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Abstract This paper primarily focuses on the derivation of fractal numerical integration for the data sets
corresponding to two variable signals defined over a rectangular region. Evaluating numerical integration
results through the fractal method helps achieve accurate results with minimum computation effort. The
formulation of the fractal numerical integration is achieved by considering the recursive relation satisfied by
the bivariate fractal interpolation functions for the given data set. The points in the data set have been used
to evaluate the coefficients of the iterated function systems. The derivation of these coefficients considering
the index of the subrectangles, and the integration formula has been proposed using these coefficients. The
bivariate fractal interpolation functions constructed using these coefficients are then correlated with the
bilinear interpolation functions. Also, this paper derives a formula for the freely chosen vertical scaling
factor that has been used in reducing the approximation error. The obtained formula of the vertical scaling
factor is then used in establishing the convergence of the proposed method of integration to the traditional
double integration technique through a collection of lemmas and theorems. Finally, the paper concludes
with an illustration of the proposed method of integration and the analysis of the numerical integral results
obtained for the data sets corresponding to four benchmark functions.

1 Introduction

The theory of fractal interpolation induces new insights
into the fields of integration and approximation [16]. It
is considered an analogue to the conventional interpola-
tion schemes. The functions generated through fractal
interpolation are typically used to analyse signals with
complex characteristics [4]. The self similarity property
of fractals enables them to analyse the naturally occur-
ring signals, extract information from them, and pro-
cess the obtained information more properly and accu-
rately [15, 22].

Unlike traditional interpolation methods, the concept
of fractal interpolation proceeds by creating the copies
of images at different scales. Fractal interpolation func-
tions are accompanied by a complete metric space and a
finite collection of contractions defined on the complete
metric space [6]. The set of finite contractions is known
as the iterated function system (IFS) for the fractal
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interpolation functions. The coefficients of the IFS are
crucial in determining the shape of the signal and also
to evaluate the integral results. In order to exemplify
the one-dimensional chaotic signals, Barnsley [5] intro-
duced the idea of fractal interpolation functions. The
concept is then extended to two dimensions by Masso-
pust [19] for the first time, following which there have
been several attempts by authors to construct fractal
interpolation functions over two-dimensional regions.
The major difficulty in defining a fractal interpola-
tion function over a higher dimensional region is the
lack of continuity of the related fractal interpolation
operator. In order to tackle this problem, Dalla [10]
used collinear interpolation points for the construction.
Without restricting the interpolation points, continu-
ous fractal surfaces are constructed in [13] over polygo-
nal regions. Redefining the IFS, Drakopoulos et al. [12]
solved the problem of continuity. Another attempt by
Ruan et al. [25] includes modifying the endpoint con-
ditions of the contraction mappings and adding suit-
able criteria to the IFS. In order to make the fractal
interpolation operator continuous, [30] uses a contin-
uous contraction function, instead of the freely cho-
sen contractivity factors. The construction proposed in
[20] uses the tensor product of single variable fractal
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interpolation functions. The transformations like rota-
tions and reflections have been used in [23] to create
continuous fractal surfaces and volumes over rectangu-
lar lattices. The stability of the fractal interpolation
functions have been studied in [14]. Instead of using
Banach contraction mapping theorem, [24] employs
Rakotch fixed point theorem and Matkowski fixed point
theorem for the construction. Malysz [17] rectified the
problem of continuity by formulating a new IFS, along
with changing the endpoint conditions of the contrac-
tions. The construction we present here is based on the
approach made by Malysz [17]. Instead of considering
a constant vertical scaling factor as in [17], a formula
has been proposed for the same in our work.

The theory of fractal interpolation has been used in a
variety of applications such as curve fitting [18], image
compression [7, 11, 26], tumor perfusion [9] and Covid-
19 data analysis [2, 28]. Since most naturally occurring
signals have sudden peaks and valleys in their structure,
the Euclidean measurements of specific parameters such
as length, area, and perimeter become irrelevant. How-
ever, it is appropriate to use the fractal numerical inte-
gration method to evaluate such parameters. In [27],
authors propose a new method of numerical integra-
tion using the trapezoidal rule wherein the signal has
been split into fractal fragments. The observed integral
value corresponds to the energy needed on the electrical
load curve.

The classical integral of a linear fractal interpolation
function is investigated in [1]. It is trivial that the inte-
gration of a function is associated with the area under
the graph of the function. When the function is not
known explicitly, it is difficult to plot the functions
directly. But, several numerical methods are available to
interpolate the data and find the approximation func-
tion that passes through the given points. Techniques
are also available to numerically evaluate the integral
results [3] from the given data values without explicitly
drawing the graph and calculating the area under the
graph. The most popular techniques include the trape-
zoidal rule, midpoint rule, and Simpson’s rule. Another
method of definite integral calculation using triangles is
proposed in [8]. However, it is true that the traditional
numerical schemes may fail to portray and numerically
evaluate the data precisely, especially when signals of
chaotic nature are involved. For example, in the trape-
zoidal rule, the data set has been approximated with
straight lines, and the integral is calculated as the area
of the trapezoid under the straight lines. Approximat-
ing the non linear data sets with straight lines may fail
to capture the sudden spikes in the signals. As a result,
the area calculated under the straight lines may be far
from the desired value. Hence, the motivation behind
choosing fractal interpolation techniques in evaluating
numerical integral results can be summarized as follows:

• Since the fractal interpolation functions capture the
irregularities in the signals, the area as well as
volume calculated using the fractal numerical
integration method will be more precise.

• Fractal numerical integration provides the desired
results in fewer iterations.

The method of fractal numerical integration for the
data sets corresponding to single variable functions was
introduced in [21]. The integration formula is based on
the coefficients of the iterated function systems. These
coefficients are derived using the endpoint conditions of
the iterated function systems. The integral results are
compared with the conventional numerical integration
schemes in [21]. This paper aims to extend the frac-
tal numerical integration method proposed in [21] to
two-dimensional signals defined over rectangular inter-
polating regions.

The integration formula has been defined based on
the construction proposed in [17] and considering the
coefficients of the IFS therein. Instead of using a con-
stant vertical scaling factor, this work suggests a for-
mula for determining the same. The formula has been
derived from the given data values. The computations
are done using the newly obtained formula of the ver-
tical scaling factor. This paper then illustrates the
derived numerical integration formula, considering the
data set of four test functions. The obtained results are
tabulated and compared with their actual integral val-
ues.

The paper has been organized into eight sections,
where the first section briefly introduces the theory
of fractal interpolation functions and numerical inte-
gration. The second section deals with constructing
bivariate fractal interpolation functions over rectangu-
lar interpolating domains. In the third section, we pro-
vide the proposed method of numerical integration. A
recursive relation connecting the bivariate fractal inter-
polation function with the bilinear interpolation func-
tion is derived in the fourth section. The fifth section
deals with the method of selection of the vertical scal-
ing factor that minimizes the approximation errors. The
convergence of the proposed method is verified through
certain theorems in section six. The illustration of the
technique through sufficient examples is given in the
seventh section. The paper concludes in section eight
by summarizing the results and observations obtained.

2 Construction of bivariate fractal
interpolation functions over rectangular
regions

Let {xn : n = 0, 1, ..., N} and {ym : m = 0, 1, ...,M}
be two sets of real numbers such that 0 = x0 < x1 <
... < xN = 1, and 0 = y0 < y1 < ... < yM = 1.
Let I be the closed interval containing the former set
and J be the closed interval containing the latter set of
real numbers. The data set considered be denoted by
{(xn, ym, zn,m) : n = 0, 1, ..., N, m = 0, 1, ...,M} where
zn,m is the value of the function at the point (xn, ym).
Set In = [xn−1, xn], Jm = [ym−1, ym] for n = 1, 2, ..., N
and m = 1, 2, ...,M. Define N number of contractive
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homeomorphisms Ln : I → In such that

Ln(x0) =
{

xn−1, if n is odd
xn, if n is even

(1)

Ln(xN ) =
{

xn, if n is odd
xn−1, if n is even

(2)

and

| Ln(x) − Ln(x
′
) |≤ c1 | x − x

′ |,
for all x, x

′ ∈ [x0, xN ], for some c1 ∈ [0, 1)
and n = 1, 2, ..., N.

Similarly, consider M number of contractive homeomor-
phisms Km : J → Jm with the conditions

Km(y0) =
{

ym−1, if m is odd
ym, if m is even

(3)

Km(yM ) =
{

ym, if m is odd
ym−1, if m is even

(4)

and

| Km(y) − Km(y
′
) |≤ c2 | y − y

′ |,
for all y, y

′ ∈ [y0, yM ],
for some c2 ∈ [0, 1) and m = 1, 2, ...,M.

The functions Ln and Km used here, satisfying the
above stated conditions are defined as follows:

Ln(x) = rnx + sn, Km(y) = qmy + wm (5)

where the coefficients rn, sn, qm and wm, obtained by
solving the endpoint conditions (1), (2), (3) and (4) are
as follows:

rn =
(−1)σ(n+1)

N
, sn =

n − σ(n)
N

qm =
(−1)σ(m+1)

M
, wm =

m − σ(m)
M

(6)

where σ(k) = k mod 2, for k ∈ N. i.e, σ(k) is the
remainder when k is divided by 2.

Choose a number dn,m between -1 and 1. This num-
ber is known as the vertical scaling factor and the
corresponding scale vector is denoted as dn,m. Define
F = [0, 1] × [0, 1] × R and Fn,m : F → R of the form

Fn,m(x, y, z) = dn,mz + qn,m(x, y) (7)

where

qn,m(x, y) = an,mx + bn,my + cn,mxy + fn,m (8)

satisfying the conditions

Fn,m(σ(k), σ(l), zΔ(k,l)) = zk,l (9)

for (k, l) ∈ {n − 1, n} × {m − 1,m}, n = 1, 2, ..., N and
m = 1, 2, ...,M where Δ(k, l) = (Nσ(k),Mσ(l)).

The coefficients in Fn,m, except the vertical scaling
factor dn,m, are obtained by solving the endpoint condi-
tions (9). Since there are four different sets of endpoint
conditions, based on the indices n, m are odd or even,
there are four different expressions for each of the coeffi-
cients an,m, bn,m, cn,m and fn,m. Therefore, the function
Fn,m can be written as:

Fn,m(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a
(1)
n,mx + b

(1)
n,my + c

(1)
n,mxy + f

(1)
n,m + dn,mz, if n,m are odd

a
(2)
n,mx + b

(2)
n,my + c

(2)
n,mxy + f

(2)
n,m + dn,mz, if n,m are even

a
(3)
n,mx + b

(3)
n,my + c

(3)
n,mxy + f

(3)
n,m + dn,mz, if n is odd and m is even

a
(4)
n,mx + b

(4)
n,my + c

(4)
n,mxy + f

(4)
n,m + dn,mz, if n is even and m is odd

(10)

with the following expressions for the coefficients:

a(1)
n,m = zn,m−1 − zn−1,m−1 − dn,m(zN,0 − z0,0)

b(1)
n,m = zn−1,m − zn−1,m−1 − dn,m(z0,M − z0,0)

c(1)
n,m = zn,m − zn−1,m − zn,m−1 + zn−1,m−1

− dn,m(zN,M − z0,M − zN,0 + z0,0)

f (1)
n,m = zn−1,m−1 − dn,mz0,0 (11)

a(2)
n,m = zn−1,m − zn,m − dn,m(zN,0 − z0,0)

b(2)
n,m = zn,m−1 − zn,m − dn,m(z0,M − z0,0)

c(2)
n,m = zn,m − zn−1,m − zn,m−1 + zn−1,m−1

− dn,m(zN,M − z0,M − zN,0 + z0,0)

f (2)
n,m = zn,m − dn,mz0,0 (12)

a(3)
n,m = zn,m − zn−1,m − dn,m(zN,0 − z0,0)

b(3)
n,m = zn−1,m−1 − zn−1,m − dn,m(z0,M − z0,0)

c(3)
n,m = zn−1,m − zn,m − zn−1,m−1 + zn,m−1

− dn,m(z0,0 − zN,0 − z0,M + zN,M )

f (3)
n,m = zn−1,m − dn,mz0,0 (13)
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a(4)
n,m = zn−1,m−1 − zn,m−1 − dn,m(zN,0 − z0,0)

b(4)
n,m = zn,m − zn,m−1 − dn,m(z0,M − z0,0)

c(4)
n,m = zn−1,m − zn,m − zn−1,m−1 + zn,m−1

− dn,m(z0,0 − zN,0 − z0,M + zN,M )

f (4)
n,m = zn,m−1 − dn,mz0,0 (14)

Using the functions φΔ(k,l) : [0, 1]2 → [0, 1] defined by

φN,M (x, y) = xy

φ0,0(x, y) = (1 − x)(1 − y)
φ0,M (x, y) = (1 − x)y
φN,0(x, y) = x(1 − y), (15)

for (k, l) ∈ {n − 1, n} × {m − 1,m}, the function Fn,m

can be rewritten as follows:

Fn,m(x, y, z) = dz

+
∑

(k,l)∈{n−1,n}×{m−1,m}
(zk,l − dzΔ(k,l))φΔ(k,l)(x, y)

(16)

Now define the IFS as:

Wn,m(x, y, z) = (Ln(x),Km(y), Fn,m(x, y, z))
(17)

for n = 1, 2, ..., N and m = 1, 2, ...,M.
Note that when σ(n) = 1,

Fn,m(1, y, z) = dz + (zn,m − dzN,Mσ(m))

φN,Mσ(m)(1, y)

+ (zn,m−1 − dzN,Mσ(m−1))

φN,Mσ(m−1)(1, y) and (18)

Fn+1,m(1, y, z) = dz + (zn,m − dzN,Mσ(m))

φN,Mσ(m)(1, y)

+ (zn,m−1 − dzN,Mσ(m−1))

φN,Mσ(m−1)(1, y) (19)

for n = 1, 2, ..., N − 1. Similar conditions are obtained
for σ(n) = 0, σ(m) = 1 and σ(m) = 0.

The hyperbolicity of the IFS can be established as
explained in proposition 2.1 in [10], for any values of n
and m.

Theorem 1 Consider two positive integers N , M
greater than 1. Let (17) be an IFS for the data set
{(xn, ym, zn,m) : n = 0, 1, ..., N, m = 0, 1, ...,M}
with the vertical scaling factor −1 < dn,m < 1 for
n = 1, 2, ..., N and m = 1, 2, ...,M. Then, there exists a
unique, continuous function f : [0, 1]×[0, 1] → R, inter-
polating the data set such that the graph of f coincides
with the attractor of the IFS .

Proof Consider the set F of all continuous functions
f : [0, 1]2 → R such that f satisfies the following end-
point conditions,

f(xNσ(k), yMσ(l))

= zNσ(k),Mσ(l), (k, l) ∈ {N − 1, N} × {M − 1,M}.

Then, F , with the supremum metric is a complete met-
ric space.

Now, consider the operator T : F → F such that

(Tf)(x, y) = Fn,m(L−1
n (x),K−1

m (y), f(L−1
n (x),

K−1
m (y))), n = 1, 2, ..., N,m = 1, 2, ...,M. (20)

Clearly, T satisfies endpoint conditions on the complete
metric space F . This can be established using the end-
point conditions on the functions Ln, Km and Fn,m.
The operator T is continuous on the interior of each
subrectangle In × Jm, n = 1, 2, ..., N,m = 1, 2, ...,M. It
remains to prove the continuity of T at the common
boundaries of the two subrectangles, say, In × Jm and
In+1 × Jm.

Consider the common side x = xn, ym−1 ≤ y ≤ ym

of the two subrectangles In ×Jm and In+1 ×Jm. Along
this common side,

(Tf)(xn, y) = Fn,m(L−1
n (xn),K−1

m (y), f(L−1
n (xn),K−1

m (y)))

= Fn,m(xN ,K−1
m (y), f(xN ,K−1

m (y)))

By the condition (18), this can be written as:

Fn,m(xN ,K−1
m (y), f(xN ,K−1

m (y))) = Fn+1,m(xN ,K−1
m (y),

f(xN ,K−1
m (y))), if n is odd

When n is even,

(Tf)(xn, y) = Fn,m(L−1
n (xn),K−1

m (y), f(L−1
n (xn),K−1

m (y)))

= Fn,m(x0,K
−1
m (y), f(x0,K

−1
m (y)))

By the condition (18), this can be written as:

Fn,m(x0,K
−1
m (y), f(x0,K

−1
m (y)))

= Fn+1,m(x0,K
−1
m (y), f(x0,K

−1
m (y))),

Similarly, we can prove the continuity of T at all the
common sides of the subrectangles. Therefore, T is con-
tinuous on each In × Jm.

The contractivity of T is proved in Lemma 1 [17] as
follows:

|| T (f) − T (g) ||∞ = supn,m || Fn,m

(
L

−1
n (x),

K
−1
m (y), f(L−1

n (x), K
−1
m (y))

)

− Fn,m

(
L

−1
n (x), K

−1
m (y), g(L−1

n (x), K
−1
m (y))

)
||∞

= supn,m || dn,m

(
f(L−1

n (x), K
−1
m (y))
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− g(L−1
n (x), K

−1
m (y))

)
||∞

≤ S || f − g ||∞

where S = supn,m | dn,m | . Since T is a contraction,
there exists a unique function f in F such that f is the
fixed point of T and graph of f is the required fractal
interpolation surface. Since f is the unique, fixed point
of T , it satisfies the recursive relation

f(x, y) = dn,mf(L−1
n (x),K−1

m (y))

+ qn,m(L−1
n (x),K−1

m (y)),
where (x, y) ∈ In × Jm, n = 1, 2, ..., N,

m = 1, 2, ...,M. (21)

�

The formula used for the vertical scaling factor is as
provided below:

dn,m =
znp,mq − 0.25(zn,m + zn−1,m + zn,m−1 + zn−1,m−1)

zN
2 ,M2

− 0.25(zN,M + zN,0 + z0,M + z0,0)

(22)

where znp,mq
= f(xn+xn−1

2 , ym+ym−1
2 ), zN

2 ,M2
=

f(xN+x0
2 , yM+y0

2 )
This formula has been derived in Sect. 5 as a special

case of the general expression for the vertical scaling
factor.

3 Numerical integration over rectangular
region

Let D0 denote the double integral of a bivariate frac-
tal interpolation function f over the rectangular region
[0, 1] × [0, 1]. Then,

D0 =
∫
I

∫
J

f(x, y)dxdy

=
N∑

n=1

M∑
m=1

∫
In

∫
Jm

f(x, y)dxdy

=
N∑

n=1

M∑
m=1

∫
In

∫
Jm

(Tf)(x, y)dxdy

=
N∑

n=1

M∑
m=1

∫
In

∫
Jm

Fn,m

(
L−1

n (x),K−1
m (y),

f(L−1
n (x),K−1

m (y))
)
dxdy

Since Fn,m is defined differently based on the indices
n, m are even or odd,

D0 =

N/2∑

n=1

M/2∑

m=1

∫

I2n−1

∫

J2m−1

F2n−1,2m−1

(
L−1
2n−1(x),K

−1
2m−1(y),

f(L−1
2n−1(x),K

−1
2m−1(y))

)
dxdy

+

N/2∑

n=1

M/2∑

m=1

∫

I2n

∫

J2m

F2n,2m

(
L−1
2n (x),K−1

2m(y),

f(L−1
2n (x),K−1

2m(y))
)
dxdy

+

N/2∑

n=1

M/2∑

m=1

∫

I2n−1

∫

J2m

F2n−1,2m

(
L−1
2n−1(x),K

−1
2m(y),

f(L−1
2n−1(x),K

−1
2m(y))

)
dxdy

+

N/2∑

n=1

M/2∑

m=1

∫

I2n

∫

J2m−1

F2n,2m−1

(
L−1
2n (x),K−1

2m−1(y),

f(L−1
2n (x),K−1

2m−1(y))
)
dxdy (23)

Using u1 = L−1
2n−1(x), v1 = L−1

2 m−1(y), u2 =
L−1

2n (x), v2 = L−1
2 m(y),

D0 can be written as

D0 =
N/2∑
n=1

M/2∑
m=1

∫
I

∫
J

F2n−1,2m−1(u1, v1,

f(u1, v1))r2n−1q2m−1du1dv1

+
N/2∑
n=1

M/2∑
m=1

∫
I

∫
J

F2n,2m(u2, v2,

f(u2, v2))r2nq2mdu2dv2

+
N/2∑
n=1

M/2∑
m=1

∫
I

∫
J

F2n−1,2m(u1, v2,

f(u1, v2))r2n−1q2mdu1dv2

+
N/2∑
n=1

M/2∑
m=1

∫
I

∫
J

F2n,2m−1(u2, v1,

f(u2, v1))r2nq2m−1du2dv1 (24)

=
N/2∑
n=1

M/2∑
m=1

∫
I

∫
J

[
a
(1)
2n−1,2m−1u1 + b

(1)
2n−1,2m−1v1

+ c
(1)
2n−1,2m−1u1v1 + f

(1)
2n−1,2m−1

+ d2n−1,2m−1f(u1, v1)
]
r2n−1q2m−1du1dv1

+
N/2∑
n=1

M/2∑
m=1

∫
I

∫
J

[
a
(2)
2n,2mu2 + b

(2)
2n,2mv2

+ c
(2)
2n,2mu2v2 + f

(2)
2n,2m

+ d2n,2mf(u2, v2)
]
r2nq2mdu2dv2

123



1032 Eur. Phys. J. Spec. Top. (2023) 232:1027–1041

+
N/2∑
n=1

M/2∑
m=1

∫
I

∫
J

[
a
(3)
2n−1,2mu1 + b

(3)
2n−1,2mv2

+ c
(3)
2n−1,2mu1v2 + f

(3)
2n−1,2m

+ d2n−1,2mf(u1, v2)
]
r2n−1q2mdu1dv2

+
N/2∑
n=1

M/2∑
m=1

∫
I

∫
J

[
a
(4)
2n,2m−1u2 + b

(4)
2n,2m−1v1

+ c
(4)
2n,2m−1u2v1 + f

(4)
2n,2m−1

+ d2n,2m−1f(u2, v1)
]
r2nq2m−1du2dv1

which implies

D0 = P01 + E01

∫
I

∫
J

f(u1, v1)du1dv1

+ P02 + E02

∫
I

∫
J

f(u2, v2)du2dv2

+ P03 + E03

∫
I

∫
J

f(u1, v2)du1dv2

+ P04 + E04

∫
I

∫
J

f(u2, v1)du2dv1 (25)

where

P01 =
N/2∑
n=1

M/2∑
m=1

∫
I

∫
J

[
a
(1)
2n−1,2m−1u1

+ b
(1)
2n−1,2m−1v1 + c

(1)
2n−1,2m−1u1v1

+ f
(1)
2n−1,2m−1

]
r2n−1q2m−1du1dv1

P02 =
N/2∑
n=1

M/2∑
m=1

∫
I

∫
J

[
a
(2)
2n,2mu2 + b

(2)
2n,2mv2

+ c
(2)
2n,2mu2v2 + f

(2)
2n,2m

]
r2nq2mdu2dv2

P03 = −
N/2∑
n=1

M/2∑
m=1

∫
I

∫
J

[
a
(3)
2n−1,2mu1

+ b
(3)
2n−1,2mv2 + c

(3)
2n−1,2mu1v2

+ f
(3)
2n−1,2m

]
r2n−1q2mdu1dv2

P04 = −
N/2∑
n=1

M/2∑
m=1

∫
I

∫
J

[
a
(4)
2n,2m−1u2 + b

(4)
2n,2m−1v1

+ c
(4)
2n,2m−1u2v1

+ f
(4)
2n,2m−1

]
r2nq2m−1du2dv1

and

E01 =
N/2∑
n=1

M/2∑
m=1

d2n−1,2m−1r2n−1q2m−1

E02 =
N/2∑
n=1

M/2∑
m=1

d2n,2mr2nq2m

E03 = −
N/2∑
n=1

M/2∑
m=1

d2n−1,2mr2n−1q2m

E04 = −
N/2∑
n=1

M/2∑
m=1

d2n,2m−1r2nq2m−1 (26)

Therefore, (25) can be written as

D0 = (P01 + E01D0) + (P02

+ E02D0) + (P03 + E03D0) + (P04 + E04D0)
(27)

which implies,

D0 =
P01 + P02 + P03 + P04

1 − (E01 + E02 + E03 + E04)
(28)

4 Bivariate fractal interpolation functions
and bilinear interpolation functions
on the rectangular domain

Theorem 2 Consider the bivariate fractal inter-
polation function f constructed for the data set
{(xn, ym, zn,m) : n = 0, 1, ..., N,m = 0, 1, ...,M} on the
rectangular domain I × J. Let h be the corresponding
bilinear interpolation function defined on In × Jm, n =
1, 2, ..., N, m = 1, 2, ...,M. Define r as the bilinear
interpolation function defined on the rectangle I × J.
Then, f, h, r are related by the recursive relation

f(x, y) = h(x, y) + dn,m(f − r)o(L−1
n (x),K−1

m (y))
(29)

Proof Let h be a bilinear interpolation function for
the data set

{(xn−1, ym−1, zn−1,m−1), (xn, ym−1, zn,m−1),
(xn−1, ym, zn−1,m), (xn, ym, zn,m)}

of the form

h(x, y) = pn,mx + un,my + vn,mxy + tn,m. (30)

Denote r as another bilinear interpolation function for
the data set
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{(x0, y0, z0,0), (xN , y0, zN,0),
(x0, yM , z0,M ), (xN , yM , zN,M )}

of the form

r(x, y) = Pn,mx + Un,my + Vn,mxy + Tn,m. (31)

Since the IFS (17) satisfies the condition (9), there are
four different expressions for the coefficients involved in
h, r in the following four cases:

• case 1: n, m are odd
• case 2: n, m are even
• case 3: n is odd, m is even
• case 4: n is even, m is odd

The proof of the theorem is similar in all the four cases.
Hence the proof for the first case is only provided here.
When n, m are odd integers the coefficients in h, r are
obtained as follows:

pn,m = Nm(zn,m−1 − zn−1,m−1)
+ N(m − 1)(zn−1,m, zn,m)

un,m = Mn(zn−1,m

− zn−1,m−1) + M(n − 1)(zn,m−1 − zn,m)
vn,m = NM(zn,m − zn−1,m

− zn,m−1 + zn−1,m−1)
tn,m = mn(zn,m − zn−1,m

− zn,m−1 + zn−1,m−1) + n(zn−1,m − zn,m)
+ m(zn,m−1 − zn,m) + zn,m

Pn,m = zN,0 − z0,0

Un,m = z0,M − z0,0

Vn,m = zN,M − z0,M − zN,0 + z0,0

Tn,m = z0,0.

In order to prove (29), one should establish the follow-
ing relation:

h(Ln(x),Km(y)) − dn,mr(x, y) = qn,m(x, y) (32)

(32) is to be proved by equating the coefficients of
x, y, xy and constant term in the LHS and RHS.

Note that when n, m are odd integers, the coeffi-
cients in qn,m are as given in Eq. (11).

The coefficient of x in the LHS of (32) is:

(pn,m + vn,mwm)rn − dn,mPn,m

= zn,m−1 − zn−1,m−1 − dn,m(zN,0 − z0,0)

which is nothing but the coefficient of x in the RHS.
The coefficient of y in the LHS of (32):

(un,m + vn,msn)qm − dn,mUn,m

= zn−1,m − zn−1,m−1 − dn,m(z0,M − z0,0)

which is nothing but the coefficient of y in the RHS.
The coefficient of xy in the LHS of (32):

vn,mrnqm − dn,mVn,m = zn,m

− zn,m−1 − zn−1,m + zn−1,m−1

− dn,m(zN,M − zN,0 − z0,M + z0,0)

which is nothing but the coefficient of xy in the RHS.
The constant term in the LHS of (32):

pn,msn + un,mwm + vn,msnwm

+ tn,m − dn,mTn,m = zn−1,m−1 − dn,mz0,0

which is nothing but the constant term in the RHS.
Therefore,

h(Ln(x),Km(y)) − dn,mr(x, y) = qn,m(x, y)

Now, substituting (32) in (21), it is obtained that

f(x, y) = h(x, y) + dn,m(f − r)o(L−1
n (x),K−1

m (y))

Hence the proof. �

5 Selection of vertical scaling factor

Consider the given data set {(xn, ym, zn,m) : n =
0, 1, ..., N,m = 0, 1, ...,M} where xn = x0 + nh

′
, ym =

y0 + mk
′
. Divide each of the subintervals In, Jm into

p, q number of equal parts respectively and consider the
intermediate points x

′
i ∈ In, y

′
j ∈ jm, i = 1, 2, ..., p −

1, j = 1, 2, ..., q−1 where p ≥ 2, q ≥ 2. The expressions
for x

′
i, y

′
j can be written as

x
′
i =

(p − i)xn−1 + ixn

p

y
′
j =

(q − j)ym−1 + jym

q

If f is the fractal interpolation function to the data set,
then

z
′
i,j = f(x

′
i, y

′
j)

= dn,mf(L−1
n (x

′
i),K

−1
m (y

′
j))

+ qn,m(L−1
n (x

′
i),K

−1
m (y

′
j))

= dn,mf(L−1
n (x

′
i),K

−1
m (y

′
j)) + h(x

′
i, y

′
j)

− dn,mr(L−1
n (x

′
i),K

−1
m (y

′
j))

Approximating f by h,

z
′
i,j = h(x

′
i, y

′
j) − dn,m(h − r)o(L−1

n (x
′
i),K

−1
m (y

′
j))
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Now, considering the optimization problem,

min(E(dn,m)) =
p−1∑
i=1

q−1∑
j=1

[z
′
i,j − h(x

′
i, y

′
j)

− dn,m(h − r)o(L−1
n (x

′
i),K

−1
m (y

′
j))]

2

with −1 < dn,m < 1.

For solving the problem, let d(E(dn,m))
d(dn,m) = 0, which

implies

− 2
p−1∑
i=1

q−1∑
j=1

z
′
i,jGi,j + 2

p−1∑
i=1

q−1∑
j=1

h(x
′
i, y

′
j)Gi,j

+ 2dn,m

p−1∑
i=1

q−1∑
j=1

G2
i,j = 0

where Gi,j = (h − r)o(L−1
n (x

′
i),K

−1
m (y

′
j)).

This implies

dn,m =

∑p−1
i=1

∑q−1
j=1 [z

′
i,j − h(x

′
i, y

′
j)]Gi,j∑p−1

i=1

∑q−1
j=1 G2

i,j

(33)

Hence, the error gets minimized for this particular value
of dn,m.

When p = 2, q = 2, the formula for the vertical
scaling factor reduces to (22).

In order to find the upper bound of the vertical scal-
ing factor dn,m apply Cauchy-Schwartz inequality to
(33). Then,

| dn,m | ≤ [
∑p−1

i=1

∑q−1
j=1 | z

′
i,j − h(x

′
i, y

′
j) |2]1/2[

∑p−1
i=1

∑q−1
j=1 | Gi,j |2 ]1/2

∑p−1
i=1

∑q−1
j=1 | Gi,j |2

Put Th = [
∑p−1

i=1

∑q−1
j=1 | Gi,j |2]1/2, which implies

| dn,m | ≤ [
∑p−1

i=1

∑q−1
j=1 | z

′
i,j − h(x

′
i, y

′
j) |2 ]1/2

Th
(34)

It is to be noted that the vertical scaling factor dn,m

varies in the interval (−1, 1). However, to find the upper
bound of dn,m particularly for a given data set, (34) is
used.

6 Error analysis

Consider a continuous function g defined on the rect-
angular region I × J. Then, define ‖g‖∞ as

‖g‖∞= max{| g(x, y) |: x ∈ I, y ∈ J}.

Let wg(δ) represents the modulus of continuity of
g , then

wg(δ) = sup{| g(x, y) − g(x
′
, y

′
) |: d((x, y), (x

′
, y

′
)) ≤ δ,

(x, y), (x
′
, y

′
) ∈ I × J}

where the metric considered here is given by

d((x, y), (x
′
, y

′
)) =| x − x

′ | + | y − y
′ | .

Lemma 3 If g is a continuous function providing the
data {(xn, ym, zn,m) : n = 0, 1, ..., N,m = 0, 1, ...,M}
with h

′
= xn − xn−1, k

′
= ym − ym−1. If f is the cor-

responding bivariate fractal interpolation function with
scale vector dn,m, then

‖g − f‖∞≤ 4wg(h
′
+ k

′
) +

| dn,m |∞ ‖h − r‖∞
1− | dn,m |∞ .

Proof Since the IFS satisfies the condition (9), the
lemma has to be proved by considering the following
cases:

• case 1: n, m are odd
• case 2: n, m are even
• case 3: n is odd, m is even
• case 4: n is even, m is odd

Since the proof is similar for all the four cases, only the
first case is proved here.

Let n, m be odd integers.

Consider the bilinear interpolation function h defined
as in (30) through the points

{(xn−1, ym−1, zn−1,m−1), (xn, ym−1, zn,m−1),
(xn−1, ym, zn−1,m), (xn, ym, zn,m)}.

By rearranging, the function h can also be written as

h(x, y) =
(x − xn−1)(y − ym−1)zn,m

(xn − xn−1)(ym − ym−1)

+
(x − xn)(y − ym−1)zn−1,m

(xn−1 − xn)(ym − ym−1)

+
(x − xn−1)(y − ym)zn,m−1

(xn − xn−1)(ym−1 − ym)

+
(x − xn)(y − ym)zn−1,m−1

(xn−1 − xn)(ym−1 − ym)

Now, consider ‖g − h‖
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Let wg(h
′

+ k
′
) = {| g(x, y) − g(x

′
, y

′
) |:

d((x, y), (x
′
, y

′
)) ≤ h

′
+ k

′}
be the modulus of continuity of g .
Then, | g(x, y) − h(x, y) |

=

∣∣∣∣∣
(g(x, y) − zn,m)(x − xn−1)(y − ym−1)

(xn − xn−1)(ym − ym−1)

− (g(x, y) − zn−1,m)(x − xn)(y − ym−1)

(xn − xn−1)(ym − ym−1)

− (g(x, y) − zn,m−1)(x − xn−1)(y − ym)

(xn − xn−1)(ym − ym−1)

+
(g(x, y) − zn−1,m−1)(x − xn)(y − ym)

(xn − xn−1)(ym − ym−1)

∣∣∣∣∣

≤
∣∣∣∣∣
(g(x, y) − zn,m)(x − xn−1)(y − ym−1)

(xn − xn−1)(ym − ym−1)

∣∣∣∣∣

+

∣∣∣∣∣
(g(x, y) − zn−1,m)(x − xn)(y − ym−1)

(xn − xn−1)(ym − ym−1)

∣∣∣∣∣

+

∣∣∣∣∣
(g(x, y) − zn,m−1)(x − xn−1)(y − ym)

(xn − xn−1)(ym − ym−1)

∣∣∣∣∣

+

∣∣∣∣∣
(g(x, y) − zn−1,m−1)(x − xn)(y − ym)

(xn − xn−1)(ym − ym−1)

∣∣∣∣∣

≤

∣∣∣∣∣(g(x, y) − zn,m)

∣∣∣∣∣

∣∣∣∣∣(x − xn−1)

∣∣∣∣∣

∣∣∣∣∣(y − ym−1)

∣∣∣∣∣
∣∣∣∣∣(xn − xn−1)

∣∣∣∣∣

∣∣∣∣∣(ym − ym−1)

∣∣∣∣∣

+

∣∣∣∣∣(g(x, y) − zn−1,m)

∣∣∣∣∣

∣∣∣∣∣(x − xn)

∣∣∣∣∣

∣∣∣∣∣(y − ym−1)

∣∣∣∣∣
∣∣∣∣∣(xn − xn−1)

∣∣∣∣∣

∣∣∣∣∣(ym − ym−1)

∣∣∣∣∣

+

∣∣∣∣∣(g(x, y) − zn,m−1)

∣∣∣∣∣

∣∣∣∣∣(x − xn−1)

∣∣∣∣∣

∣∣∣∣∣(y − ym)

∣∣∣∣∣
∣∣∣∣∣(xn − xn−1)

∣∣∣∣∣

∣∣∣∣∣(ym − ym−1)

∣∣∣∣∣

+

∣∣∣∣∣(g(x, y) − zn−1,m−1)

∣∣∣∣∣

∣∣∣∣∣(x − xn)

∣∣∣∣∣

∣∣∣∣∣(y − ym)

∣∣∣∣∣
∣∣∣∣∣(xn − xn−1)

∣∣∣∣∣

∣∣∣∣∣(ym − ym−1)

∣∣∣∣∣

≤ sup{x∈I,y∈J}

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣∣∣(g(x, y) − zn,m)

∣∣∣∣
∣∣∣∣(x − xn−1)

∣∣∣∣∣

∣∣∣∣∣(y − ym−1)

∣∣∣∣∣
∣∣∣∣∣(xn − xn−1)

∣∣∣∣∣

∣∣∣∣∣(ym − ym−1)

∣∣∣∣∣

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ sup{x∈I,y∈J}

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣∣∣∣(g(x, y) − zn−1,m)

∣∣∣∣∣

∣∣∣∣∣(x − xn)

∣∣∣∣∣

∣∣∣∣∣(y − ym−1)

∣∣∣∣∣
∣∣∣∣∣(xn − xn−1)

∣∣∣∣∣

∣∣∣∣∣(ym − ym−1)

∣∣∣∣∣

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ sup{x∈I,y∈J}

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣∣∣∣(g(x, y) − zn,m−1)

∣∣∣∣∣

∣∣∣∣∣(x − xn−1)

∣∣∣∣∣

∣∣∣∣∣(y − ym)

∣∣∣∣∣
∣∣∣∣∣(xn − xn−1)

∣∣∣∣∣

∣∣∣∣∣(ym − ym−1)

∣∣∣∣∣

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ sup{x∈I,y∈J}

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣∣∣∣(g(x, y) − zn−1,m−1)

∣∣∣∣∣

∣∣∣∣∣(x − xn)

∣∣∣∣∣

∣∣∣∣∣(y − ym)

∣∣∣∣∣
∣∣∣∣∣(xn − xn−1)

∣∣∣∣∣

∣∣∣∣∣(ym − ym−1)

∣∣∣∣∣

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Since x, xn, xn−1, are in In and y, ym, ym−1 are in Jm

and | In |= h
′
,

| Jm |= k
′
, implies | x − xn−1 |≤ h

′
, | x − xn |≤ h

′
, |

y − ym−1 |≤ k
′
,

and | y − ym |≤ k
′
.

Therefore, the above inequality becomes

= sup{x∈I,y∈J}{| g(x, y) − g(xn, ym) |}
+ sup{x∈I,y∈J}{| g(x, y) − g(xn−1, ym) |}
+ sup{x∈I,y∈J}{| g(x, y) − g(xn, ym−1) |}
+ sup{x∈I,y∈J}{| g(x, y) − g(xn−1, ym−1) |}
≤ 4wg(h

′
+ k

′
)

Thus, ‖g − h‖≤ 4wg(h
′
+ k

′
).

Now, in order to find ‖h − f‖, consider the relation

f(x, y) = h(x, y) + dn,m(f − r)o(L−1
n (x),K−1

m (y))

Thus,

‖f − h‖∞ ≤| dn,m |∞ ‖f − r‖∞
≤| dn,m |∞ [‖f − h‖∞+‖h − r‖∞]

i.e,

‖f − h‖∞≤ | dn,m |∞ ‖h − r‖∞
1− | dn,m |∞

Therefore, ‖g−f‖≤ 4wg(h
′
+k

′
)+ |dn,m|∞‖h−r‖∞

1−|dn,m|∞ . Hence
the proof. �

Theorem 4 If g is a continuous interpolation function
to the data set {(xn, ym, zn,m) : n = 0, 1, ..., N,m =
0, 1, ...,M} and f is the corresponding bivariate frac-
tal interpolation function, then the double integral value
calculated by the fractal numerical integral method con-
verges to the exact integral value as h

′
, k

′ → 0, where
h

′
= xn − xn−1, k

′
= ym − ym−1 and

∣∣∣∣∣
∫

I

∫
J

g −
∫

I

∫
J

f

∣∣∣∣∣ ≤ |I||J |wg(h
′
+ k

′
)

[
4 +

TH‖h − r‖∞
1 − wg(h

′ + k′)Th

]

Proof Let
∣∣∣Eh′+k′

∣∣∣ =
∣∣∣ ∫

I

∫
J

g − ∫
I

∫
J

f
∣∣∣ ≤ |I||J |‖g −

f‖∞
By lemma 3

‖g − f‖∞ ≤ 4wg(h
′
+ k

′
) +

| dn,m |∞ ‖h − r‖∞
1− | dn,m |∞

If g is a function interpolating the data, then,

| z
′
i,j − h(x

′
i, y

′
j) | =| g(x

′
i, y

′
j) − h(x

′
i, y

′
j) |
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≤ supi,j{| g(x
′
i, y

′
j) − h(x

′
i, y

′
j) |}

= ‖g − h‖∞

≤ 4wg(h
′
+ k

′
)

where x
′
i, y

′
j and z

′
i,j are as defined in Sect. 5. Substi-

tuting this in the expression for upper bound in (34),

| dn,m | ≤
[ ∑p−1

i=1

∑q−1
j=1[4wg(h

′
+ k

′
)]2

]1/2

Th

=
[[4wg(h

′
+ k

′
)]2]1/2(p − 1)1/2(q − 1)1/2

Th

≤ wg(h
′
+ k

′
)TH ,

where TH = 4(p−1)1/2(q−1)1/2

Th
.

Therefore,

‖g − f‖∞ ≤ 4wg(h
′
+ k

′
) +

wg(h
′
+ k

′
)TH‖h − r‖∞

1 − wg(h
′ + k′)TH

= wg(h
′
+ k

′
)
[
4 +

TH‖h − r‖∞
1 − wg(h

′ + k′)TH

]

As h
′
, k

′ → 0, wg(h
′
+ k

′
) → 0, which makes ‖g − f‖≤

wg(h
′
+ k

′
) → 0. Hence, f converges to g uniformly.

Also,

| Eh
′
+k

′ | ≤| I || J | wg(h
′
+ k

′
)
[
4 +

TH‖h − r‖∞
1 − wg(h

′ + k′)TH

]

→ 0.

Hence, | Eh′+k′ |→ 0 as h
′
, k

′ → 0. Hence the proof. �

7 Examples

Example 1 Consider the following function

f(x, y) = 0.26(x2 + y2) − 0.48xy

defined over the rectangular region [0, 1] × [0, 1].

For generating the data set, the length of the rect-
angle, i .e, [0, 1] is partitioned into N equal parts, the
width of the rectangle [0, 1] is partitioned into M equal
parts. Then, the value of the function at the corner
points of the subrectangles are calculated. For exam-
ple, when N = 2, M = 2, the data set is:

{
(0, 0, 0), (0, 0.5, 0.065), (0, 1, 0.26),

(0.5, 0, 0.065), (0.5, 0.5, 0.01), (0.5, 1, 0.085),

(1, 0, 0.26), (1, 0.5, 0.085), (1, 1, 0.04)
}

Then, the IFS for this data set consists of 4 maps:

Wn,m(x, y, z) = (Ln(x),Km(y), Fn,m(x, y, z))

=
{

(L1(x),K1(y), F1,1(x, y, z)),

(L1(x),K2(y), F1,2(x, y, z)),
(L2(x),K1(y), F2,1(x, y, z)),

(L2(x),K2(y), F2,2(x, y, z))
}

where

L1(x) = 0.5xL2(x) = −0.5x + 1

K1(y) = 0.5yK2(y) = −0.5y + 1

F1,1(x, y, z) = 0.25z

F1,2(x, y, z) = −0.24x − 0.26y + 0.24xy + 0.26 + 0.25z

F2,1(x, y, z) = −0.26x − 0.24y + 0.24xy + 0.26 + 0.25z

F2,2(x, y, z) = −0.02x − 0.02y

+ 0.2084(1.0e − 15)xy + 0.04 + 0.25z

The coefficients of these functions are obtained from the
endpoint conditions on Ln,Km and Fn,m. The numer-
ical double integral results obtained using the formula
(28) is provided in Table 1 along with the actual dou-
ble integral value. The attractor of this IFS is shown
in Fig. 1 along with the original graph of the function
mentioned in Example 1.

Example 2 Consider the following function

f(x, y) = (x + 2y − 7)2 + (2x + y − 5)2

defined over the rectangular region [0, 1] × [0, 1].

Similar to the above example, the data set is gener-
ated by partitioning the rectangle [0, 1]× [0, 1] into NM
number of subrectangles and taking the corner points
of each of the subrectangles along with their function
values.

Then, the data set is:

{
(0, 0, 74), (0, 0.5, 56.25), (0, 1, 41),

(0.5, 0, 58.25), (0.5, 0.5, 42.5), (0.5, 1, 29.25),

(1, 0, 45), (1, 0.5, 31.25), (1, 1, 20)
}

The IFS, consisting of the 4 maps are as follows:

Wn,m(x, y, z) = (Ln(x),Km(y), Fn,m(x, y, z))

=
{

(L1(x),K1(y), F1,1(x, y, z)),

(L1(x),K2(y), F1,2(x, y, z)),
(L2(x),K1(y), F2,1(x, y, z)),

(L2(x),K2(y), F2,2(x, y, z))
}
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Table 1 Table comparing
the numerical double
integral results obtained
using the proposed method
with the actual double
integral value for Example 1

N M D0 W D0 − W

4 4 0.0533 0.0533 −2.8352e − 14

8 8 0.0533 0.0533 −3.0552e − 14

12 12 0.0533 0.0533 −2.9171e − 14

16 16 0.0533 0.0533 −2.8935e − 14

N , M are the number of subdivisions along the length and width of the rectangle [0, 1]×[0, 1]

respectively, D0 = fractal numerical double integral value, W = actual double integral value,
D0 − W = Error
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Fig. 1 Attractor of the IFS for Example 1 (left) and its original graph (right)

where

L1(x) = 0.5xL2(x) = −0.5x + 1

K1(y) = 0.5yK2(y) = −0.5y + 1

F1,1(x, y, z) = −8.5x − 9.5y + 55.5 + 0.25z

F1,2(x, y, z) = −4.5x + 23.5y − 4xy + 22.5 + 0.25z

F2,1(x, y, z) = 20.5x − 5.5y − 4xy + 26.5 + 0.25z

F2,2(x, y, z) = 16.5x + 19.5y + 10.75 + 0.25z

The comparison of the numerical double integral value
using fractal method is compared with actual value of
the double integration in Table 2. Figure 2 shows the
attractor of this IFS along with the original graph of
the function mentioned in Example 2.

Example 3 Consider the following function

f(x, y) = (x2 + y − 11)2 + (x + y2 − 7)2

defined over the rectangular region [0, 1] × [0, 1].

Using the procedure explained in Example 1 and 2,
the data set generated for this function is given by:

{
(0, 0, 170), (0, 0.5, 155.8125), (0, 1, 136),

(0.5, 0, 157.8125), (0.5, 0.5, 144.1250), (0.5, 1, 125.3125),

(1, 0, 136), (1, 0.5, 123.3125), (1, 1, 106)
}

,

considering N = 2 and M = 2.

The IFS is then:

Wn,m(x, y, z) = (Ln(x),Km(y), Fn,m(x, y, z))

=
{

(L1(x),K1(y), F1,1(x, y, z)),

(L1(x),K2(y), F1,2(x, y, z)),
(L2(x),K1(y), F2,1(x, y, z)),

(L2(x),K2(y), F2,2(x, y, z))
}

L1(x) = 0.5xL2(x) = −0.5x + 1
K1(y) = 0.5yK2(y) = −0.5y + 1
F1,1(x, y, z) = −2.6064x − 4.6064y − 0.6272xy

+ 122.0943 + 0.2818z

F1,2(x, y, z) = −2.2993x + 28.2007y − 1.9868xy

+ 94.0592 + 0.2467z

F2,1(x, y, z) = 30.2007x − 4.2993y − 1.9868xy
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Table 2 Table comparing
the numerical double
integral results obtained
using the proposed method
with the actual double
integral value for Example 2

N M D0 W D0 − W

4 4 43.3333 43.3333 −5.4712e − 13

8 8 43.3333 43.3333 −5.4712e − 13

12 12 43.3333 43.3333 −3.9009e − 12

16 16 43.3333 43.3333 −2.1956e − 12

N , M are the number of subdivisions along the length and width of the rectangle [0, 1]×[0, 1]

respectively, D0 = fractal numerical double integral value, W = actual double integral value,
D0 − W = Error
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Fig. 2 Attractor of the IFS for Example 2 (left) and its original graph (right)

+ 94.0592 + 0.2467z

F2,2(x, y, z) = 26.5077x + 24.5077y + 0.6535xy

+ 70.0241 + 0.2116z

The numerical double integral value along with the
actual integral value is displayed in Table 3. The attrac-
tor of this IFS is displayed in Fig. 3 along with the
original graph of the function mentioned in Example 3.

Example 4 Consider the following function

f(x, y) = sin(x + y) + (x − y)2 − 1.5x + 2.5y + 1

defined over the rectangular region [0, 1] × [0, 1].

With the above mentioned procedures, the data set
for this function is:

{
(0, 0, 1), (0, 0.5, 2.9794), (0, 1, 5.3415),

(0.5, 0, 0.9794), (0.5, 0.5, 2.3415), (0.5, 1, 3.9975),

(1, 0, 1.3415), (1, 0.5, 1.9975), (1, 1, 2.9093)
}

,

when N = 2,M = 2. The IFS, consisting of the 4 maps
then will be:

Wn,m(x, y, z) = (Ln(x),Km(y), Fn,m(x, y, z))

=
{

(L1(x),K1(y), F1,1(x, y, z)),

(L1(x),K2(y), F1,2(x, y, z)),
(L2(x),K1(y), F2,1(x, y, z)),

(L2(x),K2(y), F2,2(x, y, z))
}

where

L1(x) = 0.5xL2(x) = −0.5x + 1
K1(y) = 0.5yK2(y) = −0.5y + 1
F1,1(x, y, z) = −0.1271x + 0.6249y

+ 0.248xy + 0.688 + 0.3120z

F1,2(x, y, z) = −1.4258x − 3.4028y

+ 1.3709xy + 5.1018 + 0.2397z

F2,1(x, y, z) = −0.4439x − 0.3847y

+ 1.3709xy + 1.1018 + 0.2397z

F2,2(x, y, z) = 1.0170x − 1.8173y

− 0.1657xy + 2.7007 + 0.2086z
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Table 3 Table comparing
the numerical double
integral results obtained
using the proposed method
with the actual double
integral value for example 3

N M D0 W D0 − W

4 4 141.7323 141.7333 −0.0010

8 8 141.7331 141.7333 −2.5578e − 04

12 12 141.7332 141.7333 −1.1370e − 04

16 16 141.7333 141.7333 −6.3958e − 05

N , M are the number of subdivisions along the length and width of the rectangle [0, 1]×[0, 1]

respectively, D0 = fractal numerical double integral value, W = actual double integral value,
D0 − W = Error
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Fig. 3 Attractor of the IFS for Example 3 (left) and its original graph (right)

The corresponding result of the numerical double inte-
gral value is provided in Table 4, with the actual inte-
gral value. Figure 4 represents the attractor of this IFS
along with the original graph of the function mentioned
in Example 4.

On observing the Tables 1, 2, 3 to 4, it can be con-
cluded that:

• The fractal numerical integral values obtained are
much closer to their actual integral values even
with fewer number of subrectangles. The error gets
reduced even further, as the number of subrectangles
in the partition is increased.

• The close convergence of the fractal numerical inte-
gration results also establishes the method of select-
ing the vertical scaling factor.

Based on the observed results, the research work is sig-
nificant in the following aspects:

• Fractal integration techniques are significant in
assessing the random characteristics of the signals.
For example, in tumor analysis, it is trivial that
the degree of vessel branching or the irregularity
of a tumor boundary remains consistent over a
broad range of magnifications. Since these structures

Table 4 Table comparing
the numerical double
integral results obtained
using the proposed method
with the actual double
integral value for Example 4

N M D0 W D0 − W

4 4 2.4401 2.4403 −2.1027e − 04

8 8 2.4403 2.4403 −5.2471e − 05

12 12 2.4403 2.4403 −2.3312e − 05

16 16 2.4403 2.4403 −1.3112e − 05

N , M are the number of subdivisions along the length and width of the rectangle [0, 1]×[0, 1]

respectively, D0 = fractal numerical double integral value, W = actual double integral value,
D0 − W = Error
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Fig. 4 Attractor of the IFS for Example 4 (left) and its original graph (right)

exhibit recurring patterns at various magnifications,
the euclidean measurement of specific parameters
such as length and area may not give the desired
results. However, the evaluation of these parame-
ters can be done quickly and precisely using fractal
numerical integration.

• The obtained formula can be used directly to mea-
sure the volume of the region bounded by the fractal
interpolation surfaces generated from the given set of
values.

Nevertheless, the method of integration proposed here
works for the data sets over two-dimensional interpo-
lating domains only. But, the method can be extended
to the higher dimensional data sets using multivari-
ate fractal interpolation functions. Further, the method
of numerical double integration presented in this work
can be used in the volumetric evaluation of physical
surfaces. Volume computation is a crucial engineering
tool in determining the excavations and the amount of
imported soil needed for the construction of tunnels,
highways and similar structures. In [29], the authors
have compared different interpolation methods in mod-
elling the physical surfaces and in the calculation of vol-
ume. The results obtained through these methods can
still be enhanced with the proposed method of numer-
ical double integration.

8 Conclusion

Considering the recursive relation satisfied by the
bivariate fractal interpolation functions, a novel method
of numerical double integration is provided in this
paper. The endpoint conditions of the iterated function
system are used to derive the coefficients involved in

the proposed integration formula. The obtained formula
can be used directly to measure the volume of the region
bounded by the fractal interpolation surfaces generated
from the given set of values. Throughout this study,
it has been observed that the bivariate fractal inter-
polation functions are best approximated with bilin-
ear interpolation functions. It is shown that the recur-
sive relation among these functions can be employed
in establishing the closeness of the fractal numerical
integration method to the conventional double integra-
tion method theoretically. Upon verifying the derived
formula of numerical integration through a couple of
examples, it is observed that the results obtained using
the new formula converge to their actual integral val-
ues within a lesser number of iterations. The conver-
gence of the integral results establishes the formulation
of the vertical scaling factor provided in this paper.
Future scope of this proposed work of numerical double
integration involves the volumetric evaluation of irregu-
lar physical structures. Further, this research work can
be extended to the numerical integration of the data
sets over higher dimensional interpolating domains and
evaluation of certain higher dimensional parameters.

Data availability statement No data associated in the
manuscript.
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