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Abstract This special issue is a compilation of pioneering research articles that explore the robustness of
fractal theories to address and analyse the complexity of real-time data under the topic “Framework of
Fractals in Data Analysis: Theory and Interpretation”.

Data is the core for both industrial and academic
research. On performing controlled observations and
experiments by experts, research data are obtained with
high quality. In the olden days, data was collected
through manual logs, whereas in modern times, sen-
sors are used. However, minimal human errors occur
in empirical data, so repetitions are carried out to
reduce uncertainty. The repetition process is one of
the tools that connects data analysis with fractal the-
ory, since fractals are self-similar patterns generated by
infinitely repeating a simple procedure. In general, most
real-world data exhibits irregular and complex patterns
when plotted graphically. To generate new visual con-
ceptions for such real-world objects, exhibiting rough-
ness in their traces, the notions of fractal geometry
including fractal dimension and fractal interpolation
functions are primarily employed.

The book Fractals Everywhere, by Barnsley, is a mile-
stone in the development of fractal theory [1]. He intro-
duced the concept of generating fractals and fractal
functions using the iterated function system. Fractal
geometry has completely changed the view of natural
creations with its precise modelling. For instance, to
fit real data containing stock or temperature informa-
tion and to approximate image components consisting
of cloud tops or mountain ranges, classical techniques
are insufficient. The aforementioned difficulties can be
addressed by using the fractal interpolation functions
possessing fractal properties. In Ref. [2], a variety of
fractals and their fractal dimension estimation are dis-
cussed elaborately. It is illustrated that increasing frac-
tal dimension indicates greater complexity of the con-
sidered function. Owing to these advantages, in recent
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times, fractal functions and several types of fractal
dimension have been applied to achieve greater accu-
racy in image processing, one- and multi-dimensional
signal reconstruction as well as computer visualiza-
tion. Many times, series data have been reconstructed
using fractal functions; also, unsurprisingly, the epi-
demic curves of the recent coronavirus disease 2019
(COVID-19) world pandemic have been reconstructed
and analysed by several researchers. Therefore, behind
every fractal concept, there is an essential relationship
with data interpretation. This special issue acknowl-
edges such a fractal aspect of data analysis with the
contribution of the following four sections, consisting
of 12 research articles:

– Data fitting via fractals
– Fractal functions and numerical simulations
– Fractal patterns in epidemiological data
– Applications of fractal dimension

Section 1 comprises three articles to explore the data
fitting of various datasets utilizing fractal notions. Luor
and Liu present a hybrid method of data fitting, con-
sidering continuous functions and fractal interpolation
functions [3]. Two datasets, viz. Bitcoin USD (BTC-
USD) and the NASDAQ 100 Index, are fitted using
this hybrid method of interpolation. The empirical
errors in the fitting are minimized for optimal val-
ues of the parameters determined by the approach of
sequential quadratic programming. This paper high-
lights the importance of the optimization algorithm
in the approximation using fractal functions. In Ref.
[4], the nature of perturbed tsunami waves is explored
using fractal interpolation functions via phase projec-
tions and time series plots. The resulting effects of the
Coriolis parameter on nonlinear and super-nonlinear
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tsunami waves are investigated, in addition. The frac-
tal versions of the phase transitions confirm the hidden
self-similarity of tsunami waves besides their quasiperi-
odic nature. In Ref. [5], the authors mainly explore the
fractal analogue of classical mechanics such as Newton,
Lagrange, Hamilton and Appell’s mechanics via fractal
calculus. Further, they obtain the Langevin equation on
fractal curves, namely, the Koch-like curves, by defin-
ing the fractal α-velocity and α-acceleration. This work
strongly indicates the scope for investigating particle
motion in fractal time and space.

Section 2 is devoted to an exploration of new kinds
of fractal interpolation functions. In Ref. [6], Vijay
and Chand construct a rational quadratic trigonometric
spline fractal function with scaling factors as functions,
wherein the rational functions in the numerator and
denominator are quadratic trigonometric polynomials.
Mild conditions are enforced on the scaling parameters
to preserve the monotonicity and positivity of the asso-
ciated dataset. Verifying the convergence of the new
fractal function, the shape-preserving nature is illus-
trated by numerical simulations. In Ref. [7], the authors
investigate the rational cubic spline fractal interpola-
tion surface within rectangular and cuboid domains. In
respect to perturbation of scaling parameters, the sta-
bility of the constructed fractal surface is studied and
an upper bound is estimated for the perturbation error.
A novel method of generating bivariate fractal interpo-
lation functions over rectangular domains is introduced
by Aparna in [8]. In addition, a formula for the verti-
cal scaling parameter is derived to minimize the errors
in approximation. A linear relation between two differ-
ent fractal functions, namely the bivariate fractal inter-
polation function and the bilinear interpolation func-
tion, is presented. Motivated by the α-fractal functions
and local fractal functions, a local α-fractal interpola-
tion function is constructed as an advancement in Ref.
[9]. Estimating the error between the constructed local
fractal function with the provided continuous function
and an operator analogue to the fractal operator is pro-
posed, and its boundedness as well as linearity are dis-
cussed. Numerical examples approximating the discon-
tinuous function using the local α-fractal function are
presented.

The fractal patterns in epidemiological data are
explored in Sect. 3. In Ref. [10], structural proteins
are used to discuss the relationship between severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) and other kinds of virus. Also, graphical illustra-
tions such as zig-zag curves, protein contact maps and
chaos game representations for Middle East respira-
tory syndrome corona virus (MERS-CoV), SARS-CoV,
Bat Cov RaTG13 and SARS Cov-2 structural pro-
teins are explored. Slight variation in the graphs clearly
reveals their functional and structural differences, and
the changes are observed with the help of an elegant
fractal parameter called the fractal dimension. Refer-
ence [11] is devoted to the growth of the COVID-19
virus from a fractal point of view in a broader sense. The
α-fractal interpolation function is employed to approx-
imate the COVID-19 data for India during a certain

time period. The results demonstrate that a higher
dimension of the graph of the epidemic curve increases
the severity of the distribution of the COVID-19 virus.

Section 4 discusses the application of the fractal
dimension in various domains. Liang approximates the
prescribed continuous function using the linear frac-
tal interpolation function [12], illustrating that the box
dimension of the approximated continuous functions
and the approximant interpolation function is the same.
This observation of the same dimension helps in the
approximation of a self-affine function to preserve its
local structure. In Ref. [13], inspired by the Fourier
series representation of fractal interpolation functions,
the authors present Fourier transforms of various frac-
tal functions. Unlike the Fourier series representation,
an explicit expression can be presented for the cases of
both periodic and non-periodic functions using Fourier
transforms. The fractal dimension is also estimated by
providing a formula with the Fourier representation of
fractal functions. In Ref. [14], Verma and Kumar use
fractal notions to understand the effect of merger and
acquisition transactions in the stock market. The frac-
tal dimension is employed to observe stock price fluc-
tuations, and interpolation at different scales can help
make better decisions in financial markets.

The above-discussed articles explicitly demonstrate
the remarkable scope for implementing fractal concepts
in the epidemiological study of various contagious dis-
eases, real-time data analysis using machine learning
or artificial intelligence and the computer graphics of
complex structures. With this end, the editors of this
special issue are pleased to convey their sincere thanks
to the authors for their significant contributions, as well
as the reviewers for their diligent work in reviewing the
manuscripts. We hope that the papers that we chose to
include here will increase readers’ understanding and
help in the advancement of fractal analysis in the field
of data analysis. Finally, we would like to thank all of
the EPJ ST members for publishing this special issue.

Data availability Data sharing not applicable to this arti-
cle as no datasets were generated or analysed during the
current study.
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