter step, a crucial observation is that the
scaling dynamics is reached at late times and low
momenta, suggesting a slow dependence of the function
G(x , y) on the central-time direction t ∼ x0 + y0. This
suggests an approximate description, known as the gra-
dient expansion, that takes into account only low orders
of both temporal and spatial central-coordinate, x + y,
derivatives. One decomposes the time-ordered Green’s
function G(x, y) ≡ F (x, y) − (i/2) sgnC(x0 − y0)ρ(x,
y), with the sign function evaluating to ±1 for x0

later/earlier than y0 on the path C, into its symmet-
ric ‘statistical’ F and anti-symmetric ‘spectral’ ρ com-
ponents [70, 94]. This helps separating the information
about the occupation number of the quasiparticle eigen-
modes of the system.

ρ carries information about the spectral character of
the quasiparticles, in particular their energy ω(k) and
stability, i.e. spectral widths. These are approximately
independent of the central time and space, x + y, and
Fourier transformed with respect to the relative coor-
dinate x–y , the resulting function ρ(ω, k), to a first
approximation, looks like a delta distribution δ(ω−ωk),
i.e. a spectral distribution evaluating the frequency ω to
the eigenfrequency ωk = ω(k) of momentum mode k.
Hence, all frequencies k0 = ω can easily be integrated
out, such that the dynamic equations are left to involve
F and thus n, depending on the central time t and the
momenta only.

The statistical function F also contains informa-
tion about the (quasi)particle distribution n(t, k) and,
therefore, about the statistical occupancy of mode k,
which is obtained by frequency integration over the
statistical function F (t;ω, k). This corresponds to its
equal-time entries F (t, k; t, k) ∼ n(t, k) + 1/2 in two-
time representation.
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Sending the initial time t0 → ∞ one derives, at lead-
ing order in the gradient expansion, a quantum Boltz-
mann equation (QBE),

∂tn(t, k) = I[n](t, k), (5)

for the time evolution of the occupation-number distri-
bution n(t, k) = 〈ψ†(t, k)ψ(t, k)〉. Here, I[n](t, k) is a
scattering integral. Restricting ourselves to the case of
elastic 2 ↔ 2 scatterings, the latter takes the form

I[n](t, k) =
∫
pqr

|Tkpqr|2 δ(k + p − q − r)

× [(nk + 1)(np + 1)nqnr

− nknp(nq + 1)(nr + 1)], (6)

with Tkpqr being the scattering T -matrix, for which
we will later present specific expressions, and the (d +
1)-dimensional delta distributions imply energy and
momentum conservation, with k0 = ωk. The collision
kernel under the integral (6) describes the redistribu-
tion of the occupations nk = n(t, k) of momentum
modes k with eigenfrequency ωk due to elastic 2 ↔ 2
collisions from modes q and r into k and p and vice
versa. But note that also collective-scattering effects
beyond 2 ↔ 2 processes can be captured in the T -
matrix using, e.g. the re-summation techniques dis-
cussed in the following.

In presence of a Bose condensate, the occupation
numbers describe quasiparticle excitations. Their prop-
erties enter the scattering matrix and the mode eigen-
frequencies. Here, we consider transport entirely within
the range of a fixed scaling of the dispersion ωk ∼ kz,
with dynamical scaling exponent z , such that processes
leading to a change in particle number are suppressed.

Two classical limits of the QBE scattering integral
I[n](t, k) exist. The usual, Boltzmann integral for clas-
sical particles is obtained in the limit of n(t, k) � 1.
In the opposite case of large occupation numbers, n(t,
k) � 1, termed the classical-wave limit , the scattering
integral reads

I[n](t, k) =
∫
pqr

|Tkpqr|2 δ(k + p − q − r)

× [(nk + np)nqnr − nknp(nq + nr)].
(7)

Here, the QBE reduces to the so-called wave-Boltzmann
equation (WBE), which is the subject of the following
discussion. It best suits our interests, viz., in the uni-
versal dynamics of a near-degenerate Bose gas obeying
n(t, k) � 1 within the relevant, infrared momentum
region.

3.1.1 Scaling of the scattering integral and the T -matrix

In the kinetic approximation, scaling features of the sys-
tem at a non-thermal fixed point are directly encoded

in the properties of the scattering integral. For a gen-
eral treatment that governs the cases of presence and
absence of a condensate density, we focus on the scal-
ing of the distribution of quasiparticles, in the follow-
ing denoted by nQ(k), instead of the single-particle
momentum distribution n(k). Note that, in the case of
free particles, with dispersion ω(k) = k2/2M ∼ kz, i.e.
of a dynamical exponent z = 2, they are identical, nQ ≡
n. For Bogoliubov sound with dispersion ω(k) = csk
and thus z = 1, the scaling of nQ differs from the scaling
of n due to the k -dependent Bogoliubov mode functions
characterising the transformation between the particle
and quasiparticle basis, n(k) � (gρ0/csk)nQ(k), for
k → 0, in general n(k) ∼ kz−2+ηnQ(k), with anoma-
lous exponent η.

Using a positive real scaling factor s, the self-similar
evolution of the quasiparticle distribution at a non-
thermal fixed point reads

nQ(t, k) = sα/βnQ

(
s−1/βt, sk

)
. (8)

We remark that, by choosing the scaling parameter s =
(t/tref)β , one obtains the scaling form stated in the
example in (3).

As the scattering integral, in the classical-wave limit,
is a homogeneous function of momentum and time, it
obeys scaling, provided the scaling (8) of the quasipar-
ticle distribution, according to

I[nQ](t, k) = s−μI[nQ](s−1/βt, sk), (9)

with scaling exponent μ = 2(d + m) − z − 3α/β. Here,
m is the scaling dimension of the modulus of the T -
matrix,

|T (t;k, p, q, r)|= s−m|T (s−1/βt; sk, sp, sq, sr)|.
(10)

Generally, this scaling hypothesis for the T -matrix does
not hold over the whole range of momenta. In fact, scal-
ing, with different exponents, is found within separate
limited scaling regions, which we discuss in the next
section.

Besides the spatio-temporal scaling, we would also
like to derive the spatial scaling form, in particular the
exponent ζ defined in (4). Consider, for this, the simple
example of a universal quasiparticle distribution at a
fixed time t0, which, at least in a limited regime of
momenta, takes the pure power-law form,

nQ(t0, sk) = s−κnQ(t0, k), (11)

with fixed-time momentum scaling exponent κ. As a
result, also the T -matrix will show spatial momentum
scaling at a fixed instance in time,

|T (t0;k, p, q, r)|= s−mκ |T (t0; sk, sp, sq, sr)|,
(12)

123



Eur. Phys. J. Spec. Top. (2023) 232:3393–3415 3399

(a) (b)

=           +

(c)

Fig. 3 Graphical representation of the re-summation
scheme. a The two lowest order diagrams contributing to the
loop expansion of the 2PI effective action that lead to the
quantum Boltzmann equation with perturbative T -matrix
(13) or (14). Solid lines represent the full Green’s function
G(x , y), black dots the bare vertex ∼ gδ(x − y). b Dia-
gram representing the re-summation approximation which
replaces the diagrams in a within the IR regime of momenta
and gives rise to the modified scaling of the T -matrix. c
The wiggly line is the effective coupling function entering
the T -matrix, which corresponds to a sum of bubble-chain
diagrams, here written as an integral equation. Figure taken
from Ref. [95]

with mκ being, in general, different from m. Note nQ

and thus Eq. (11) in realistic cases is regularised by an
IR cutoff kΛ, recall the function (4), and, analogously,
by a UV cutoff kλ, to ensure that the scattering integral
stays finite in the limits k � kΛ and k � kλ.

3.1.2 Perturbative region: two-body scattering

For the non-condensed, weakly interacting Bose gas
away from unitarity the T -matrix is well approximated
by

|Tkpqr|2= (2π)4g2. (13)

As the matrix elements are momentum independent we
obtain mκ = m = 0. It can be shown that Eq. (13) rep-
resents the leading perturbative approximation of the
full momentum-dependent many-body coupling func-
tion.

In presence of a condensate density ρ0 ≤ ρ, sound
wave excitations become relevant below the healing-
length momentum scale kξ =

√
2gρ0M. Within leading-

order perturbative approximation, the elastic scattering
of these sound waves is described by the T -matrix [95]

|Tkpqr|2= (2π)4
(Mcs)4

kpqr

3g2

2
. (14)

Hence, for the Bogoliubov sound, we obtain the scaling
exponents mκ = m = −2.

3.1.3 Collective scattering: non-perturbative many-body
T -matrix

The above perturbative results are in general appli-
cable to the UV range of momenta. However, scaling

behaviour in the far IR regime, where the momentum
occupation numbers grow large, requires an approach
beyond the leading-order perturbative approximation
as contributions to the scattering integral of order
higher than g2 (i.e. collective phenomena) are no longer
negligible.

In order to correctly describe the infrared physics,
one, therefore, has to take into account scattering col-
lective effects. The latter can be achieved by performing
a non-perturbative s-channel loop re-summation, which
is typically derived within the two-particle irreducible
(2PI) effective action formalism.1 The re-summation
procedure is schematically depicted in Fig. 3. For an
N -component field subject to a U(N )-symmetric inter-
action term ∼ gρ2/2 in the Lagrangian, depending on
the total density ρ =

∑N
a=1 ψ†

aψa, it is equivalent to a
large-N approximation at next-to-leading order. As we
will demonstrate in Sect. 3.2, it reflects that also the
non-linear term in the corresponding field equation, cf.
(1) for N = 1, depends only on the total density and
thus suppresses density fluctuations while the single-
component densities ρa are free to fluctuate.

Irrespective of the actual value of N , we can use
this re-summation scheme to calculate an effective
momentum-dependent coupling constant geff(k) that
replaces the bare coupling g . (Hence, we neglect, for
the first, the conditions for the appropriateness of the
chosen approximation.) This effective coupling depends
on the distributions nQ(t, k) and thus on momentum,
and therefore, changes the scaling exponent m of the T -
matrix within the IR regime of momenta. In particular,
geff(k) becomes suppressed in the IR to below its bare
value g . This ultimately leads to different temporal and
spatial scaling of the (quasi)particle spectrum.

For free particles (z = 2) in d = 3 dimensions, one
obtains [95]

|Tkpqr|= (2π)4g2
eff(ωk − ωr, k − r), (15)

where ωk − ωr and k − r are the energy (ωk = k2/2M)
and momentum transferred in a 2 ↔ 2 scattering pro-
cess, respectively.

At large momenta, the effective coupling is constant
and agrees with the perturbative result, i.e. one finds
geff = g. However, below the characteristic momentum
scale kΞ =

√
2gρncM , the effective coupling deviates

from the bare coupling g . Here, ρnc = ρtot − ρ0 denotes
the non-condensed particle density. Within a momen-
tum range of kΛ � k � kΞ, the effective coupling is
found to assume the universal scaling form

geff(k0, k) �
∣∣ω2

k − k2
0

∣∣
2ρnc ωk

, (κ > 3) (16)

independent of both, the microscopic interaction con-
stant g , and the particular value of the scaling exponent
κ of nQ. Below the IR cutoff, i.e. for momenta k < kΛ,
the effective coupling becomes constant again.

1For introductions to the subject, see, e.g. Refs. [70, 94].
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Making use of the scaling properties of the effective
coupling,

geff(k0, k) = s−γκgeff(szk0, sk), (17)

we obtain γκ = 0 in the perturbative regime and γκ = 2
in the collective-scattering regime for free particles with
z = 2. Together with (15) this yields the corresponding
scaling exponent of the T -matrix to be mκ = 2. The
same analysis of the effective coupling can be performed
for the Bogoliubov dispersion with z = 1. In contrast
to free particles, the scaling exponent of the T -matrix
reads mκ = 0, see Ref. [95] for details.

3.1.4 Scaling analysis of the kinetic equation

To quantify the momentum exponent κ, cf. (11), lead-
ing to a bi-directional scaling evolution we study the
scaling of the quasiparticle distribution at a fixed evo-
lution time. As the density of quasiparticles

ρQ =
∫

ddk

(2π)d
nQ(k) (18)

and the energy density

εQ =
∫

ddk

(2π)d
ωknQ(k) (19)

are physical observables, they must be finite. Let us
assume that the momentum distribution is isotropic,
i.e. nQ(k) ≡ nQ(k), and obeys bare power-law scaling
nQ ∼ k−κ. The exponent κ then determines whether
the IR or the UV regime dominates quasiparticle and
energy densities. For a bi-directional self-similar evolu-
tion the quasiparticle density has to dominate the IR
and the energy density the UV. As briefly discussed in
the introduction, this is possible within a window of
exponents

d ≤ κ ≤ d + z, (20)

and κ is either the same or different in the IR and UV
regions, the latter case being depicted in Fig. 2. Note
that, also as introduced before, for ρQ and εQ to be
finite, the quasiparticle distribution requires regulari-
sations in the IR and the UV limits, in terms of kΛ and
kλ, respectively.

According to the scaling hypothesis, the time evolu-
tion of the quasiparticle distribution is captured by (8),
with universal scaling exponents α and β. Global con-
servation laws strongly constrain the form of the cor-
relations in the system and the ensuing dynamics and
thus play a crucial role for the possible scaling phenom-
ena as they imply scaling relations between the expo-
nents α and β. Conservation of the total quasiparticle
density (18) requires

α = dβ. (21)

Analogously, if the dynamics conserves the energy den-
sity (19), the relation

α = (d + z)β (22)

has to be fulfilled.
The scaling relations (21) and (22) cannot both be

satisfied at the same time for nonzero α and β if z �= 0.
This leaves us with two possibilities: Either α = β =
0, or the scaling hypothesis (8) has to be extended to
allow for different rescalings of the IR and the UV parts
of the scaling function. In the following, we denote IR
exponents with α, β and UV exponents with α′, β′,
respectively. Making use of the global conservation laws
as well as of the power-law scaling of the quasiparticle
distribution, nQ ∼ k−κ, one finds the scaling relations

α = dβ, (23a)

(d + z − κ)β′ = (d − κ)β. (23b)

This implies ββ′ ≤ 0, i.e. the IR and UV scales kΛ and
kλ rescale in opposite directions. We remark that these
relations hold in the limit of a large scaling spectral
region, i.e. for kΛ � kλ. Note that energy conservation
only affects the UV shift with exponent β′, (23b), while
particle conservation gives the relation (23a) for the
exponent β in the IR.

With this at hand, we are finally able to derive ana-
lytical expressions for the scaling exponents based on
the kinetic-theory approach. Performing the s-channel
loop-re-summation, the effective coupling geff can be
expressed by the retarded one-loop self-energy ΠR,
which is defined in terms of the statistical and spectral
function encoding the mode occupations and, respec-
tively, the dispersion relation as well as the density of
states of the system [95]. The aforementioned anoma-
lous dimension η appears as a scaling dimension of the
spectral function and takes into account the possibil-
ity to have more involved spectral distributions ρ(ω, k)
than the mentioned delta-function type of free quasi-
particles.

As a result, one finds the general scaling relations for
the (quasi)particle distributions,

nQ(t, k) = sα/βnQ

(
s−1/βt, sk

)
, (24a)

nQ(t0, k) = sκnQ(t0, sk), (24b)

n(t, k) = sα/β−η+2−zn
(
s−1/βt, sk

)
, (24c)

n(t0, k) = sζn(t0, sk), (24d)

where ζ = κ − η + 2 − z. To show possible differences
in the scaling behaviour of the particle and quasiparti-
cle distributions, we added the relations for the particle
distribution which scales as n(k) ∼ kz−2+ηnQ(k) rela-
tive to the quasiparticle number, see the beginning of
Sect. 3.1.1. Note that the momentum scaling of n(k)
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is characterised by the scaling exponent ζ according to
(24d).

From a scaling analysis of the quantum Boltzmann
equation, Eqs. (8) and (9), one obtains the scaling rela-
tion

α = 1 − βμ. (25)

Employing the scaling properties of the T -matrix
within the different momentum regimes, together with
the global conservation laws of the system, one finds the
scaling exponents by means of simple power counting
to be

α = d/z, β = 1/z, (26a)

α′ = β′(d + z), β′ = β
3z − 4 + 2η

z − 4 − 2η
, (26b)

κ = d + (3z − 4)/2 + η, ζ = d + z/2. (26c)

We remark that the exponents (26b) are usually not
observed as the UV region is dominated by a near-
thermalised tail. Cf., moreover, Table II in Ref. [95]
for a more general account of exponents in the different
cases of strong and weak wave turbulence.

The above analytic predictions are backed by various
numerical results obtained previously and thereafter.
The IR scaling exponent β = 1/z has been proposed
based on numerical simulations in Ref. [115], and was
assumed in Refs. [83, 102]. For a single-component Bose
gas in d = 3 dimensions, the exponents governing the
IR spatio-temporal scaling have been numerically deter-
mined to be α = 1.66(12), β = 0.55(3), in agreement
with the analytically predicted values [93].

During the early-time evolution after a strong cooling
quench, an exponent ζ � d+1 was seen in semi-classical
simulations for d = 3 in Refs. [93, 112], for d = 2 in Ref.
[107], and for d = 1 in Refs. [103, 116]. In numerical
simulations, one has often observed the exponent to be
close to d+2 rather than d+1, cf., e.g. Refs. [98, 107].
This, however, is rather due to vortex defects dominat-
ing the scaling evolution, which, for low N , is the case
in d = 2 and 3 spatial dimensions, as was discussed in
Ref. [107].

In these studies, a power-law fall-off of the number
distribution with ζ = d + 1 was observed in the com-
pressible component only, viz., as soon as the incom-
pressible component had become subdominant follow-
ing the self-annihilation of the last vortex pair or ring.
Also numerical implementations of the full kinetic equa-
tion, in d = 3 dimensions, resulted in ζ � 4, see Ref.
[117].

For the Bose gas, the exponents stated above are
expected to be valid in d = 3 dimensions as well as
in d = 2. The one-dimensional case is rather different
due to kinematic constraints on elastic 2 ↔ 2 scat-
tering from energy and particle-number conservation,
while for d = 1, a more careful analysis may be in
order, but does not necessarily exclude the predictions
to apply.

In the numerical section below, we will demonstrate
scaling near non-thermal fixed points in various set-
tings, which go beyond the above analytical approach,
as there, the dynamics will be strongly influenced by
the appearance of non-linear and topological excita-
tions. Such excitations have not been taken into account
in the basic analytic approach presented above. It is
expected, though, that effective field theories can be
formulated and analysed along similar lines, that have
the potential to describe the scaling under the influence
of such excitations. A first example has recently been
proposed for the sine-Gordon model [105, 106]. Using a
non-perturbative field-theoretic approach similar to the
one summarised above, scaling exponents where pre-
dicted for different non-thermal fixed points of the sine-
Gordon model [105]. This comprises anomalous scaling
with β = 1/(d + 2), α = dβ, and κ = 1/(2d + 2),
values, which have been corroborated, within varying
agreement in d = 2 and d = 3 dimensions, by simula-
tions of a non-linear Schrödinger equation with Bessel-
function non-linearity, obtained as the non-relativistic
limit of the sine-Gordon equation of motion [106].

3.2 Low-energy effective field theory

While, in the previous section, collective phenomena
that modify the properties of the scattering matrix
were taken into account by means of a coupling re-
summation scheme, alternative approaches are also
available. For example, one can first reformulate the
theory in terms of the relevant degrees of freedom, such
that the resulting description becomes more easy to
treat in the region relevant for the universal dynam-
ics. Given that this mainly affects the low-momentum
scales, it is suggestive to employ a low-energy effec-
tive field theory approach [118, 119]. Generally, this
requires the key degrees of freedom to be identified,
that describe the physics under consideration. In the
following, we will briefly outline how this idea can
be implemented to describe non-thermal fixed points
in a quenched U(N)-symmetric multi-component Bose
gas with quartic interactions. For more details, see
Ref. [112].

The crucial observation is that, similar to the single-
component Gross–Pitaevskii (GP) model (1), its N -
component generalisation defines a separation of energy
scales between the collective modes and the free parti-
cle excitations. Upon adopting a density-phase repre-
sentation of the field, Φa =

√
ρa exp{θa}, the classi-

cal equation of motion reveals that, at low momenta,
density fluctuations δρa = ρa − ρ

(0)
a around a mean

density ρ
(0)
a are suppressed by a factor of ∼ |k|/kΞ

compared to phase fluctuations θa (around a constant
background phase). Here, kΞ = [2Mρ(0)g]1/2 is the
healing-length momentum scale associated with the
total density ρ(0) =

∑
a ρ

(0)
a . The density fluctuations

can, therefore, be integrated out yielding a low-energy
effective action Seff[θ] of the model, which depends on
the phase degrees of freedom only. This approximation
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represents a non-linear generalisation of the (Tomon-
aga–)Luttinger Bose liquid [12, 13, 120].

Furthermore, the system provides two types of
low-energy modes: N − 1 Goldstone excitations with
a quadratic free-particle-like dispersion ω1(k) =
· · · = ωN−1(k) = k2/2M , corresponding to rela-
tive phases between different components, and a sin-
gle Bogoliubov quasiparticle mode with ωN (k) =[
k2/2M

(
k2/2M + 2gρ(0)

)]1/2
related to the total

phase. This suggests that the physics below the scale
kΞ is well described by the dynamics of gap-less quasi-
particles, albeit of two different types. While the single
mode has sound character and varies the total density,
the N − 1 free quasiparticles represent relative density
fluctuations, which locally redistribute the particles in
the different components, while keeping the total den-
sity constant. We will re-encounter similar excitations
in our discussion of a spin-1, three-component system
in Sect. 4.2.

The resulting low-energy effective action capturing
these quasiparticles turns out to contain interaction
terms with momentum-dependent couplings, which is
in contrast to the coupling constant g in the under-
lying GP model (1). This indicates that the resulting
model is non-local in nature, as is commonly expected
for an effective theory [112].

Moreover, taking the large-N limit, this action
becomes diagonal in component space up to O(1/N)
corrections and thus breaks up into N independent
replicas. This means that the phases θa of the differ-
ent components decouple in the limit of large N . Tak-
ing the limit N → ∞, the Bogoliubov mode is no
longer present, which suggests that the relative phases
are dominating the dynamics of the system, govern-
ing the spatial redistribution of relative particle densi-
ties between the components, which is not energetically
suppressed by the interactions. The N → ∞ effective
action in momentum space reads [112]

Seff[θ] =
∫
k,k′, C

1
2

θa(t, k)iD−1
ab (t, k; t′, k′)θb(t′, k′)

−
∫

{ki}, C
Ak1,k2,k3 θa(t, k1) θa(t, k2)∂tθa(t, k3)

+
∫

{ki}, C
Bk1, ...,k4 θa(t, k1) · · · θa(t, k4). (27)

Here, C denotes again the Schwinger–Keldysh contour,
Dab is a free inverse propagator,

iD−1
ab (t, k; t′, k′) =

(2π)d δ(k + k′)
Ng1/N(k)

δabδC(t − t′)

×
[
−∂2

t − (k2/2M)2
]
, (28)

and we have introduced the short-hand notation

Ak1,k2,k3 =
k1 · k2

2MN g1/N(k3)
δ

(
3∑

i=1

ki

)
,

Bk1, ...,k4 =
(k1 · k2) (k3 · k4)

8M2Ng1/N(k1 − k2)
δ

(
4∑

i=1

ki

)

(29)

for the interaction terms. These matrix elements con-
tain the momentum-depending coupling g1/N(k) =
gk2/2k2

Ξ ≡ gG(k)/N , which can be compared with the
effective coupling obtained by means of the s-channel
re-summation for the GP model, cf. (16). The index G
of the coupling refers to the relevant Goldstone excita-
tions in the large-N limit.

3.2.1 Spatio-temporal scaling

To analyse the scaling behaviour at a non-thermal fixed
point we proceed as in Sect. 3.1 by evaluating the WBE
in Eq. (7). Instead of the quasiparticle distribution nQ

we consider the distribution of phase-excitation quasi-
particles fa(t, k) = 〈θa(t, k)θa(t, −k)〉, dropping in
the following the indices to ease the notation. The scat-
tering integral has two contributions, which arise from
3- and 4-wave interaction terms in the effective action
(27),

I[f ](t, k) = I3(t, k) + I4(t, k). (30)

The form of the 3- and 4-point scattering integrals can
be inferred from the effective action to be

I3(t, k) ∼
∫
p,q

∣∣∣T (3)
kpq

∣∣∣2δ(k + p − q)

×
[
(fk + 1)(fp + 1)fq − fkfp(fq + 1)

]
,
(31)

I4(t, k) ∼
∫
p,q, r

∣∣∣T (4)
kpqr

∣∣∣2δ(k + p − q − r)

×
[
(fk + 1)(fp + 1)fqfr

− fkfp(fq + 1)(fr + 1)
]
, (32)

where the corresponding T -matrices are defined by

∣∣∣T (3)
kpq

∣∣∣2 = |γkpq|2 gG(k) gG(p) gG(q)
8ω(k)ω(p)ω(q)

, (33)

∣∣∣T (4)
kpqr

∣∣∣2 = |λkpqr|2
gG(k) · · · gG(r)
2ω(k) · · · 2ω(r)

, (34)

with interaction couplings

γkpq =
(k · p)ω(q)
M gG(q)

+ perms, (35)

λkpqr =
(k · p)(q · r)

2M2 gG(k − p)
+ perms. (36)

Here, ‘perms’ denote permutations of the sets of
momentum arguments. The scattering integrals scale,
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analogously to Eq. (9), with exponents

μ3 = d + 4 − 2z + γ − 2α/β, (37)

μ4 = 2d + 8 − 5z + 2γ − 3α/β, (38)

where γ = 2(z − 1) is the scaling exponent of the effec-
tive coupling geff(k) = s−γgeff(sk). We remark that the
subscript of the coupling is chosen as a general notation
covering both cases, z = 2 as well as z = 1.

Using the scaling relation in (25) one can, in prin-
ciple, derive a closed system of equations, from which
the scaling exponents α and β can be inferred. How-
ever, since, for different values of the dimensionality d
and the momentum scale of interest, one term in the
scattering integral can dominate over the other one, it
is more reasonable to analyse them independently.

To close the system of equations, an additional rela-
tion is required, which is provided either by quasiparti-
cle number conservation, (21), or energy conservation,
(22), within the scaling regime. Taking these constraints
into account, we obtain

I3 : β =
1

4 − 2z + γ
, β′ =

1
4 − 3z + γ

,

I4 : β =
1

8 − 5z + 2γ
, β′ =

1
8 − 7z + 2γ

. (39)

In the large-N limit (z = 2, γ = 2), the resulting scaling
exponents read

β = 1/2, α = d/2, (40)

for both, 3- and 4-point vertices, and

β′ = −1/2, α′ = −(d + z)/2, (41)

for the 4-point vertex, while at the same time, for the
3-point vertex, no valid solution exists [112]. We point
out that the above exponents are equivalent to the
respective exponents derived in the large-N re-summed
kinetic theory for the fundamental Bose fields, for the
case of a dynamical exponent z = 2, and a vanishing
anomalous dimension η = 0, cf. Sect. 3.1.4.

One can ask whether both 3- and 4-wave interactions
are equally relevant. To answer this question, a com-
parison of the spatio-temporal scaling properties of the
scattering integrals, for a given fixed-point solution f(t,
k), is required. Focussing on the conserved IR transport
of quasiparticles, for which α = dβ, we obtain

−μ3 = d − 2, −μ4 = d − 4 + z. (42)

In the large-N limit, for which z = 2, one finds μ3 = μ4.
Hence, the relative importance of the scattering inte-
grals I3 and I4 should remain throughout the evolution
of the system.

3.2.2 Scaling solution

In the remainder of this section, we briefly discuss the
purely spatial momentum scaling. The scaling of the
QBE at a fixed evolution time t = t0 implies κ = −μκ, l,
where μκ, l is the spatial scaling exponent of the cor-
responding scattering integral, Il(t0, k) = s−μκ, lIl(t0,
sk). Power-counting of the scattering integrals, together
with the above stated scaling relation, gives

κ3 = −μκ, 3 = 4 + d + γ − 2z, (43)

κ4 = −μκ, 4 = 4 + d + γ − 5z/2. (44)

For a given κl, and assuming the large-N limit (z = 2
and γ = 2), one finds that

μκ, 3 − μκ, 4 = κl − d ≥ 1. (45)

Hence, the 4-wave scattering integral is expected to
dominate at small momenta, k → 0. This implies
that, at the non-thermal fixed point, the quasiparti-
cle distribution f(t, k) ∼ k−κ is characterised by the
momentum scaling exponent κ = κ4 = d + 1. This
result appears to contradict the previous analysis of
the spatio-temporal scaling, which, in the large-N limit,
showed equal importance of I3 and I4. We emphasise,
however, that the scaling exponents α and β corre-
sponding to the spatio-temporal scaling properties are
obtained from relations, which are independent of the
precise form of f(t, k) but only require the scaling rela-
tion f(t, k) = (t/tref)αf([t/tref]βk). Hence, the ques-
tions which vertex is responsible for the shape of the
scaling function and which of the vertices dominates
the transport can be answered independently of each
other. See Ref. [112] for a detailed discussion of this
point.

4 Numerical analysis of non-thermal fixed
points

In this section, we present numerical simulations of
dilute Bose gases prepared in far-from equilibrium ini-
tial states, and discuss the ensuing dynamics leading to
non-thermal fixed points.

The theory of phase-ordering kinetics deals with the
relaxation of systems out of equilibrium into an ordered
phase. The associated driving mechanisms of universal
scaling of the system in time are non-linear and topolog-
ical excitations introducing time-varying length scales
into the system, which grow as 
Λ(t) ∼ tβ , with the uni-
versal scaling exponent β. We simulate the dynamics of
these gases using the semi-classical truncated Wigner
approximation (TWA) [121], which is valid since the
systems we study are in a regime of highly occupied
modes. To this end, we consider the classical equations
of motions of the respective system, given, e.g. for a
one-component dilute Bose gas, by the Gross–Pitaevskii
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equation (1). To recover beyond-mean-field dynamics,
we introduce noise in the Bogoliubov modes to the ini-
tial condition and propagate (1) across many noise real-
isations and average over them. Technically, the propa-
gation is done by means of a pseudo-spectral split-step
Fourier method, which ensures the conservation of cru-
cial quantities such as particle number and energy.

In the following, we will present the examples of
two systems exhibiting three distinct non-thermal fixed
points. First, we will discuss the one-component Bose
gas with unstable topological vortices written into the
initial condition. We find two different non-thermal
fixed points which are set apart by distinct preparations
and decay dynamics of the vortex ensemble [102]. Sub-
sequently, we illustrate the phenomenology of a non-
thermal fixed point arising after a parameter quench in
a spin-1 Bose gas, which excites topological defects in
spin space, governing a characteristic length scale 
Λ of
the system to grow algebraically in time.

4.1 Gaussian and anomalous fixed points
in turbulent vortex gases

When studying the effects of non-thermal fixed points
in the far-from-equilibrium dynamics of cold Bose gases,
one typically simulates the time evolution following a
strong cooling quench, i.e. from an initial condition, in
which the momentum modes are equally occupied up to
a maximum cutoff scale Q , recall Eq. (2). The corre-
sponding complex phases of the field modes are chosen
at random in each mode. As a result of the a strong
quench, the short-time dynamics are characterised by
the scattering of macroscopically occupied modes. At
later times, strong phase and density fluctuations grow
due to non-linear interactions, leading to shock waves,
which give way to phase gradients forming vortices and
anti-vortices. As a result, a length scale is introduced
into the system via the mean separation of topological
defects, which in turn grows larger in time as vortices
and anti-vortices annihilate in a pairwise manner and
the defect ensemble dilutes.

Although a strong cooling quench is generically found
to lead to a non-thermal fixed point, we wish to further
our understanding of the effect of the vortex ensem-
ble on the self-similar scaling of the system. Hence, we
initialise the system with vortices in it, allowing us to
maximise our control over the parameters such as: num-
ber of vortices, winding numbers and geometric distri-
bution.

The system is thus prepared as a homogeneous,
fully phase-coherent state with quantum fluctuations
included in the empty modes. Interestingly, one finds
that, depending on the manner of preparation of the
vortex initial condition, two distinct non-thermal fixed
points can be observed.

For the first initial condition, leading to a so-called
(near) Gaussian fixed point, the phase of the gas is
imprinted with Nd = 2400 elementary vortices with
winding numbers w = ±1 in a spatially random man-
ner. The ensuing dynamics show the dilution of defects,

as the mean separation scale of the system grows with
the annihilation of vortex–anti-vortex pairs.2 This is
reflected in the momentum-space field-correlation func-
tion of the system, i.e, the occupation number spectrum

n(t, k) = (t/tref)
α
fs

(
[t/tref]

β
k
)
, (46)

where k = |k|, tref is a reference time, f is a univer-
sal scaling function and, α, β are the universal scaling
exponents, which for reasons of particle number con-
servation (U(1)-symmetry) are related by α = dβ in
d spatial dimensions. Figure 4a illustrates this scaling
evolution. The scaling function depends on the scalar
momentum modulus only and takes the form

fs(k) =
A(tref)

1 + [k/kΛ(tref)]ζ
, (47)

where the constants A and kΛ ∼ 
−1
Λ are evaluated, in

line with Eq. (46), at t = tref. The analytical predic-
tions for a U(N ) model [93, 95, 112] are corroborated
by the extracted scaling exponents, αg = 1.10(8) and
βg = 0.56(8), which are consistent with number con-
servation, α = dβ, and ζg = 4.0(1).

The second initial condition, leading to a so-called
anomalous non-thermal fixed point, the existence
thereof going beyond the analytical predictions, is
obtained by imprinting an initial checker-board lattice
of vortices with alternating winding numbers w = ±6,
as seen in Fig. 5a.

As vortices with winding number |w|> 1 are unsta-
ble, they quickly decompose into elementary vortices.
During the subsequent turbulent evolution, they are
observed to form clusters of vortices of either circula-
tion, such that they tend to shield each other. They
thus combine to larger eddies and give rise to a quasi-
classical turbulent flow.2 As a result, the dipole-pair
formation and mutual annihilation of vortices and anti-
vortices becomes strongly suppressed. It was shown in
[102] that this slowed evolution can be modelled by
assuming the vortices to decay predominantly via three-
body collisions. The vortex dynamics results in a con-
siderably slowed spatio-temporal rescaling of the corre-
lations as compared to near the Gaussian fixed point.
As seen in Fig. 4b, the spectra proceed to scale self-
similarly with the same kind of universal scaling func-
tion, yet with exponents βa = 0.19(5) and αa = 0.40(5),
again reflecting particle conservation, and a steeper fall-
off with exponent ζa = 5.7(3).

For both fixed points, the scaling of the spectra is
a manifestation of the time evolution of the mean sep-
aration scale of defects (vortices) in the system. This
is confirmed by investigating the mean defect distance

d(t), as seen in Fig. 6. The blue triangles are obtained
by averaging the separations of defects, which grows

2See https://www.kip.uni-heidelberg.de/gasenzer/proj
ects/anomalousntfp#start for video simulations of the vor-
tex dynamics.
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Fig. 4 Time evolution of the occupation-number spectrum n(t, k) = 〈ψ∗(k)ψ(k)〉. Lengths are measured in units of the

healing length ξh = (2Mρg)−1/2, with homogeneous density ρ ≡ 〈|ψ(x)|2〉, and time in units of the corresponding interaction

time th = 2Mξ2
h =

√
2ξh/cs, with speed of sound cs = (ρg/M)1/2. a Rescaled occupation number spectrum for an initial

condition with Nd = 2400 randomly distributed elementary vortices with winding numbers w = ±1. The rescaling is done
with αg = 1.10(8) and βg = 0.56(8). The inset shows the unscaled spectra at five different times. b Rescaled occupation-
number spectrum for an initial condition with a checker-board of 16×16 vortices with alternating winding numbers w = ±6.
The slower evolution of the spectra is reflected in the distinctly smaller scaling exponents αa = 0.40(5) and βa = 0.19(5).
In both panels, the solid black line indicates the scaling function (47), with, in a, ζg = 4.0(1), and b, ζa = 5.7(3). Figures
taken from [102]

Fig. 5 Snapshots of the time evolution of the hydrody-
namic velocity fields v(x, t), for a vortex-lattice initial con-
dition (units are chosen as in Fig. 4, with M = 1/2). The
colour encodes the modulus |v| of the field, whereas the
black flow lines indicate its orientation. The positions of
(anti-)vortices are marked by (green) orange dots. Panel a
shows the checker-board initial vortex lattice with 16 × 16
vortices with winding numbers w = ±6. b–d show snap-
shots at times t = {300, 103, 104}th. Figure taken from
Ref. [102]

larger in time as the ensemble dilutes. One clearly sees
the t1/2 power law reflected by the separation as well
as by the spectra. Interestingly, one can also observe
flows of the system from the anomalous fixed point to

Fig. 6 Time evolution of the mean distance between
defects 	d(t), starting from three different initial vortex con-
figurations. The blue triangles show the evolution from a
random distribution of Nd = 2400 elementary vortices and
anti-vortices at initial time t0 = 0. Green squares (red cir-
cles) correspond to the time evolution from an initial lattice
of 16×16 and (8×8) vortices with winding numbers w = ±6.
Different temporal scalings 	d(t) ∼ tβ are observed, includ-
ing the flow of the system crossing over from the Gaussian
non-thermal fixed point (βg � 1/2) to the anomalous one
(βa � 1/5). Cf. the experimental results reported in Ref.
[46]. Figure taken from Ref. [102]

the Gaussian fixed point (green squares in Fig. 6). Clus-
tering of vortices leads to the initial slow evolution of
the system with β � 1/5, yet as the clusters decom-
pose, they effectively behave as a randomly distributed
vortex ensembles of ≈ 1500 elementary vortices, which
eventually coarsen with β � 1/2.
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We finally emphasise that vortex–anti-vortex anni-
hilation was studied experimentally in a quasi-two-
dimensional trapping potential, following the excitation
of the system by means of a laser comb pulled through
the disc-shaped Bose condensate of 87Rb atoms [46].
Vortices and anti-vortices were tracked separately, and
the evolution of their mean distance corroborated the
predicted scalings with both, β � 1/2 and β � 1/5.

4.2 Real-time instantons

A different system exhibiting self-similar scaling far
from equilibrium is the spin-1 Bose gas in d = 1 spatial
dimension [48, 103], modelled by the Hamiltonian

H =
∫

dx

[
Ψ†

(
− 1

2M

∂2

∂x2
+ qf2

z

)
Ψ

+
c0

2
ρ2 +

c1

2
|F|2

]
, (48)

where Ψ = (Ψ1, Ψ0, Ψ−1)T. is the three-component
bosonic spinor field representing the magnetic sub-
levels mF = 0, ±1 of the F = 1 hyperfine manifold
and M is the atom mass. q denotes the quadratic Zee-
man field strength, which shifts the energies of the
mF = ±1 components relative to the mF = 0 compo-
nent. The term c0ρ

2 encompasses density–density inter-
actions, where ρ = Ψ† ·Ψ is the total density. Spin
changing collisions are described by the term c1|F|2,
with F = Ψ†fΨ and f = (fx, fy, fz) being the genera-
tors of the so(3) Lie algebra in the three-dimensional
fundamental representation. The Hamiltonian of the
system is SO(3)× U(1) or, for q �= 0, SO(2)fz

× U(1)
symmetric. The mean-field phase diagram of the spinor
gas spanned in the c1–q plane admits various distinct
ground states. To prepare the system far from equilib-
rium, we quench q , such that the system crosses the
second-order quantum phase transition line from the
polar phase (c1 < 0, q > 2ρ|c1|), showing no magneti-
sation, to the easy-plane phase (c1 < 0, 0 < q < 2ρ|c1|),
in which the full SO(2)fz

× U(1) symmetry is broken
and which, in the ground state, exhibits magnetisation
in the Fx–Fy plane.

Following the quench, the system attempts adjust-
ing to a new ground state, and instabilities form in the
Bogoliubov spin eigenmodes of the complex fields Ψm =
|Ψm|exp(iϕm), which in this case excite the transverse
spin degree of freedom F⊥ ≡ Fx + iFy = |F⊥|exp(iϕL),
giving rise to structure formation in the so-called Lar-
mor phase ϕL = ϕ1−ϕ−1. During its relaxation towards
equilibrium, the system develops patches of approxi-
mately constant Larmor phase, which coarsen in time
(cf. Fig. 7a, b). This behaviour is reflected in the self-
similar scaling of the transverse-spin structure factor
SF⊥(t, k) = 〈F⊥(t, k)†F⊥(t, k)〉, which takes on the
form

SF⊥(t, k) = (t/tref)αfs([t/tref]βk), (49)

with the universal scaling function fs, reference time
tref and universal scaling exponents α = dβ (see
Fig. 7c). Our simulations find the universal function
to be once more given by fs = A(1 + [k/kΛ(tref)]ζ)−1,
with ζ � 2 and scaling exponents α � β � 1/4, which
so far is beyond analytical predictions.

In analogy to the coarsening evolution of the vortex
gas, we identify a characteristic length scale of the sys-
tem by studying its topology. The extended dimension-
ality of the system due to its multi-component struc-
ture does not allow for stable topological solutions of
the complex field F⊥ as it is the case for density soli-
tons in single-component gases in d = 1 spatial dimen-
sion. Nevertheless, the broken SO(2)fz

symmetry gives
rise to a non-trivial homotopy group in spin space
π1(S1

⊥) = Z, where S1
⊥ is to be understood as the unit

circle in the Fx–Fy plane. Hence, a length scale is intro-
duced into the system via rare topological configura-
tions interpolating between states of constant winding
number

Qw =
1
2π

∫ L

0

dx ∂xϕL ∈ Z, (50)

where L is the linear length of the system. We refer
to such an event, where the system exhibits an inte-
ger jump in Qw, as a real-time instanton. The real-
time instantons manifest in the condensate as space-
time vortices, as can be seen in Fig. 8a, b. Each instan-
ton carries a charge, reflecting the integer by which
the winding number jumps, as well as a topological
current jμ = ∂μϕL, which we can utilise to compute
the spatio-temporal probability distribution function
(PDF) P(r , t) of the instantons. The PDF exhibits
an exponential decay with defect separation r , P (r,
t) ∼ exp[−r/rΛ(t)], with a time varying mean sepa-
ration scale rΛ(t) (cf. Fig. 8c). The mean separation
scale rΛ(t) exhibits an algebraic growth with a power
law rΛ(t) ∼ tβI , with βI = 0.27(1) (see inset of Fig. 8c),
which is in agreement with the self-similar scaling of
the order-parameter spectrum.

5 Theory vs. experiment

In this section, we give a short overview of the the-
ory development of non-thermal fixed points and briefly
discuss four experiments with ultracold atomic gases,
which have explored different aspects of universal
dynamics close to a non-thermal fixed point.

The existence and significance of strongly non-
thermal momentum power laws, requiring a non-
perturbative description reminiscent of wave turbu-
lence, was originally proposed in the context of reheat-
ing after early-universe inflation [89, 90], then later gen-
eralised to scenarios of strong matter wave turbulence
in non-relativistic systems [91, 122], in particular ultra-
cold superfluids and, in their context, to the dynamics
of topological defect ensembles [97–99, 107, 116, 123,
124], see also [100–102, 104, 125–128].
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Fig. 7 Time evolution of the transverse spin F⊥ = Fx+iFy = |F⊥|exp(ϕL) in a single Truncated Wigner (TW) run. a Time
evolution of the transverse spin length |F⊥|. In the initial state, the system is in the polar phase exhibiting no magnetisation.

After approximately one spin-changing collision time ts = 2π/
√

n|c1|, the system begins to reorder into the new phase and
a finite spin length emerges which fluctuates weakly about a mean value. b Time evolution of the Larmor phase ϕL. Patches
of approximately equal phase arise, which grow larger in time. Spin-wave excitations are seen, which propagate with the
spin speed of sound cs = (ρ|c1|/2M)1/2 (shown as dashed black and red lines), as well as strong phase kinks. c Self-similar
scaling of the transverse-spin structure factor SF⊥(t, k) = 〈|F⊥(k)|2〉 with universal exponents α � β � 1/4 and ζ � 2.
Figure taken from Ref. [152]

Fig. 8 Real-time instantons in the time evolution of the Larmor phase. a Time evolution of the winding number Qw.
Integer-valued jumps are observed, which are caused by the space-time vortices seen in b. b High resolution excerpt of the
time evolution of the Larmor phase after a quench. A plaquette algorithm correlating phase jumps and dips in spin length
locates space-time vortices, which each correspond to a winding-number jump by ±1. The winding of ϕL by 2π around the
core of the vortex is evident in the magnified section shown in the inset. c Probability distribution function (PDF) of defect
separation. The probability decays as an exponential function exp(−r/rΛ(t)), with a time-varying mean separation scale
rΛ which scales in time according to rΛ(t) ∼ tβI , with βI = 0.27(1). Figure adapted from Ref. [152]

Universal scaling at a non-thermal fixed point in both
space and time was numerically observed as algebraic
time evolution of the correlation length and the con-
densate fraction akin to coarsening [99, 107, 124, 126]
and formalised by means of the spatio-temporal scal-
ing form (3) for the occupation-number distribution,
for both, non-relativistic and relativistic models [51,
93, 95, 102–106, 112, 129–132], see also [111, 127]. It
has direct applications in the context of relaxation and
plasma formation in heavy-ion collisions [5, 133–136] as

well as for axionic models relevant in cosmology [127,
129]. For previous overview articles, see [94, 95, 113].

The existence of non-thermal fixed points was experi-
mentally observed in Refs. [48, 49]. In Ref. [48], a spinor
Bose gas of 87Rb atoms (see also Sect. 4.2) was pre-
pared in a condensate state in the polar phase, where
all atoms are in the mF = 0 hyperfine component.
By changing suddenly a quadratic Zeeman shift, it was
quenched into the easy-plane phase, where the system
wants to develop a non-vanishing angular momentum
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〈F〉 in the Fx–Fy plane perpendicular to the direction
of the Zeeman splitting. The quench thus leads to an
instability, which quickly gives rise to excitations of the
form of the red dashed line in Fig. 2, in the spin excita-
tions. The subsequent self-similar evolution in the quasi
one-dimensional spin excitations was characterised by
α = 0.54(6), β = 0.33(8), and ζ ≈ 2.6.

In Ref. [49], a single-component 87Rb Bose conden-
sate was quench-cooled into a quasi-one-dimensional
cigar-shaped trapping potential on the surface of a
microchip. As a result, strong longitudinal excitations
built up in the system which gave rise to a momentum
distribution resembling an ensemble of solitons [116].
The self-similar scaling of the momentum distribution
function was found to be anomalously strongly slowed,
with α = 0.09(3), β = 0.10(3), and ζ = 2.39(18). An
extended exponential tail demonstrated the presence of
a dense ensemble of solitons.

In the experiment [46], a grid of elliptical obstacles
was dragged through a uniform planar 87Rb conden-
sate, which gave rise to the excitation of many vor-
tices and anti-vortices. The setup served to demon-
strate the build-up of so-called Onsager clusters of
many elementary vortices of equal circulation. As is
described in more detail in Sect. 4.1, such clusters
can shield vortex–anti-vortex pairs from mutually anni-
hilating and lead to universal scaling dynamics with
anomalously small exponents α and β. In the experi-
ment, such scaling was observed in the time evolution of
the characteristic length scale measuring the mean dis-
tance between vortices. The results thus corroborated
the values α = d/5 and β = 1/5 in the d = 2 dimen-
sional dynamics, predicted in Ref. [102].

The experiment reported in Ref. [47] explored the bi-
directional transport predicted in the universal dynam-
ics as sketched in Fig. 2. The initial quench removed
77% of the atoms and 97.5% of the energy from the 39K
condensate in a cylinder trap by turning off the inter-
actions and lowering the trap edge for a brief amount
of time. In the ensuing re-equilibration of the quench-
cooled gas, both, the inverse particle and the direct
energy flow were observed. Measurements of the scal-
ing exponents gave α = 1.08(9) and β = 0.34(4), cf.
Eq. (26a) for the IR particle flow, while the direct UV
energy flow was characterised by α′ = −0.70(7) and
β′ = −0.14(2), cf. the discussion in Sect. 3.1, in par-
ticular Eqs. (26a) and (26b). Both values, β and β′
deviate weakly from the predictions (for η = 0), which
may be explained, in the IR, by the system still being
in a prescaling regime [51, 137], where the exponents
are slowly increasing in time.

In the experiment [50], a Bose condensate of
87Rb atoms was driven out of equilibrium by impos-
ing a small rotational oscillation onto the elongated
quadrupole-Ioffe configuration trap. In the ensuing evo-
lution of the momentum distribution self-similar motion
towards higher momenta was observed, with α =
−0.50(8), β = −0.2(4). The relation between the expo-
nents is consistent with the prediction α/β = d for num-
ber conservation in a two-dimensional situation, which

here applies to the projected distributions extracted
from the data.

6 Outlook

In this brief tutorial review, we have discussed the non-
equilibrium phenomenon of universal scaling dynam-
ics in strongly quenched quantum many-body systems.
We introduced to the concept of non-thermal fixed
points and summarised the main ideas of analytical
approaches to describing the scaling behaviour from
first principles.

This comprises a brief outline of the 2PI formal-
ism for obtaining a non-perturbative kinetic-theory for-
mulation of non-thermal fixed points. Scaling expo-
nents can be determined by power counting, assuming
a pure scaling form to solve the dynamic equations for
non-equilibrium two-point correlation functions such as
time-evolving mode occupancies. An alternative, low-
energy effective field theory description of U(N) mod-
els allows predicting the universal scaling behaviour on
the grounds of a perturbatively coupled Luttinger Bose
liquid in the large-N regime. This entails, in particu-
lar, the scaling exponents α and β, characterising the
time evolution of the system in the vicinity of the non-
thermal fixed point, and the exponent ζ defining the
algebraic fall-off of the momentum-space scaling func-
tion.

At this point, let us briefly mention a novel ana-
lytical approach based on the correspondence between
scaling and fixed points of the renormalisation group
[138]. The crucial observation is that all the universal
scaling properties can be extracted from the vicinity
of a given infrared fixed point. It is, therefore, sug-
gestive to try to extend this idea to the case of far-
from-equilibrium self-similar dynamics and to demon-
strate how non-thermal fixed points can be understood
from the renormalisation-group perspective. To a cer-
tain degree, this goal has been already achieved for the
case of stationary (strongly) non-equilibrium configu-
rations, see, e.g. Refs. [90, 122, 139]. In addition, an
alternative renormalisation scheme involving a tempo-
ral regulator has been proposed as a suitable descrip-
tion of far-from-equilibrium systems even beyond the
stationary case [139–141]. However, a complete satisfac-
tory renormalisation-group description of non-thermal
fixed points is still lacking.

The first attempt to implement this program, within
the functional renormalisation group (fRG) framework
[142–147], has been made in Refs. [138], for the spe-
cific example of a single-component Bose gas. The
employed method follows closely the works [122, 148], in
which the fRG fixed-point equations were used to anal-
yse infrared scaling properties in Landau gauge QCD
and the stochastic driven-dissipative Burgers’ equation,
respectively. The central object in this approach is the
flow equation that describes the change of correlation
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functions under successive application of momentum-
shell integrations and thus their dependence on momen-
tum scale [149–151]. In the vicinity of a fixed point, the
two-point functions are then parametrised in terms of
the full scaling forms and of the deviations of the two-
point correlators from those at vanishing cutoff scale.
As we noted above, the universal scaling properties
are encoded in (the asymptotic limits of) these devi-
ation functions, determined by the fixed-point equa-
tions, which can be obtained upon integrating out the
RG flow. These equations can then be solved numer-
ically in the asymptotic limits of interest allowing us
to extract the universal exponents associated with far-
from-equilibrium scaling dynamics at non-thermal fixed
points.

Based on the experimental and numerical results as
well as analytical predictions, we can conclude that uni-
versal dynamics at or close to non-thermal fixed points
emerge in various settings, characterised by different
symmetries of the system as well as distinguished by
different initial conditions. While the examples we have
discussed constitute infrared fixed points, implying that
the self-similar evolution comprises transport to lower
wave numbers, i.e. larger length scales, also the opposite
case of ultraviolet non-thermal fixed points has been
considered [52, 53, 95]. In the former case, the respec-
tive phenomena have often be characterised as coars-
ening known as an ordering phenomenon in statisti-
cal physics far from equilibrium, the latter is relevant
in understanding aspects of scaling in thermalisation
on microscopic scales such as following heavy-ion col-
lisions. The concept of non-thermal fixed points is to
provide a first-principles formulation and classification
of such phenomena based on microscopic quantum field
models of the respective system and their characteristic
symmetry properties.

In the context of the numerical studies, we have
sketched the important role of topological defects to
the coarsening dynamics of the system, which typi-
cally require theoretical techniques beyond perturba-
tive kinetic theory and non-perturbative Feynman dia-
grammatic methods. Moreover, such defects can show
very different collective dynamic behaviour and thus
signal proximity of the system to different non-thermal
fixed points or even a flow from one to another. While
coarsening in a single-component Bose condensate in
two spatial dimensions, bearing quantum vortices and
anti-vortices, is driven by their mutual annihilation, we
demonstrated that the universal infrared scaling of a
one-dimensional spinor Bose gas can show related but
quite different phenomena. Here, vortices appear as
defects in the two-dimensional plane defined by space
and evolution time, so-called real-time instantons.

Current efforts to develop a comprehensive under-
standing of coarsening dynamics far from equilibrium
include numerical investigations into the role of disor-
dered driven caustic dynamics, e.g. in the spinor gas
showing instanton events [152], which can bear impor-
tant consequences in various fields of research, e.g. for
the study of cosmological structure formation. Recent
experimental observations of universal scaling dynamics

in the same spinor gas experiment indicate the possible
existence of two non-thermal fixed points, depending
on the chosen initial condition [153]. Further systems
include in particular dipolar gases [154, 155], which offer
the possibility of exploring universal dynamics of sys-
tems with strong long-range interactions, which show a
richer spectrum of phases already in equilibrium.

In summary, the physics of dynamics far from equilib-
rium, and in particular its possible universal character-
istics, which can relate very different systems with each
other, remains an exciting and rich field of fundamental
research in quantum many-body physics.
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