Skip to main content
Log in

An introduction to thermal field theory and some of its application

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this article an introduction to the thermal field theory within imaginary time vis-a-vis Matsubara formalism has been discussed in detail. The imaginary time formalism has been introduced through both the operatorial and the functional integration method. The prescription to perform frequency sum for boson and fermion has been discussed in detail. Green’s function both in Minkowski time as well as in Euclidean time has been derived. The tadpole diagram in \(\lambda \phi ^4\) theory and the self-energy in \(\lambda \phi ^3\) theory have been computed and their consequences have also been discussed. The basic features of general two point functions, such as self-energy and propagator, for both fermions and bosons in presence of a heat bath have been discussed. The imaginary time has also been introduced from the relation between the functional integral and the partition function. Then the free partition functions and thermodynamic quantities for scalar, fermion and gauge field, and interacting scalar field have been obtained from first principle calculation. The quantum electrodynamics (QED) and gauge fixing have been discussed in details. The one-loop self-energy for electron and photon in QED have been obtained in hard thermal loop (HTL) approximation. The dispersion properties and collective excitations of both electron and photon in a material medium in presence of a heat bath have been presented. The spectral representation of fermion and gauge boson propagators have been obtained. In HTL approximation, the generalisation of QED results of two point functions to quantum chromodynamics (QCD) have been outlined that mostly involve group theoretical factors. Therefore, one learns about the collective excitations in a QCD plasma from the acquired knowledge of QED plasma excitations. Then, some subtleties of finite temperature field theory have been outlined. As an effective field theory approach the HTL resummation and the HTL perturbation theory (HTLpt) have been introduced. The leading order (LO), next-to-leading order (NLO) and next-to-next-leading order (NNLO) free energy and pressure for deconfined QCD medium created in heavy-ion collisions have been computed within HTLpt. The general features of the deconfined QCD medium have also been outlined with non-perturbative effects like gluon condensate and Gribov–Zwanziger action. The dilepton production rates from quark–gluon plasma with these non-perturbative effects have been computed and discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46

Similar content being viewed by others

Data availability

No data associated in the manuscript.

Notes

  1. One can also get it as a solution of Klein Gordon equation with a unit source term.

  2. We note that the Lorentz invariance is broken at \(T\ne 0\) which we will discuss later in detail. However, E can be written in the rest frame of the medium (heat bath) as \(E=u_\mu K^\mu = u\cdot K\), where u is four velocity of the medium (heat bath) in its rest frame with \(u_\mu =(1,0,0,0)\).

  3. A meromorphic function is a ratio of two well-behaved (holomorphic) functions in complex plane as \(f(z)=g(z)/h(z)\) with \(h(z)\ne 0\). However such a function will still be well-behaved if it has finite order, isolated poles and zeros and no essential singularities or branch cuts in its domain.

  4. At \(m=0\) and \(|k| \rightarrow 0 \, \Rightarrow n_{\rm B}(\omega _k=0) =1/(1-1)\rightarrow \infty\) there is an infrared divergence due to zero bosonic mode caused by \(\omega _n=2\pi n T\) for \(n=0\). We will come back later how can this infrared divergence be regulated.

  5. This identity is a generalisation of the one dimensional Gaussian integral \(\int \nolimits _{-\infty }^\infty \text{d}x \ \ \exp (-\frac{1}{2} a y^2) =\sqrt{2\pi /a}\) and can be shown by expressing the bilinear \({{\textbf{y}}}\cdot {{\widehat{A}}} {{\textbf{y}}}\) in terms of eigenvalues of \({\widehat{A}}\).

  6. The details of HTL approximation will be discussed in Sect. 12.

  7. Singularities from both electric and magnetic sectors.

  8. Equation (13.25) is a one-loop result. In the vacuum, the two-loop result has been computed [160] and the form of Gribov propagator in (13.27) remains unaffected. Only \(\gamma _G\) itself is changed to take into account the two-loop correction. It is expected that this would be valid also at finite temperature.

  9. This procedure only constrains the longitudinal part of the vertex function.

  10. A van Hove peak [165, 166] appears where the density of states diverges due to the vanishing group velocity.

  11. The HTL spectral function (i.e, \(\gamma _G=0\)) has both pole and Landau cut contribution as obtained in 9.94. Therefore, the HTLpt dilepton rate [81] contains an additional higher order contribution due to the Landau cut stemming from spacelike momenta.

References

  1. T. Matsubara, A new approach to quantum statistical mechanics. Prog. Theor. Phys. 14, 351 (1955)

    ADS  MathSciNet  MATH  Google Scholar 

  2. J. Schwinger, Brownian motion of a quantum oscillator. J. Math. Phys. 2, 407 (1961)

    ADS  MathSciNet  MATH  Google Scholar 

  3. J. Schwinger, Lecture Notes of Brandeis University Summer Institute (1960)

  4. L.V. Keldysh, Diagram technique for non-equilibrium processes. Zh. Eksp. Teor. Fiz. 47, 1515 (1964)

    MathSciNet  Google Scholar 

  5. H. Umezawa, H. Matsumoto, M. Tachiki, Thermo Field Dynamics and Condensed States (North-Holland, Amsterdam, 1982)

    Google Scholar 

  6. R. Kubo, Statistical mechanical theory of irreversible processes; 1. General theory and simple applications in magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570 (1957)

    ADS  MathSciNet  Google Scholar 

  7. A.L. Fetter, J.D. Walecka, Quantum Theory of Many Particle Systems (McGraw-Hill, New York, 1971)

    Google Scholar 

  8. A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dover, Mineola, 1975)

    MATH  Google Scholar 

  9. L. Dolan, R. Jackiw, Symmetry behavior at finite temperature. Phys. Rev. D 9, 3320 (1974)

    ADS  Google Scholar 

  10. S. Weinberg, Gauge and global symmetries at high temperature. Phys. Rev. D 9, 3357 (1974)

    ADS  Google Scholar 

  11. D.J. Gross, R.D. Pisarski, L.G. Yaffe, QCD and instantons at finite temperature. Rev. Mod. Phys. 53, 43 (1981)

    ADS  MathSciNet  Google Scholar 

  12. N.P. Landsman, C.G. van Weert, Real and imaginary time field theory at finite temperature and density. Phys. Rep. 145, 141 (1987)

    ADS  MathSciNet  Google Scholar 

  13. Ashok Das, Finite Temperature Field Theory (World Scientific, Singapore, 1997)

    Google Scholar 

  14. J.I. Kapusta, C. Gale, Finite-Temperature Field Theory: Principles and Applications, 2nd edn. (Cambridge Monographs on Mathematical Physics, Cambridge, 2006)

    MATH  Google Scholar 

  15. M. Le-Bellac, Thermal Field Theory (Cambridge Monographs on Mathematical Physics, Cambridge, 2011)

    Google Scholar 

  16. D.A. Kirzhnits, A.D. Linde, Macroscopic consequences of the Weinberg model. Phys. Lett. B 42, 471 (1979)

    ADS  Google Scholar 

  17. M. Laine, Finite temperature field theory—with application to cosmology. ICTP Lect. Notes Ser. 14, 189 (2003)

    Google Scholar 

  18. M.S. Turner, The case for Omega(M) = 0.33 \(\pm\) 0.035. Astrophys. J. Lett. 576, L101 (2002)

    ADS  Google Scholar 

  19. V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, On the anomalous electroweak Baryon number nonconservation in the early universe. Phys. Lett. B 155, 36 (1985)

    ADS  Google Scholar 

  20. M.E. Shaposhnikov, Baryon asymmetry of the universe in standard electroweak theory. Nucl. Phys. B 287, 757 (1987)

    ADS  Google Scholar 

  21. S. Weinberg, Gravitation and Cosmology (Wiley, New-York, 1972)

    Google Scholar 

  22. R. Baier, E. Pilon, B. Pire, D. Schiff, Finite temperature radiative corrections to early universe neutron–proton ratio: cancellation of infrared and mass singularities. Nucl. Phys. B 336, 157 (1990)

    ADS  Google Scholar 

  23. J. Ghiglieri, M. Laine, Neutrino dynamics below the electroweak crossover. JCAP 1607(07), 015 (2016)

    ADS  Google Scholar 

  24. G. Jackson, M. Laine, A thermal neutrino interaction rate at NLO. Nucl. Phys. B 950, 114870 (2020)

    MATH  Google Scholar 

  25. I. Ghisoiu, M. Laine, Right-handed neutrino production rate at \(T = 160\) GeV. JCAP 1412(12), 032 (2014)

    ADS  Google Scholar 

  26. A. Salvio, P. Lodone, A. Strumia, Towards leptogenesis at NLO: the righthanded neutrino interaction rate. JHEP 08, 116 (2011)

    ADS  MATH  Google Scholar 

  27. M. Laine, Y. Schröder, Thermal right-handed neutrino production rate in the non-relativistic regime. JHEP 02, 068 (2012)

    ADS  MATH  Google Scholar 

  28. S. Biondini, N. Brambilla, M.A. Escobedo, A. Vairo, An effective field theory for non-relativistic Majorana neutrinos. JHEP 12, 028 (2013)

    ADS  Google Scholar 

  29. J. Ghiglieri, M. Laine, GeV-scale hot sterile neutrino oscillations: a derivation of evolution equations. JHEP 05, 132 (2017)

    ADS  Google Scholar 

  30. S. Biondini et al., Status of rates and rate equations for thermal leptogenesis. Int. J. Mod. Phys. A 33(05n06), 1842004 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  31. M. Drewes, B. Garbrecht, P. Hernandez, M. Kekic, J. Lopez-Pavon, J. Racker, N. Rius, J. Salvado, D. Teresi, A.R.S. Leptogenesis, Int. J. Mod. Phys. A 33(05n06), 1842002 (2018)

    ADS  Google Scholar 

  32. J. Ghiglieri, M. Laine, Precision study of GeV-scale resonant leptogenesis. JHEP 02, 014 (2019)

    ADS  Google Scholar 

  33. J. Pradler, F.D. Steffen, Thermal gravitino production and collider tests of leptogenesis. Phys. Rev. D 75, 023509 (2007)

    ADS  Google Scholar 

  34. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions. arXiv:1101.0618

  35. S. Caron-Huot, P. Kovtun, G.D. Moore, A. Starinets, L.G. Yaffe, Photon and dilepton production in supersymmetric Yang–Mills plasma. JHEP 0612, 015 (2006)

    ADS  Google Scholar 

  36. S.C. Huot, S. Jeon, G.D. Moore, Shear viscosity in weakly coupled \(N = 4\) super Yang–Mills theory compared to QCD. Phys. Rev. Lett. 98, 172303 (2007)

    ADS  Google Scholar 

  37. P.M. Chesler, A. Vuorinen, Heavy flavor diffusion in weakly coupled \(N=4\) super Yang–Mills theory. JHEP 11, 037 (2006)

    ADS  MathSciNet  Google Scholar 

  38. G. Policastro, D.T. Son, A.O. Starinets, The shear viscosity of strongly coupled \(N=4\) supersymmetric Yang–Mills plasma. Phys. Rev. Lett. 87, 081601 (2001)

    ADS  Google Scholar 

  39. J.M. Maldacena, The large \(N\) limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  40. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  41. S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from noncritical string theory. Phys. Lett. B 428, 105 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  42. A. Buchel, Shear viscosity of CFT plasma at finite coupling. Phys. Lett. B 665, 298 (2008)

    ADS  MATH  Google Scholar 

  43. P. Kovtun, D.T. Son, A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005)

    ADS  Google Scholar 

  44. P. Graf, F.D. Steffen, Thermal axion production in the primordial quark–gluon plasma. Phys. Rev. D 83, 075011 (2011)

    ADS  Google Scholar 

  45. P. Graf, F.D. Steffen, Axions and saxions from the primordial supersymmetric plasma and extra radiation signatures. JCAP 1302, 018 (2013)

    ADS  Google Scholar 

  46. A. Salvio, A. Strumia, W. Xue, Thermal axion production. JCAP 1401, 011 (2014)

    ADS  Google Scholar 

  47. J. Pradler, F.D. Steffen, Constraints on the reheating temperature in gravitino dark matter scenarios. Phys. Lett. B 648, 224 (2007)

    ADS  Google Scholar 

  48. V.S. Rychkov, A. Strumia, Thermal production of gravitinos. Phys. Rev. D 75, 075011 (2007)

    ADS  Google Scholar 

  49. J. Ghiglieri, M. Laine, Gravitational wave background from Standard Model physics: qualitative features. JCAP 1507(07), 022 (2015)

    ADS  MathSciNet  Google Scholar 

  50. D. Forster, Hydrodynamic Fluctuation, Broken Symmetry and Correlation Functions (Benjamin/Cummings, Melno Park, 1975)

    Google Scholar 

  51. J.W. Negele, H. Orland, Quantum Many-Particle Systems (Addison-Wesley, Redwood City, 1988)

    MATH  Google Scholar 

  52. H.B. Callen, T.A. Welton, Phys. Rev. 122, 34 (1961)

    Google Scholar 

  53. G.D. Mahan, Many-Part. Phys. Phys. Solids Liquids (Springer Science & Business Media, Berlin, 1990)

    Google Scholar 

  54. B. Müller, The Physics of the Quark–Gluon Plasma. Lecture Notes in Physics, vol. 225 (Springer, Berlin, 1985)

    Google Scholar 

  55. J.W. Harris, B. Müller, The search for the quark–gluon plasma. Annu. Rev. Nucl. Part. Sci. 46, 71 (1996)

    ADS  Google Scholar 

  56. R.C. Hwa (Ed.), Quark–Gluon Plasma 1 and 2 (World Scientific, Singapore, 1990 and 1995)

  57. C.Y. Wong, Introduction to High Energy Heavy Ion Collisions (World Scientific, Singapore, 1994)

    Google Scholar 

  58. J. Ghiglieri, A. Kurkela, M. Strickland, A. Vuorinen, Perturbative thermal QCD: formalism and applications. Phys. Rep. 880, 1 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  59. M. Laine, A. Vuorinen, Basics of thermal field theory. Lect. Notes Phys. 925, 1 (2016)

    MathSciNet  MATH  Google Scholar 

  60. J.-P. Blaizot, E. Iancu, The quark gluon plasma: collective dynamics and hard thermal loops. Phys. Rep. 359, 355 (2002)

    ADS  MATH  Google Scholar 

  61. U. Kraemmer, A. Rebhan, Advances in perturbative thermal field theory. Rep. Prog. Phys. 67, 351 (2004)

    ADS  MathSciNet  Google Scholar 

  62. M.H. Thoma, New developments and applications of thermal field theory. arXiv:hep-ph/0010164

  63. M.H. Thoma, Application of high-temperature field theory to heavy-ion collisions. arXiv:hep-ph/9503400

  64. A. Schmitt, Thermal field theory. Master Thesis, 2013

  65. Y. Yang, An introduction to thermal field theory. Master Thesis, 2011

  66. I. Strumke, Field theory at finite temperature and density—applications to quark stars, Master Thesis, Norwegian University of Science and Technology

  67. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965)

    Google Scholar 

  68. J.J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, Boston, 1999)

    Google Scholar 

  69. R.P. Feynman, Space–time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367 (1948)

    ADS  MathSciNet  MATH  Google Scholar 

  70. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965)

    MATH  Google Scholar 

  71. D.J. Chandlin, Nuovo Cim. 4, 426 (1956)

    Google Scholar 

  72. F.A. Berezin, Method of Second Quantization (Academic Press, New York, 1966)

    MATH  Google Scholar 

  73. A. Lahiri, P.B. Pal, A First Book of Quantum Field Theory, 2nd edn. (Narosa Publishing House Pvt. Ltd., New Delhi, 2005)

    Google Scholar 

  74. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley, USA, 1995)

    Google Scholar 

  75. N. Haque, M.G. Mustafa, A modified hard thermal loop perturbation theory. e-Print arXiv:1007.2076 [hep-ph]

  76. N. Haque, M.G. Mustafa, M.H. Thoma, Conserved density fluctuation and temporal correlation function in HTL perturbation theory. Phys. Rev. D 84, 054009 (2011)

    ADS  Google Scholar 

  77. H.A. Weldon, Effective fermion masses of order \(gT\) in high-temperature gauge theories with exact chiral invariance. Phys. Rev. D 26, 2789 (1982)

    ADS  Google Scholar 

  78. H.A. Weldon, Covariant calculations at finite temperature: the relativistic plasma. Phys. Rev. D 26, 1394 (1982)

    ADS  Google Scholar 

  79. E. Braaten, R.D. Pisarski, Soft amplitudes in hot gauge theories: a general analysis. Nucl. Phys. B 337, 569 (1990)

    ADS  Google Scholar 

  80. V.V. Klimov, Collective excitations in a hot quark gluon plasma. Sov. Phys. JETP 55, 199 (1982)

    ADS  Google Scholar 

  81. E. Braaten, R.D. Pisarski, T.-C. Yuan, Production of soft dileptons in the quark–gluon plasma. Phys. Rev. Lett. 64, 2242 (1990)

    ADS  Google Scholar 

  82. F. Karsch, M.G. Mustafa, M.H. Thoma, Finite temperature meson correlation functions in HTL approximation. Phys. Lett. B 497, 249 (2001)

    ADS  MATH  Google Scholar 

  83. E.S. Fradkin, Proc. Lebedev Inst. 29, 6 (1965)

    Google Scholar 

  84. O.K. Kalashnikov, V.V. Klimov, Infrared behavior of the polarization operator in scalar electrodynamics at finite temperature. Phys. Lett. B 95, 423 (1980)

    ADS  Google Scholar 

  85. A. Bandyopadhyay, Post M.Sc project report on application of hard thermal/dense loop to hot and dense matter (2013)

  86. B. Karmakar, Post M.Sc project report on finite temperature field theory; an imaginary time formalism and its application, December 2016–July 2017

  87. H.T. Elze, U. Heinz, Quark–gluon transport theory. Phys. Rep. 183, 81 (1989)

    ADS  Google Scholar 

  88. S. Mrówczyński, Applications of transport theory to Quark-Gluon Plasma, in Quark–Gluon Plasma, ed. by R.C. Hwa. Advanced Series on Directions in High Energy Physics, vol. 6 (World Scientific, Singapore, 1990), p. 185

    MATH  Google Scholar 

  89. M.H. Thoma, M. Gyulassy, Quark damping and energy loss in the high temperature QCD. Nucl. Phys. B 351, 491 (1991)

    ADS  Google Scholar 

  90. E.M. Landau, L.P. Pitaevskii, Physical Kinematics: Course of Theoretical Physics, vol. 10 (Pergamon, Oxford, 1981)

  91. V.P. Silin, On the electronmagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136 (1960)

    Google Scholar 

  92. A.D. Linde, Phase transitions in gauge theories and cosmology. Rep. Prog. Phys. 42, 389 (1979)

    ADS  Google Scholar 

  93. A.D. Linde, Infrared problem in thermodynamics of the Yang–Mills gas. Phys. Lett. B 96, 289 (1980)

    ADS  Google Scholar 

  94. E. Braaten, R.D. Pisarski, Simple effective Lagrangian for hard thermal loops. Phys. Rev. D. 45, 1827 (1992)

    ADS  Google Scholar 

  95. E. Braaten, R.D. Pisarski, Deducing hard thermal loops from ward identities. Nucl. Phys. B 339, 310 (1990)

    ADS  Google Scholar 

  96. J. Taylor, S. Wong, The effective action of hard thermal loops in QCD. Nucl. Phys. B 346, 115 (1990)

    ADS  Google Scholar 

  97. J. Frenkel, J.C. Taylor, Hard thermal QCD, forward scattering and effective actions. Nucl. Phys. B 374, 156 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  98. G. Barton, On the finite temperature quantum electrodynamics of free electrons and photons. Ann. Phys. 200, 271 (1990)

    ADS  Google Scholar 

  99. J.O. Andersen, E. Braaten, M. Strickland, Hard thermal loop resummation of the free energy of a hot gluon plasma. Phys. Rev. Lett. 83, 2139 (1999)

    ADS  Google Scholar 

  100. J.O. Andersen, E. Petitgirard, M. Strickland, HTL perturbation theory to two loops. Phys. Rev. D 66, 085016 (2002)

    ADS  Google Scholar 

  101. J.O. Andersen, E. Petitgirard, M. Strickland, Two loop HTL thermodynamics with quarks. Phys. Rev. D 70, 045001 (2004)

    ADS  Google Scholar 

  102. N. Su, J.O. Andersen, M. Strickland, Gluon thermodynamics at intermediate coupling. Phys. Rev. Lett. 104, 122003 (2010)

    ADS  MATH  Google Scholar 

  103. J.O. Andersen, M. Strickland, N. Su, Three-loop HTL gluon thermodynamics at intermediate coupling. JHEP 1008, 113 (2010)

    ADS  MATH  Google Scholar 

  104. J.O. Andersen, L.E. Leganger, M. Strickland, N. Su, NNLO hard- thermal-loop thermodynamics for QCD. Phys. Lett. B 696, 468 (2011)

    ADS  MATH  Google Scholar 

  105. N. Haque, A. Bandyopadhyay, J.O. Andersen, M.G. Mustafa, N. Su, M. Strickland, Three-loop HTLpt thermodynamics at finite temperature and chemical potential. JHEP 05, 027 (2014)

    ADS  Google Scholar 

  106. N. Haque, J.O. Andersen, M.G. Mustafa, M. Strickland, N. Su, Three-loop pressure and susceptibility at finite temperature and density from hard-thermal-loop perturbation theory. Phys. Rev. D 89(6), 061701 (2014)

    ADS  Google Scholar 

  107. J.O. Andersen, L.E. Leganger, M. Strickland, N. Su, Three-loop HTL QCD thermodynamics. JHEP 08, 053 (2011)

    ADS  MATH  Google Scholar 

  108. J.O. Andersen, E. Braaten, M. Strickland, Hard thermal loop resummation of the thermodynamics of a hot gluon plasma. Phys. Rev. D 61, 014017 (2000)

    ADS  Google Scholar 

  109. P. Chakraborty, M.G. Mustafa, M.H. Thoma, Quark number susceptibility in hard thermal loop approximation. Eur. Phys. J. C. 23, 591 (2002)

    ADS  Google Scholar 

  110. P. Chakraborty, M.G. Mustafa, M.H. Thoma, Chiral susceptibility in hard thermal loop approximation. Phys. Rev. D 67(2003), 114004 (2003)

    ADS  Google Scholar 

  111. P. Chakraborty, M.G. Mustafa, M.H. Thoma, Quark number susceptibility, thermodynamic sum rule, and hard thermal loop approximation. Phys. Rev. D 68(2003), 085012 (2003)

    ADS  Google Scholar 

  112. J.O. Andersen, E. Braaten, M. Strickland, Hard thermal loop resummation of the free energy of a hot quark–gluon plasma. Phys. Rev. D 61, 074016 (2000)

    ADS  Google Scholar 

  113. N. Haque, M.G. Mustafa, M. Strickland, Two-loop hard thermal loop pressure at finite temperature and chemical potential. Phys. Rev. D 87(10), 105007 (2013)

    ADS  Google Scholar 

  114. N. Haque, M.G. Mustafa, M. Strickland, Quark number susceptibilities from two-loop hard thermal loop perturbation theory. JHEP 1307, 184 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  115. J.O. Andersen, L.E. Leganger, M. Strickland, N. Su, The QCD trace anomaly. Phys. Rev. D 84, 087703 (2011)

    ADS  Google Scholar 

  116. J.O. Andersen, N. Haque, M.G. Mustafa, Michael Strickland, Three-loop hard-thermal-loop perturbation theory thermodynamics at finite temperature and finite baryonic and isospin chemical potential. Phys. Rev. D 93, 5, 054045 (2016)

    Google Scholar 

  117. L.D. McLerran, T. Toimela, Photon and dilepton emission from the quark–gluon plasma: some general considerations. Phys. Rev. D 31, 545 (1985)

    ADS  Google Scholar 

  118. R. Baier, B. Pire, D. Schiff, Dilepton production at finite temperature: perturbative treatment at order \(\alpha _s\). Phys. Rev. D 38, 2814 (1988)

    ADS  Google Scholar 

  119. C. Greiner, N. Haque, M.G. Mustafa, M.H. Thoma, Low mass dilepton rate from the deconfined phase. Phys. Rev. C 83, 014908 (2011)

    ADS  Google Scholar 

  120. I. Ghisoiu, M. Laine, Interpolation of hard and soft dilepton rates. JHEP 10, 083 (2014)

    ADS  Google Scholar 

  121. J. Ghiglieri, G.D. Moore, Low mass thermal dilepton production at NLO in a weakly coupled quark–gluon plasma. JHEP 12, 029 (2014)

    ADS  Google Scholar 

  122. J. Ghiglieri, The thermal dilepton rate at NLO at small and large invariant mass. Nucl. Part. Phys. Proc. 276–278, 305 (2016)

    Google Scholar 

  123. J.I. Kapusta, P. Lichard, D. Seibert, High-energy photons from quark–gluon plasma versus hot hadronic gas. Phys. Rev. D 44, 2774 (1991)

    ADS  Google Scholar 

  124. R. Baier, H. Nakkagawa, A. Niegawa, K. Redlich, Production rate of hard thermal photons and screening of quark mass singularity. Z. Phys. C 53, 433 (1992)

    ADS  Google Scholar 

  125. P. Aurenche, F. Gelis, R. Kobes, H. Zaraket, Bremsstrahlung and photon production in thermal QCD. Phys. Rev. D 58, 085003 (1998)

    ADS  Google Scholar 

  126. P.B. Arnold, G.D. Moore, L.G. Yaffe, Photon emission from ultrarelativistic plasmas. JHEP 0111, 057 (2001)

    ADS  Google Scholar 

  127. P.B. Arnold, G.D. Moore, L.G. Yaffe, Photon emission from quark gluon plasma: complete leading order results. JHEP 0112, 009 (2001)

    ADS  Google Scholar 

  128. T. Peitzmann, M.H. Thoma, Direct photons from relativistic heavy ion collisions. Phys. Rept. 364, 175 (2002)

    ADS  Google Scholar 

  129. J. Ghiglieri, J. Hong, A. Kurkela, E. Lu, G.D. Moore, D. Teaney, Next-to-leading order thermal photon production in a weakly coupled quark–gluon plasma. JHEP 1305, 010 (2013)

    ADS  Google Scholar 

  130. M.G. Mustafa, M.H. Thoma, P. Chakraborty, Screening of moving parton in the quark–gluon plasma. Phys. Rev. C 71, 017901 (2005)

    ADS  Google Scholar 

  131. M.G. Mustafa, P. Chakraborty, M.H. Thoma, Dynamical screening in a quark gluon plasma. J. Phys. Conf. Ser. 50, 438 (2006)

    ADS  Google Scholar 

  132. P. Chakraborty, M.G. Mustafa, M.H. Thoma, Wakes in the quark–gluon plasma. Phys. Rev. D 74, 094002 (2006)

    ADS  Google Scholar 

  133. P. Chakraborty, M.G. Mustafa, R. Ray, M.H. Thoma, Wakes in a collisional quark–gluon plasma. J. Phys. G 34, 2141 (2007)

    ADS  Google Scholar 

  134. M. Laine, O. Philipsen, P. Romatschke, M. Tassler, Real-time static potential in hot QCD. JHEP 0703, 054 (2007)

    ADS  Google Scholar 

  135. A. Dumitru, Y. Guo, M. Strickland, The heavy-quark potential in an anisotropic plasma. Phys. Lett. B 662, 37 (2008)

    ADS  Google Scholar 

  136. A. Dumitru, Y. Guo, A. Mocsy, M. Strickland, Quarkonium states in an anisotropic QCD plasma. Phys. Rev. D 79, 054019 (2009)

    ADS  Google Scholar 

  137. L. Thakur, N. Haque, U. Kakade, B.K. Patra, Dissociation of quarkonium in an anisotropic hot QCD medium. Phys. Rev. D 88, 054022 (2013)

    ADS  Google Scholar 

  138. R.D. Pisarski, Damping rates for moving particles in hot QCD. Phys. Rev. D 47, 5589 (1993)

    ADS  Google Scholar 

  139. S. Peigne, E. Pilon, D. Schiff, The heavy fermion damping rate puzzle. Z. Phys. C 60, 455 (1993)

    ADS  Google Scholar 

  140. M.H. Thoma, Damping rate of a hard photon in a relativistic plasma. Phys. Rev. D 51, 862 (1995)

    ADS  Google Scholar 

  141. A. Abada, N. Daira-Aifa, Photon damping in one-loop HTL perturbation theory. JHEP 1204, 071 (2012)

    ADS  Google Scholar 

  142. E. Braaten, R.D. Pisarski, Resummation and gauge invariance of the gluon damping rate in hot QCD. Phys. Rev. Lett. 64, 1338 (1990)

    ADS  Google Scholar 

  143. E. Braaten, R.D. Pisarski, Calculation of the gluon damping rate in hot QCD. Phys. Rev. D 42, 2156 (1990)

    ADS  Google Scholar 

  144. E. Braaten, M.H. Thoma, Energy loss of a heavy fermion in a hot plasma. Phys. Rev. D 44, 1298 (1991)

    ADS  Google Scholar 

  145. E. Braaten, M.H. Thoma, Energy loss of a heavy quark in the quark–gluon plasma. Phys. Rev. D 44, 2625 (1991)

    ADS  Google Scholar 

  146. P. Chakraborty, M.G. Mustafa, M.H. Thoma, Energy gain of heavy quarks by fluctuations in the QGP. Phys. Rev. C 75, 064908 (2007)

    ADS  Google Scholar 

  147. J. Ghiglieri, G.D. Moore, D. Teaney, Jet-medium interactions at NLO in a weakly-coupled quark–gluon plasma. JHEP 03, 095 (2016)

    ADS  Google Scholar 

  148. M.J. Lavelle, M. Schaden, Propagators and condensates in QCD. Phys. Lett. B 208, 419 (1988)

    Google Scholar 

  149. A. Schäfer, M.H. Thoma, Quark propagation in a quark–gluon plasma with gluon condensate. Phys. Lett. B 451, 195 (1999)

    ADS  MATH  Google Scholar 

  150. M.G. Mustafa, A. Schafer, M.H. Thoma, Non-perturbative dilepton production from a quark–gluon plasma. Phys. Rev. C 61, 024902 (2000)

    ADS  Google Scholar 

  151. N. Su, K. Tywoniuk, Massless mode and positivity violation in hot QCD. Phys. Rev. Lett. 114, 161601 (2015)

    ADS  Google Scholar 

  152. A. Bandyopadhyay, N. Haque, M.G. Mustafa, M. Strickland, Dilepton rate and quark number susceptibility with the Gribov action. Phys. Rev. D 93(6), 065004 (2016)

    ADS  Google Scholar 

  153. V.N. Gribov, Quantization of non-abelian gauge theories. Nucl. Phys. B. 139, 1 (1978)

    ADS  MathSciNet  Google Scholar 

  154. D. Zwanziger, Local and renormalizable action from the Gribov horizon. Nucl. Phys. B. 323, 513 (1989)

    ADS  MathSciNet  Google Scholar 

  155. G. Boyd et al., Thermodynamics of \(SU(3)\) lattice gauge theory. Nucl. Phys. B 469, 419 (1996)

    ADS  Google Scholar 

  156. H. Leutwyler, in Proc. Conf. QCD—20 years later, eds. by P.M. Zerwas, H.A. Kastrup (World Scientific, Singapore, 1993), p. 693

  157. N. Vandersickel, A study of Gribov–Zwanziger action: from propagators to glueballs. PhD Thesis, Gent U., arXiv:1104.1315

  158. D. Zwanziger, Equation of state of gluon plasma from local action. Phys. Rev. D. 76, 125014 (2007)

    ADS  Google Scholar 

  159. K. Fukushima, N. Su, Stabilizing perturbative Yang–Mills thermodynamics with Gribov quantization. Phys. Rev. D. 88, 076008 (2013)

    ADS  Google Scholar 

  160. J.A. Gracey, Two loop correction to the Gribov mass gap equation in Landau gauge QCD. Phys. Lett. B 632, 282 (2006)

    ADS  Google Scholar 

  161. A. Bazavov, N. Brambilla, X. Garcia, i Tormo, P. Petreczky, J. Soto, A. Vairo, Determination of \(\alpha _s\) from the QCD static energy. Phys. Rev. D 86, 114031 (2012)

    ADS  Google Scholar 

  162. M. Kitazawa, F. Karsch, Spectral properties of quarks at finite temperature in lattice QCD. Nucl. Phys. A 830, 223c (2009)

    ADS  Google Scholar 

  163. O. Kaczmarek, F. Karsch, M. Kitazawa, W. Soldner, Thermal mass and dispersion relations of quarks in the deconfined phase of quenched QCD. Phys. Rev. D. 86, 036006 (2012)

    ADS  Google Scholar 

  164. P.V. Ruuskanen, Electromagnetic probes of quark–gluon plasma in relativistic heavy ion collisions. Nucl. Phys. A 544, 169c (1992)

    ADS  Google Scholar 

  165. L. Van Hove, The occurrence of singularities in the elastic frequency distribution of a crystal. Phys. Rev. 89, 1189 (1953)

    ADS  MathSciNet  MATH  Google Scholar 

  166. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)

    MATH  Google Scholar 

  167. H.A. Weldon, Reformulation of finite temperature dilepton production. Phys. Rev. D 42, 2384 (1990)

    ADS  Google Scholar 

  168. J. Cleymans, J. Fingberg, K. Redlich, Transverse momentum distribution of dileptons in different scenarios for the QCD phase transition. Phys. Rev. D 35, 2153 (1987)

    ADS  Google Scholar 

  169. S.M.H. Wong, The production of soft dileptons in the quark–gluon plasma in resummed perturbation theory Z. Phys. C 53, 465 (1992)

    Google Scholar 

  170. H.-T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E. Laermann, W. Soeldner, Thermal dilepton rate and electrical conductivity: an analysis of vector current correlation functions in quenched lattice QCD. Phys. Rev. D 83, 034504 (2011)

    ADS  Google Scholar 

  171. F. Karsch, E. Laermann, P. Petreczky, S. Stickan, I. Wetzorke, A lattice calculation of thermal dilepton rates. Phys. Lett. B 530, 147 (2002). arXiv:hep-lat/0110208

    ADS  Google Scholar 

  172. T. Kim, M. Asakawa, M. Kitazawa, Dilepton production spectrum above \(T_{\mathrm{c}}\) with a lattice propagator. arXiv:1505.07195 [v1 nucl-th]

Download references

Acknowledgements

I would like to thank Aritra Bandyopadhyay, Aritra Das, Bithika Karmakar, Chowdhury Aminul Islam, Najmul Haque and Ritesh Ghosh for various discussions and help received during the preparation of this article. It is also a great pleasure to acknowledge the support received from Sanjay Ghosh and Rajarshi Ray who were tutors of my lectures given at SERC Advanced School on Theoretical High Energy Physics, November 16-December 5, 2015 at Birla institute of Technology, Pilani, India. Finally, I would like to thank Department of Atomic Energy, Government of India for the project TPAES in Theory division of Saha Institute of Nuclear Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munshi G. Mustafa.

A Appendix

A Appendix

1.1 A.1 One-loop fermionic sum integrals

The dimensionally regularized fermionic sum-integrals are defined as,

$$\begin{aligned} \sum{\kern-15pt}\int\limits _{\{ P\} }= &\, {} \left( \frac{e^{\gamma _E}\Lambda ^2}{4\pi }\right) ^\epsilon T\sum \limits _{\begin{array}{c} \{p_0=i\omega _n\}\\ \omega _n=(2n+1)\pi T-i\mu \end{array}}\int \frac{\text{d}^{d-2\epsilon }p}{(2\pi )^{d-2\epsilon }}, \end{aligned}$$
(A.1)

where \(d-2\epsilon\) is the spatial dimension, P is the fermion loop momentum, \(\Lambda\) is the \(\overline{\text {MS}}\) renormalization scale that introduces the factor \(\left( \frac{e^{\gamma _E}}{4\pi }\right) ^\epsilon\) along with it, where \(\gamma _E\) being the Euler–Mascheroni constant.

The result of various fermionic sum-integrals are listed below:

$$\begin{aligned} 2\sum{\kern-16pt}\int\limits _{\{P\}} \ln \left( P^2\right)&= \frac{7\pi ^2 T^4}{180} + \frac{\mu ^2T^2}{6} +\frac{\mu ^4}{12\pi ^2} \\ &= \frac{7\pi ^2T^4}{180}\left( 1+\frac{120}{7}\hat{\mu }^2+\frac{240}{7} \hat{\mu }^4\right) \, , \end{aligned}$$
(A.2a)
$$\begin{aligned} \sum{\kern-16pt}\int\limits _{\{P\}}\frac{1}{P^2}&=\frac{T^2}{24}\left( \frac{\Lambda }{4\pi T}\right) ^{2\epsilon }\\ &\left[ 1+12{\hat{\mu }}^2+2\epsilon \left( 1+12{\hat{\mu }}^2 +12\aleph (1,z)\right) \right] , \end{aligned}$$
(A.2b)
$$\begin{aligned} \sum{\kern-16pt}\int\limits _{\{ P\} }\frac{1}{P^4}&=\frac{1}{\left( 4\pi \right) ^2}\left( \frac{\Lambda }{4\pi T}\right) ^{2\epsilon }\Bigg [\frac{1}{\epsilon }-\aleph (z)\Bigg ], \end{aligned}$$
(A.2c)
$$\begin{aligned} \sum{\kern-16pt}\int\limits _{\{P\}}\frac{1}{p^2P^2}&= -\frac{2}{d-2} \sum{\kern-16pt}\int\limits _{\{ P\} }\frac{1}{P^4}, \end{aligned}$$
(A.2d)
$$\begin{aligned} \sum{\kern-16pt}\int\limits _{\{P\}}\frac{1}{p^2P^2}{{\mathcal {T}}}_P&=-\frac{2\Delta _3}{d-2} \sum{\kern-16pt}\int\limits _{\{P\}}\frac{1}{P^4}, \end{aligned}$$
(A.2e)
$$\begin{aligned} \sum{\kern-16pt}\int\limits _{\{P\}}\frac{1}{p^2P^2}{{\mathcal {T}}}_P^2&=-\frac{2\Delta _4''}{d-2} \sum{\kern-16pt}\int\limits _{\{P\}}\frac{1}{P^4}, \end{aligned}$$
(A.2f)
$$\begin{aligned} \sum{\kern-16pt}\int\limits _{\{P\}}\frac{1}{p_0^2P^2}{{\mathcal {T}}}_P^2&=-\frac{2\Delta _3''}{d-2} \sum{\kern-15pt}\int\limits _{\{P\}}\frac{1}{P^4}, \end{aligned}$$
(A.2g)

where the angular integrations are given as

$$\begin{aligned} \Delta _3&= \left\langle \frac{1-c^{4-d}}{1-c^2}\right\rangle c = \ln 2+\left( \frac{\pi ^2}{6}-(2-\ln 2)\ln 2\right) \epsilon \nonumber \\&~~~~+\left\{ \frac{2}{3}(\ln 2)^2(\ln 2 -3)+\frac{\pi ^2}{3}(\ln 2-1)+\zeta (3)\right\} \\ &\epsilon ^2+\mathcal {O}[\epsilon ]^3 \, , \end{aligned}$$
(A.3a)
$$\begin{aligned} \Delta _3''&= \left\langle \frac{1-c_1^{4-d}}{(1-c_1^2)(c_1^2-c_2^2)}+c_1\leftrightarrow c_2\right\rangle\\ & ci = -\frac{\pi ^2}{12} + \left( \frac{\pi ^2}{3} - \frac{\zeta (3)}{2}\right) \epsilon + \mathcal {O}(\epsilon ^2), \end{aligned}$$
(A.3b)
$$\begin{aligned} \Delta _4''&= \left\langle \frac{1-c_1^{6-d}}{(1-c_1^2)(c_1^2-c_2^2)}+c_1\leftrightarrow c_2\right\rangle ci \nonumber \\&= -\frac{\pi ^2}{12} + \ln 4 + \left( \frac{\pi ^2}{3} - \ln 4 (2 - \ln 2) - \frac{\zeta (3)}{2}\right) \epsilon + \mathcal {O}(\epsilon ^2) \, , \end{aligned}$$
(A.3c)

with

$$\begin{aligned} \aleph (z)&=-2\gamma _E-4\ln 2+14\zeta (3)\hat{\mu }^2-62\zeta (5)\hat{\mu }^4\\ &+254\zeta (7)\hat{\mu }^6+\mathcal{O}(\hat{\mu }^8), \end{aligned}$$
(A.4a)
$$\begin{aligned} \aleph (1,z)&=-\frac{1}{12}\left( \ln 2-\frac{\zeta '(-1)}{\zeta (-1)}\right) - \left( 1-2\ln 2-\gamma _E\right) \hat{\mu }^2\\ &-\frac{7}{6}\zeta (3)\hat{\mu }^4 + \frac{31}{15}\zeta (5)\hat{\mu }^6+\mathcal{O}(\hat{\mu }^8)\, . \end{aligned}$$
(A.4b)

1.2 A.2 One-loop bosonic sum integrals

The dimensionally regularized bosonic sum-integrals are defined as,

$$\begin{aligned} \sum{\kern-15pt}\int\limits _{ P}= &\, {} \left( \frac{e^{\gamma _E}\Lambda ^2}{4\pi }\right) ^\epsilon T\sum \limits _{\begin{array}{c} p_0=i\omega _n\\ \omega _n=2n\pi T \end{array}}\int \frac{\text{d}^{d-2\epsilon }p}{(2\pi )^{d-2\epsilon }}, \end{aligned}$$
(A.5)

where \(d-2\epsilon\) is the spatial dimension, P is the boson loop momentum, \(\Lambda\) is the \(\overline{\text {MS}}\) renormalization scale that introduces the factor \(\left( \frac{e^{\gamma _E}}{4\pi }\right) ^\epsilon\) along with it, where \(\gamma _E\) being the Euler–Mascheroni constant.

Below we list various bosonic sum-integrals:

$$\begin{aligned} \sum{\kern-15pt}\int\limits _P \frac{1}{P^2}&= -\frac{T^2}{12}\left( \frac{\Lambda }{4\pi T}\right) ^{2\epsilon }\\ &\Bigg [1+2\epsilon \left( 1+\frac{\zeta '(-1)}{\zeta (-1)}\right) +\mathcal {O}[\epsilon ]^2\Bigg ], \end{aligned}$$
(A.6a)
$$\begin{aligned} \sum{\kern-15pt}\int\limits _P \frac{1}{p^2P^2}&= -\frac{2}{(4\pi )^2}\left( \frac{\Lambda }{4\pi T}\right) ^{2\epsilon } \\ &\Bigg [\frac{1}{\epsilon }+2\gamma _E+2 +\epsilon \left( 4+4\gamma _E+\frac{\pi ^2}{4}-4\gamma _1\right) +\mathcal {O}[\epsilon ]^2 \Bigg ], \end{aligned}$$
(A.6b)
$$\begin{aligned} \sum{\kern-15pt}\int\limits _P \frac{1}{P^4}&= \frac{1}{(4\pi )^2}\left( \frac{\Lambda }{4\pi T}\right) ^{2\epsilon }\\ &\left[ \frac{1}{\epsilon } +2\gamma _E+\epsilon \left( \frac{\pi ^2}{4}-4\gamma _1\right) +\mathcal {O}[\epsilon ]^2\right] \, , \end{aligned}$$
(A.6c)
$$\begin{aligned} \sum{\kern-15pt}\int\limits _{P} \frac{{{\mathcal {T}}}_P}{p^4}&=-\frac{1}{(4\pi )^2}\left( \frac{\Lambda }{4\pi T}\right) ^{2\epsilon }\\ &\left[ \frac{1}{\epsilon } +2\gamma _E+2\ln 2+\mathcal {O}[\epsilon ] \right] \, , \end{aligned}$$
(A.6d)
$$\begin{aligned} \sum{\kern-15pt}\int\limits _{P} \frac{{{\mathcal {T}}}_P}{p^2P^2}&=-\frac{1}{(4\pi )^2}\left( \frac{\Lambda }{4\pi T}\right) ^{2\epsilon }\\ & \left[ 2\ln 2 \left( \frac{1}{\epsilon }+2\gamma _E\right) + 2\ln ^2 2 +\frac{\pi ^2}{3}+\mathcal {O}[\epsilon ] \right] \, , \end{aligned}$$
(A.6e)
$$\begin{aligned} &\sum{\kern-15pt}\int\limits _{P} \frac{{{\mathcal {T}}}^2_P}{p^4}=-\frac{2}{3}\frac{1}{(4\pi )^2}\left( \frac{\Lambda }{4\pi T}\right) ^{2\epsilon }\\ & \left[ \left( 1+2\ln 2\right) \left( \frac{1}{\epsilon }+2\gamma _E\right) -\frac{4}{3}+\frac{22}{3}\ln 2 +2\ln ^2 2 +\mathcal {O}[\epsilon ] \right] \, . \end{aligned}$$
(A.6f)

1.3 A.3 Braaten–Pisarski–Yuan (BPY) prescription

Lets consider a complex function f(z) having branch cut

$$\begin{aligned} f(z) =\frac{1}{2\pi i} \oint \frac{f(\xi )\ \text{d}\xi }{\xi -z} \, . \end{aligned}$$
(A.7)

considering \(\xi =x+i\epsilon\), one can write

$$\begin{aligned} f(z) =\frac{1}{2\pi i} \int \limits _{-\infty }^{+\infty } \frac{f(x+i\epsilon ) -f(x-i\epsilon )}{x-z} \, dx \\ = \frac{1}{2\pi i} \int \limits _{-\infty }^{+\infty } \frac{\text {Disc} f(x+i\epsilon )}{x-z} dx \,. \end{aligned}$$
(A.8)

where the discontinuity is related to the imaginary part of a complex function as

$$\begin{aligned} \text {Disc} f(x+i\epsilon ) = f(x+i\epsilon )-f(x-i\epsilon ) = 2i \, \text { Im} f(x+i\epsilon ) \, . \end{aligned}$$
(A.9)

Combining (A.8) and (A.9) one can write

$$\begin{aligned} f(z) = \frac{1}{\pi } \int \limits _{-\infty }^{+\infty } \frac{\text { Im} \, f(x+i\epsilon )}{x-z} dx = \int \limits _{-\infty }^{+\infty } \frac{ \rho (x)}{x-z} dx \end{aligned}$$
(A.10)

where the spectral density \(\rho\) is defined as

$$\begin{aligned} \rho (x) = \frac{1}{\pi } \text {Im} \, f(x+i\epsilon ) \, . \end{aligned}$$
(A.11)

The spectral density \(\rho _1 (\omega _1)\) is related to the any complex function \(F_1(k_0)\) as given in (A.10)

$$\begin{aligned} F_1(k_0) =\int \limits _{-\infty }^{+\infty } \frac{\rho _1(\omega _1) \text{d}\omega _1}{\omega _1-k_0-i\epsilon _1} \, . \end{aligned}$$
(A.12)

We note that \(K\equiv (k_0,\vec{\varvec{k}})\) is the fermionic momentum with \(k_0 =(2m+1) i\pi T\).

Lets have,

$$\begin{aligned} \int \limits _{0}^{1/T} \text{d}\tau _1 \ e^{x\tau _1}= &\, {} \frac{ e^{x/T}-1}{x} \, \, \Rightarrow \,\, \frac{1}{x} = \frac{1}{e^{x/T}-1} \int \limits _{0}^{1/T} \text{d}\tau _1 \ e^{x\tau _1} \,, \end{aligned}$$
(A.13)

where T is the temperature. Now, considering \(x=(\omega _1-k_0-i\epsilon _1)\) one can write (A.13) as

$$\begin{aligned} \frac{1}{\omega _1-k_0-i\epsilon _1} = \frac{1}{e^{\frac{(\omega _1-k_0)}{T}}-1} \int \limits _{0}^{1/T} \text{d}\tau _1 \ e^{(\omega _1-k_0-i\epsilon _1)\tau _1} \, . \end{aligned}$$
(A.14)

Combining (A.14) with (A.12), one gets

$$\begin{aligned} F_1(k_0) = \int \limits _{-\infty }^{+\infty } \frac{\rho _1(\omega _1) \text{d}\omega _1}{e^{\frac{(\omega _1-k_0)}{T}}-1} \int \limits _{0}^{1/T} \text{d}\tau _1 \ e^{(\omega _1-k_0-i\epsilon _1)\tau _1} \, . \end{aligned}$$
(A.15)

Now, using \(e^{k_0/T} = e^{(2m+1)i\pi } = -1\), one can write as

$$\begin{aligned} F_1(k_0)= &\, {} - \int \limits _{-\infty }^{+\infty } \frac{\rho _1(\omega _1) \text{d}\omega _1}{e^{\frac{\omega _1}{T}}-1} \int \limits _{0}^{1/T} \text{d}\tau _1 \ e^{(\omega _1-k_0-i\epsilon _1)\tau _1} \nonumber \\= &\, {} - \int \limits _{-\infty }^{+\infty } n_{\mathrm{F}}(\omega _1) \ \rho _1(\omega _1) \, \text{d}\omega _1 \int \limits _{0}^{1/T} \text{d}\tau _1 \ e^{(\omega _1-k_0-i\epsilon _1)\tau _1} \,. \end{aligned}$$
(A.16)

Similarly, one can write another complex function \(F_2(q_0)\) as

$$\begin{aligned} F_2(q_0)= &\, {} - \int \limits _{-\infty }^{+\infty } n_{\mathrm{F}}(\omega _2) \ \rho _2(\omega _2) \, \text{d}\omega _2 \int \limits _{0}^{1/T} \text{d}\tau _2 \ e^{(\omega _2-q_0-i\epsilon _2)\tau _2} \,, \end{aligned}$$
(A.17)

where \(q_0=(p_0-k_0)\) and P is the bosonic momentum with \(p_0=2mi\pi T\).

We would like to compute the imaginary part of the product of two complex functions \(T\sum _{k_0} F_1(k_0)F_2(q_0)\):

$$\begin{aligned} &\text {Im} \, \, \, T\sum _{k_0} F_1(k_0)F_2(q_0)\\ & \quad = \, {} \text {Im} \, \, \, T\sum _{k_0} \int \limits _{-\infty }^{+\infty } \text{d}\omega _1 \int \limits _{-\infty }^{+\infty } \text{d}\omega _2\, n_{\mathrm{F}}(\omega _1) n_{\mathrm{F}}(\omega _2) \rho _1(\omega _1) \rho _2(\omega _2) \nonumber \\{} & \qquad {} \times \int \limits _{0}^{1/T} \text{d}\tau _1 \int \limits _{0}^{1/T} \text{d}\tau _2 \, \, e^{(\omega _1-k_0-i\epsilon _1)\tau _1}\,\, e^{(\omega _2-q_0-i\epsilon _2)\tau _2} \nonumber \\& \quad = \, {} \text {Im} \, \int \limits _{-\infty }^{+\infty } \text{d}\omega _1 \int \limits _{-\infty }^{+\infty } \text{d}\omega _2\, n_{\mathrm{F}}(\omega _1) n_{\mathrm{F}}(\omega _2) \rho _1(\omega _1) \rho _2(\omega _2) \nonumber \\{} &\qquad {} \times \int \limits _{0}^{1/T} \text{d}\tau _1 \int \limits _{0}^{1/T} \text{d}\tau _2 \, \, e^{(\omega _1-i\epsilon _1)\tau _1}\,\, e^{(\omega _2-p_0-i\epsilon _2)\tau _2} \, \underbrace{T\sum _{k_0} e^{-k_0(\tau _1-\tau _2)}}_{\delta (\tau _2-\tau _1)}. \end{aligned}$$
(A.18)

Performing \(\tau _2\)-integration using \(\delta\)-function, one can write

$$\begin{aligned} &\text {Im} \, \, \, T\sum _{k_0} F_1(k_0)F_2(q_0)\\ &\quad = \, {} \text {Im} \, \int \limits _{-\infty }^{+\infty } \text{d}\omega _1 \int \limits _{-\infty }^{+\infty } \text{d}\omega _2\, n_{\mathrm{F}}(\omega _1) n_{\mathrm{F}}(\omega _2) \rho _1(\omega _1) \rho _2(\omega _2) \nonumber \\{} & \qquad {} \times \int \limits _{0}^{1/T} \text{d}\tau _1 \, e^{(\omega _1+\omega _2-p_0-i\epsilon )\tau _1} \,, \end{aligned}$$
(A.19)

where \(\epsilon =\epsilon _1+\epsilon _2\). Now performing the \(\tau _1\)-integration, one gets

$$\begin{aligned} & \text {Im} \, \, \, T\sum _{k_0} F_1(k_0)F_2(q_0)\\ & \quad = \, {} \text {Im} \, \int \limits _{-\infty }^{+\infty } \text{d}\omega _1 \int \limits _{-\infty }^{+\infty } \text{d}\omega _2\, n_{\mathrm{F}}(\omega _1) n_{\mathrm{F}}(\omega _2) \rho _1(\omega _1) \rho _2(\omega _2) \nonumber \\{} &\qquad {} \times \frac{e^{(\omega _1+\omega _2-p_0)/T} -1}{ \omega _1+\omega _2 -p_0 -i\epsilon }\, \nonumber \\& \quad = \, {} \, \int \limits _{-\infty }^{+\infty } \text{d}\omega _1 \int \limits _{-\infty }^{+\infty } \text{d}\omega _2\, n_{\mathrm{F}}(\omega _1) n_{\mathrm{F}}(\omega _2) \rho _1(\omega _1) \rho _2(\omega _2) \nonumber \\{} & \qquad {} \times \left( e^{(\omega _1+\omega _2-p_0)/T} -1\right) \, \text {Im} \left( \frac{1}{ \omega _1+\omega _2 -p_0 -i\epsilon }\right) \,. \end{aligned}$$
(A.20)

Now using

$$\begin{aligned} e^{-{p_0}/{T}}&= e^{-2m\pi i}= 1 \, , \end{aligned}$$
(A.21a)
$$\begin{aligned} p_0&=\omega +i\epsilon ' \, , \end{aligned}$$
(A.21b)
$$\begin{aligned} \frac{1}{ \omega _1+\omega _2 -p_0 -i\epsilon }&= \frac{1}{ \omega _1+\omega _2 -\omega -i\epsilon ' -i\epsilon } \\ &=\frac{1}{ \omega _1+\omega _2 -\omega -i\epsilon ''} \, , \end{aligned}$$
(A.21c)
$$\begin{aligned} \text {Im} \left( \frac{1}{\omega _1+\omega _2-\omega -i\epsilon ''}\right)&= -\pi \delta \left( \omega _1+\omega _2-\omega \right) \, , \end{aligned}$$
(A.21d)

one gets

$$\begin{aligned} & \text {Im} \, \, \, T\sum _{k_0} F_1(k_0)F_2(q_0)\\ = &\, {} - \, \pi \, \int \limits _{-\infty }^{+\infty } \text{d}\omega _1 \int \limits _{-\infty }^{+\infty } \text{d}\omega _2\, n_{\mathrm{F}}(\omega _1) n_{\mathrm{F}}(\omega _2) \rho _1(\omega _1) \rho _2(\omega _2) \nonumber \\{} & {} \times \left( e^{(\omega _1+\omega _2)/T} -1\right) \, \delta \left( \omega _1+\omega _2-\omega \right) \nonumber \\= &\, {} \pi \left( 1-e^{\beta \omega } \right) \int \limits _{-\infty }^{+\infty } \text{d}\omega _1 \int \limits _{-\infty }^{+\infty } \text{d}\omega _2\, \, \, n_{\mathrm{F}}(\omega _1) n_{\mathrm{F}}(\omega _2) \nonumber \\{} & {} \times \rho _1(\omega _1) \rho _2(\omega _2) \, \delta \left( \omega _1+\omega _2-\omega \right) \,, \end{aligned}$$
(A.22)

where \(\beta =1/T\).

We finally obtain following (A.9) and (A.22), the discontinuity or the imaginary part of a product of two complex functions [81] as

$$\begin{aligned}& \text {Disc} \, \, T\sum _{k_0} F_1(k_0)F_2(q_0)\\ = &\, {} 2i \,\, \text {Im} \, \, \, T\sum _{k_0} F_1(k_0)F_2(q_0) \nonumber \\= &\, {} 2 \pi i \left( 1-e^{\beta \omega } \right) \int \limits _{-\infty }^{+\infty } \text{d}\omega _1 \int \limits _{-\infty }^{+\infty } \text{d}\omega _2\, \, \, n_{\mathrm{F}}(\omega _1) n_{\mathrm{F}}(\omega _2) \nonumber \\{} & {} \times \rho _1(\omega _1) \rho _2(\omega _2) \, \delta \left( \omega _1+\omega _2-\omega \right) \,. \end{aligned}$$
(A.23)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, M.G. An introduction to thermal field theory and some of its application. Eur. Phys. J. Spec. Top. 232, 1369–1457 (2023). https://doi.org/10.1140/epjs/s11734-023-00868-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00868-8

Navigation