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Abstract Convection affect primary crystalline structure, particularly, the dendrite crystal velocity and
dendrite tip radius. The present work aims on the influence of the convective flow on the primary dendrite
spacing between neighbouring crystals within the dendrite ensemble. Solidification of a binary alloy is
considered within the model of stagnant boundary layer, under imposed thermal gradient which influence
on the crystal microstructure and chemical microsegregation. Chemical composition in the solidifying
liquid and crystalline solid is derived from the solution of the solute diffusion transport equation taking
into account the convective flow. The model results are consistent with the Scheil-Brody-Flemings model,
experimental data and computational results.

1 Introduction

The growth kinetics of crystals and their morphology
depend on the properties of the crystal-liquid interface,
the intensity of heat and solute transport around the
interface, and the influence of external fields [1]. The
theoretical description of these effects makes it possi-
ble to interpret the experimental data and predict the
modes of crystal growth [2, 3]. Special attention is paid
to the influence of the Earth’s gravitational field on
the occurrence of convective flows in the sample under
study and the influence of hydrodynamic field on the
kinetics of crystal growth [4–7].

Even if a special attention is usually paid to the
effect of convection on the growth of a single den-
drite [8–11], many theoretical aspects of the effect of
convection on the structure formation of crystals and
defect formation are not available in the literature.
In particular, the dendrite arm spacing is available
in the literature [12], however, an influence of con-
vection on the distance between dendrites and, espe-
cially, on chemical microheterogeneity has not been
qualitatively and quantitatively described theoretically.
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The chemical microheterogeneity exhibits as chemical
(inter)dendritic microsegregation which will be sim-
ply called in the present work as “microsegregation”.
Therefore, the main goal of this work is to present one of
theoretical descriptions on the formation of an ensem-
ble of crystalline microstructure which is influenced the
convective flows.

2 Types of convection in solidification

The intensity of nucleation and growth, as well as
the shape of crystal microstructures, directly depends
on the conditions of heat and mass transfer at the
solid–liquid interface. If the usual conductive transfer
conditions are added also by the convective transfer due
to the movement of the liquid phase, this can radically
change the microstructure of the metal and alloy.

The effect of convective flow on the growth of crystals
leads to the change of heat and mass transfer from the
solid–liquid interface [13]. Such a change in the inter-
face kinetics affects the growth velocity, the shape of
the crystals, and may cause the change of the whole
rate of sample solidification. These changes depend of
the liquid flow intensity which is influenced by (i) den-
sity differences between phases, (ii) density gradients as
a consequence of temperature gradients and/or varia-
tions in impurity concentration (buoyancy), (iii) surface
tension gradients or (iv) externally introduced effects
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Fig. 1 Various types of convection with various orientations of growing dendrites: a the flow inclined to the growth direction
of the main stems of dendrites [14]; b the flow induced by the alternating electromagnetic field leading to the flow’s cells in
two spatial dimensions and to two torus in the three dimensional case [15]; c the liquid curl which covers the whole dendrite
due to the intensive turbulent-nonstationary flow (here u∗ means the friction velocity, in other words, the velocity with
which the intense flow may press the dendrite) [10, 26]; d the flow with a number of small liquid curls providing however the
hydrodynamic layer with laminar flow or even stagnant thermo-solute transport layer around the steady growing dendrite
tip

such as electromagnetic stirring and sample deforma-
tion. Noticeable fluid flow may also be caused by mov-
ing solid phases due to sedimentation of grains or front
shifting during continuous casting [16, 17]. As a result,
various convection types in solidifying metals, metal-
loids, semiconductors and alloys are systematized as:

- forced convection induced by external fields such as
gravitational, electro-magnetic or vibrational fields,

- Marangoni convection appearing due to gradients
of surface energy,

- convection induced by the Soret effect existing by
different diffusion ability of species in a chemically
binary liquid,

- natural convection due to difference in density of
the warm and cold parts of a sample.

These convective flows provide turbulent or laminar
motion of liquid within the various ranges of crystal
growth modes (chemically-solutal, thermo-solutal, ther-
mal, or kinetically controlled regimes [18, 19]). A few
examples of convective flows with the dendritic pattern
are summarized in Fig. 1.

Number of various types of convection and crystal
formation modes makes the analysis of their effect on

the solid phase formation quite complicated in a gen-
eral case. To demonstrate the effect of convection on
microstructure formation, only one type of convection
and only one mode of crystal growth as a limiting case
can, for instance, be chosen. It suffices to evaluate the
convection effect on two main parameters of the growth
of a dendritic crystal - tip velocity V and its radius R.

3 The stagnant boundary layer

Consider natural convection in combination with
thermo-solutal transport of heat and species in a binary
alloy during dendrite crystal growth. An inclined flow,
Fig. 1a, leads to a transitional regime of the dendrite
rotation to the direction of the flow. Indeed, when the
liquid flows at an angle to the dendrite axis, the den-
drite growth direction tends to alter during growth
to become opposite to the flow direction [20]. There-
fore, we will consider the case of steady-state growth
under liquid flow assumed to be axi-symmetric along
the axis of the dendrite in a direction opposite to the
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Fig. 2 Scheme of the dendrite growing with the steady
radius R, constant velocity V and the stagnant boundary
layer δU, Eq. (1), around its surface

dendrite growth direction. Such consideration is likely
to be applicable to a large number of practical cases.

Figure 2 demonstrates a well-developed dendrite par-
ticle growing along the z-axis within the Cartesian coor-
dinate system. The incoming flow is parallel to the den-
drite growth direction. The dendrite grows with the
constant velocity V and steady tip radius R under
buoyancy driven convection significantly influencing the
tip velocities and the overall growth of a dendrite [21].
In metal-based alloys, such convection is driven by both
thermal and solutal gradients in the melt and exists on
earth and under low undercooling.

To estimate effect of convection, the approach based
on the stagnant thermal and solutal boundary layer
around the growing dendritic tip is used [24]. The effect
of fluid flow is introduced by restricting the thermal and
solute diffusion fields to a thin, stagnant boundary layer
of the thickness δU. The boundary layer (see Fig. 1(d))
is produced by any additional fluid velocity U with the
velocity-dependent thickness

δU/R = 2Re1/2, (1)

where Re is the Reynolds number given in Table 1
summarising all other characteristic numbers necessary
for comparative evaluation of the liquid flow and den-
drite growth. Expression (1) appears in the dimen-
sional analysis of the motion equations for fluid flow
(Navier–Stokes equations) ignoring high order terms in
the boundary layer thickness δU [24]. Using the defi-
nition of Re from Table 1, the boundary layer thick-
ness is obtained by Eq. (1) as δU ∝ (νR/U)1/2. This
expression explicitly shows that the stagnant boundary

layer around the dendrite tip increases with the increase
of the kinematic liquid viscosity ν as well as with the
larger dendrite tip radius R. By contrast, the bound-
ary layer becomes thinner with the increase of the flow
velocity U by the square root law.

The dendrite growth in alloy exists with a ther-
mal boundary layer δT and a solute boundary layer
δC, where the main intensive transport of heat and
species occurs. When a liquid flows across the region
of paraboloidal dendrite tip, these layers are related to
a velocity (or momentum) boundary layer δU by the
empirical laws [25]

δT = δUPr−1/3, δC = δUSc−1/3 (2)

The Schmidt number, Sc, has larger values and the
Prandtl number, Pr, is smaller than unity having typi-
cal values of the material parameters for liquid metals
and alloys (see Table 1). Therefore, the stagnant bound-
ary layer has a thickness in between the thickness for
solute and thermal layers: δC < δU < δT. In the partic-
ular case of laminar thermosolutal natural convection,
the boundary layers δT and δC ahead of the growing
dendrite are given by [8, 27]

(3)

δT
R

= 2.2Ra−1/4
T

(
1 +

N√
Le

)−1/4

,
δC
R

= 2.2Ra−1/4
C

(
1 +

√
Le
N

)−1/4

The main outcome following from the definitions of
Table 1 and Eq. (3) reads as the increase of the Rayleigh
numbers RaT,C mainly with the increase of the under-
cooling T ∗

T −T0 for RaT or saturation C∗
T −C0 for RaC

makes the thickness of the thermal and solute layers
thinner.

4 Modified Ivantsov solutions and selection
criterion

When a dendrite grows with velocity V into a static
(stagnant) melt, the bulk liquid has a relative veloc-
ity of V in the opposite direction with respect to the
dendrite surface. Analytical solutions for the parabolic
(paraboloidal) dendrite with the tip radius R are
described by [22, 23]

ΩT;C = PT;C exp (PT;C)E1(T;C) (4)

for the supersaturation and undercooling Ω in three
spatial dimensions and with the dimensionless thermal
undercooling and supersaturation

ΩT =
T ∗
T − T∞

θT
, ΩC =

C∗
T − C∞

C∗
T(1 − k)

, (5)
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Table 1 Characteristic numbers(a) of the dimensional analysis of the equations for fluid flow (Navier–Stokes) and conduc-
tive transport

Number Expression Values

Reynolds number, Re UR/ν 2·10−8 − 10−6

Prandtl number, Pr ν/a 0.13

Schmidt number, Sc ν/D 6·102

Lewis number, Le a/D 7.5·103

Thermal Rayleigh number, RaT βTg(T
∗
T − T∞)R3

aν

2·10−15(T ∗
T − T∞), 1/K

Solutal Rayleigh number, RaC βCg(C
∗
T − C∞)R3

Dν

2·10−9(C∗
T − C∞), 1/at.%

Buoyancy parameter, N βC(C∗
T − C∞)

βT(T ∗
T − T∞)

=
Pr

Sc

RaC

RaT

C∗
T − C∞

T ∗
T − T∞

· 103

Thermal Péclet number, PT VR/(2a) 3.33·10−3V s/m

Solutal Péclet number, PC VR/(2D) 16.67V s/m
(a)The characteristic numbers are estimated by the following values of material parameters: the liquid diffusion coefficient

D = 3 · 10−9 m2/s; the thermal diffusivity a = 1.5 · 10−5 m2/s; the kinematic viscosity ν = 2 · 10−6 m2/s the dendrite tip

radius R = 10−7 m; solutal expansion coefficient βC = 2 · 10−2 1/at.%; thermal expansion coefficient βT = 2 · 10−5 1/K;

gravity acceleration g = 10 m/s2; velocity of the natural thermosolutal convection U = 10−6 − 10−4 m/s

where T ∗
T and C∗

T are the temperature and the concen-
tration, respectively, at the dendrite tip, T∞ and C∞
are the temperature and concentration, respectively, far
from the dendrite in the liquid.

The dendrite growing in the incoming axisymmetric
flow with the formed stagnant boundary layer around
its tip still have parabolic (paraboloidal) shape. The
thermal and solute fields, however, are deformed due to
flow. The thermal and solutal fields (4) in the presence
of the stagnant boundary layer are expressed, therefore,
by the modified Ivantsov solution [24]

ΩT = PT exp (PT){E1(PT) − E1[PT(1 + 2(δT)/R)]},
(6)

ΩC = PC exp (PC){E1(PC) − E1[PC(1 + 2(δC)/R)]}.
(7)

As predicted by Eqs. (6) and (7), solutions for ΩT

and ΩC are proportional to the difference, E1(PT,C) −
E1[PT,C(1 + 2δT,C/R)], between exponential integral
functions of the first kind E1. This difference appears
due to introducing the stagnant boundary layer and
indicates the decreasing of the dendrite tip temperature
T ∗
T and concentration C∗

T in the presence of liquid flow
around the tip. With the increase of the boundary layer
up to infinity, δU/R → ∞, the thermal and solutal lay-
ers also abnormally increase, δT → ∞ and δC → ∞ by
the empirical expressions (2). Second exponential inte-
gral functions in the right-hand sides of Eqs. (6) and (7)
transform to zero, [PT,C(1 + 2δT,C/R)] → E1[∞] → 0,
and one gets the Ivantsov solution (4) for the conduc-
tive transport without convective motion of the liquid.

In the limit of high dendrite velocity V , the drastic
decreasing the solute boundary layer occurs: δC → 0.

In this limit, the difference between exponential inte-
gral functions in Eqs. (6) and (7) approaches zero:
ΩC ∝ E1(PC) − E1[PC(1 + 2δC/R)] → 0. Then the
supersaturation (5) shows clear tendency to the chem-
ically partitionless dendrite growth: the dendrite tip
concentration tends to the initial (nominal) composi-
tion C∗

T → C∞ as δC → 0.
Thermal undercooling and supersaturation (6)

and (5) modify the undercooling balance ΔT = ΔTT +
ΔTC + ΔTR as

ΔT = θTΩT +
kΔT0ΩC

1 − (1 − k)ΩC
+ 2Γ/R. (8)

This balance predicts the dendrite tip velocity V and
tip radius R for a given bulk undercooling ΔT . To
obtain V and R separately, one should also use the sec-
ond equation which is given by the selection criterion for
the stable dendrite growth. The criterion is re-written
as

σ∗ = Γ/R[θTPT + 2PC(kΔT0)/(1 − (1 − k)ΩC)]−1

(9)

with σ∗ the selection parameter independent of the
undercooling, alloy composition, and flow velocity
in the zero approximation of the dendrite growth
model [13].

Two equations (8) and (9) describe two main param-
eters of the primary dendrite crystallization, namely,
the dendrite tip velocity V and tip radius R for a
given undercooling ΔT . The undercooling balance (8)
is influenced by convective flow through the functions
(6) and (7). The selection criterion (9) was derived in
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Fig. 3 Comparison of
measured and predicted
dendrite tip velocities V
(a) and tip radii R (b) as a
function of undercooling
ΔT in the
succinonitrile−0.1045 wt%
acetone melt. The
predictions were made using
Eqs. (8) and (9) with and
without convective flow [9]

the limit of stagnant liquid phase. To be consistent, Eq.
(9) should also include effect of the flow on the selection
of the stable dendrite growth mode [13, 19]. Therefore,
the existing model of boundary layer can be extended
using the convective terms in the selection criterion of
the dendrite growth.

5 Comparison with experiment

Simultaneous solution of the equations for balance (8)
and criterion (9) provide the obtaining dendrite velocity
V (ΔT ) and its tip radius R(ΔT ) for a given bulk under-
cooling ΔT , the chosen value of the selection parameter
σ∗ and with calculated numbers from Table 1. Figure 3
presents the solution of Eqs. (8) and (9) for the den-
drite growth in the succinonitrile − 0.145 mole% ace-
tone melt under thermosolutal convection [9]. The den-
drite tip velocity (Fig. 3a) and its radius (Fig. 3b)
are obtained with the value of selection parameter
σ∗ =0.02.

The solution of Eqs. (8) and (9) is given for the finite
values of the thermal δT and solutal δC layers in the
presence of convective flow (solid lines). For the infi-
nite values of thickness δT → ∞ and δC → ∞ the
solution is shown by the dashed lines, i.e. when the
convection is absent and the dendrite is growing in the
stagnant melt. As expected, the tip velocity increases
(Fig. 3a) and the tip radius decreases (see Fig. 3b) as
the undercooling increases. Moreover, the “convective
branch” (solid curve) shows the increasing the veloc-
ity and decreasing tip radius in comparison with their
“stagnant, non-convective branch” (dashed curve). In
this behavior, the role of the flow is completely pro-
nounced: the flow increases the crystal growth velocity
and makes the dendrite trunks and their axes thinner.

Shown in Fig. 3, the solutions for the dendrite veloc-
ity V and dendrite tip radius R demonstrate excellent
agreement with experimental data on dendrite growth
from succinonitrile-acetone melt. In the range of small-
est undercooling ΔT < 0.5 K, the dendrite growth
proceeds along the “convective branch”: V and R are
described well by the solid lines of their behavior. As

Fig. 3 also shows, V and R transfer from the “con-
vective branch” (solid curves) to the “stagnant non-
convective branch” (dashed curves) of their behavior
in the range of the higher undercooling ΔT > 0.5 K.
Such change of the behavior occurs because the den-
drite growth velocity essentially overcomes the fluid
flow velocity at larger undercooling and the dendrite
becomes insensitive to the influence of convective flow.

The obtained influence of the convective flow on the
dendrite growth in example of thermosolutal natural
convection is the universal effect. For instance, the
increase of the velocity and thinning of dendrites is
found also in the presence of forced convection [28].
The phase field modelling with the convective flow also
shows pronounced increasing of the dendrite growth
velocity for dendrite growing in the direction opposite
to the flow [29]. As Fig. 4 shows, the results of phase
field modelling predict the velocity increase for the
downward trunk growing towards the incoming stream
shown by the small arrows (which characterize the vec-
tor flow velocities along the stream-lines of the flow).
For the undercooling ΔT = 0.55θT and incoming flow
velocity U = 0.07DTθT/Γ, Fig. 4a-c demonstrates the
pronounced evolution of the dendrite trunk growing in
the opposite direction to the liquid flow. This tendency
remains the same for three spatial dimensions, Fig. 5.

6 Influence of the convection
on the microstructure

6.1 Primary dendritic spacing

Effect of convection on the primary dendritic (or cel-
lular) spacing can be demonstrated for the constrained
growth of crystals. This type of directional solidifica-
tion is characterized by the constant thermal gradient
G under which the solute diffusion and convection of
species play the main role in the formation of the dis-
tance λ1 between trunks (main stems) of dendrites (see
Fig. 6).

123



1266 Eur. Phys. J. Spec. Top. (2023) 232:1261–1271

Fig. 4 Influence of incoming two-dimensional flow on nickel dendrite growth [29]. An evolution of phase-field contours is
shown for a dendrite growing from undercooled nickel melt if the incoming flow is directed from bottom to top of domain.
Dashed lines around crystals show the relative values and direction of the flow velocity. The difference in the dendrite
morphology from (a) to (c) is provided by various values in the computationally imposed anisotropy of the solid–liquid
interface energy in 〈10〉- and 〈11〉-directions of two-dimensional growth. Quantitatively, the anisotropy is given by the
ε-parameter as: a ε = 0.01, b ε = 0.03, and c ε = 0.05

Fig. 5 Influence of incoming three-dimensional flow on nickel dendrite growth modelled by the phase field method. a Den-
drite growing symmetrically into pure nickel undercooled at ΔT = 0.55θT K. Pattern has been simulated on a grid of size
6503 nodes [30]. b Growth of nickel dendrite under convective flow at ΔT = 0.30θTK and U = 0.7 m/s. The direction of
the incoming flow is from top to bottom of computational domain that is shown by dashed lines. Growth velocity of the
up-stream branch is pronounced in comparison with the down-stream branch due to forced convection. Dashed lines around
the dendrite indicate the flow velocity vectors in the vertical cross-section. Pattern has been simulated on a grid of size
230 × 230 × 330 nodes [31]

Assume that the directionally growing dendrites have
the same tip radii R. Then, the primary dendritic spac-
ing is given by expression (A9.40) from the book [32]

λ1 =
(

3ΔT ′R
G

)1/2

(10)

In this expression, R is obtained from Eq. (9), ΔT ′ =
m(1 − k)C∗

T is the non-equilibrium solidification inter-
val. Neglecting the thermal contribution, this yields

R =
(

ΓD

σ∗ · 1 − (1 − k)ΩC

kV ΔT ′

)1/2

(11)

In this expression, supersaturation ΩC is defined by
the modified Ivantsov solution (7) dependent on the
conductive diffusion transport (4) and the contribu-
tion E1[PC(1+2(δC)/R)] due to the introducing solute
boundary layer δC. The latter directly depends on the
stagnant boundary layer δU, Eqs. (1)–(2), formed by the
convective liquid flow. In this connection, the primary
dendritic spacing (11) is influenced by convection.

Substituting dendrite tip radius (11) into the expres-
sion (10) gives the dependence of primary spacing on
both the diffusion conductive and convective solute
transport

λ1 =
(

3
G

)1/2(ΓDΔT ′

σ∗kV
[1 − (1 − k)ΩC(PC, δC/R)]

)1/4

.

(12)
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Fig. 6 Dendritic crystals formed after morphological insta-
bility of the planar solid–liquid interface and the further
selective process among crystals during directional solidifi-
cation. The temperature gradient is directed from bottom to
top along the dendritic stems. The average distance between
dendrites, i.e. the dendrite arm spacing λ1, is shown in the
regime of quasi-stationary growth of selected crystals at the
constant velocity V

Fig. 7 Dependence of the primary dendritic spacing λ1 on
the dendrite tip velocity V . Different values of the ratio
δC/R present different influence of the convective velocity
U by Eqs. (1)-(3)

Expression (12) extends the discussed approaches on
the primary dendrite arm spacing [12] by taking the
convective flow into account. Under the condition of
solute diffusion transport only, δC/R → ∞, and, there-
fore, due to negligible Ivantsov function (4), ΩC =
PC exp (PT;C)E1(∞) → 0, Eq. (12) transforms into
expression (A9.41) of the book “Fundamentals of Solid-
ification” by Kurz and Fisher [32].

The whole solution of the primary trunk spacing λ1

by Eq. (12) is shown in Fig. 7 for three cases of convec-
tive transport. Namely, the solid curve with δC/R → ∞
shows λ1 in the flow absence, the behavior of dashed
curve predicts λ1 under moderate convective transport
with δC/R = 1, and, finally, the case δC/R = 0.01
drawn by the dashed-dotted curve exhibits λ1 formed

under influence of intensive natural convection. These
curves are given as functions of the dendrite growth
velocity V with the taken constant thermal gradient
G = 100 K/m. All other material parameters are taken
for Al-2wt%Cu from the book [32]. As is clearly seen
in Fig. 7, the primary spacing λ1 decreases with the
increase of the dendrite tip velocity V and for the
increase of the flow intensity at a given value of V .
A similar tendency towards thinning of the microstruc-
ture accompanied by a decrease in the parameter λ1 is
observed with an increase in the temperature gradient
G under fixed convection intensity (i.e., with fixed ratio
δC/R. The distance between primary dendrite trunks
decreases as the temperature gradient G becomes larger
according to the square root law of Eq. (12).

6.2 Microsegregation

The effect of the liquid flow on the chemical segre-
gation of the interdendritic space (microsegregation)
is analysed here within the framework of the Scheil-
Brody-Flemings-type model [33, 34]. Such a microseg-
regation model predicts influence of the flow on the non-
equilibrium impurity distribution in the interdendritic
space and inside the primary dendrites. This makes
it possible to estimate the accumulation of impurities
also at the macrolevel, predicting a smooth increase
(decrease) in the impurity along the growth directions
of crystals from the beginning to the end of solidifica-
tion process.

Consider the diffusion-convection transport within
heterogeneous mushy zone during binary alloy solidi-
fication [35–37]. For simplicity, further analysis is given
in one-dimensional space where diffusion and convec-
tion proceed along the z -axis, which co-insides with
the direction of crystals’ growth. The change of the liq-
uid concentration CL in the solidifying mushy zone is
described by

Fig. 8 Scheme of dendritic array with upcoming and out-
going liquid flow. Here: ΔT ′ is the non-equilibrium temper-
ature interval of solidification and G is the thermal gradient
within the two-phase mushy zone
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(1 − fS)
∂CL

∂t
+ (1 − fS)U

∂CL

∂z

=
∂

∂z

[
(1 − fS)DL

∂CL

∂z

]
− 2αfSk

∂CL

∂t
+ (1 − k)CL

∂fS
∂t

,

(13)

where fS is the solid fraction at a given point of coordi-
nate z at the time t and U is the averaged velocity of
the flow. The first term in the left-hand side of Eq. (13)
describes the change of the liquid concentration in time
at the considered point of mushy zone with the liquid
fraction 1 − fS. The second term in the left-hand side
of Eq. (13) takes the change of spatial distribution of
concentration into account due to the liquid flow having
the velocity U . Note that

- the influence of the flow decreases with the increas-
ing of the solid fraction due to the contribution (1 −
fS)U ;

- the stream can be opposite to the growth direction
of crystals, therefore, the flow velocity takes negative
value, i.e. U < 0, for so called “incoming flow into inter-
dendritic space” (as is shown in left part of Fig. 8);

- the stream can have the same direction as crystals’
growth, therefore, the flow velocity takes positive value,
i.e. U > 0, for so-called “outcoming flow from the inter-
dendritic space” (as is shown in right part of Fig. 8).

The first term in the right-hand side of Eq. (13)
describes the solute diffusion with the coefficient (1 −
fS)Dl∂CL/∂z and the second term predicts the trans-
port of the solute into the solid phase in which the
concentration changes as CS = kCL. The factor 2α
takes the solid-state back-diffusion, see Appendix 12 in
book [32]. Finally, the last term in the right-hand-side
of Eq. (13) predicts the intensity of the precipitation of
solid phase evolving in time. This last term plays a role
of the source term for concentration in the diffusion-
convective equation.

As in the approach of Scheil-Brody-Flemings [33, 34],
one neglects the diffusion in liquid, DL = 0. Then, using
full differentials instead of partial derivatives, Eq. (13)
takes the following form

(14)

(1 − fS)dCL + (1 − fS)U
(

dz

dt

)1/2

dCL

+ 2αfSkdCL = (1 − k)CLdfS.

The remarkable factor dz/dt of the second term in
the right-hand side of Eq. (14) represents the change
of flow’s coordinate with time might be evaluated as
follows. The change in the liquid concentration, dCL,
proceeds due to the flow, (1 − fS)U , along the z -axis
of crystals’ growth, Fig. 8). As such, the characteristic
change of liquid flow within interdendritic space occurs
in the distance dz ≈ Δz = ΔT ′/G defined by the non-
equilibrium solidification range ΔT ′ and temperature
gradient G existing in the scale of solidifying region. If
the liquid phase has the kinematic viscosity, ν, then the
liquid penetrates within the interdendritic space during
the time dt ≈ Δt = (ΔT ′/G)2/ν. Therefore, the factor
of the second term in the right-hand side of Eq. (14) is

estimated as (dz/dt)−1 ≈ (ΔT ′/G)/ν. Combining this
factor with the convection velocity U defines the ratio

U(dz/dt)−1 = 	MZ/	U (15)

between two characteristic length scales

	U = ν/U, 	MZ = ΔT ′/G (16)

The scale 	U defines the characteristic length for the
viscous liquid to flow within interdendritic space. As
before, the scale 	MZ defines the characteristic length of
the interdendritic space, see Fig. 8). The ratio 	MZ/	U
estimates how deep the flow may penetrate effectively
into the interdendritic space. Namely, if 	MZ = 0.5	U,
then only a half of the distance of the interdendritic
space might be effectively accessible for the liquid flow.

Substitution of the ratio Eq. (15) into the governing
equation Eq. (14) gives

dCL

(1 − k)CL
=

dfS
(1 − fS)(1 + 	MZ/	U) + 2αfSk

.

(17)

Integration of Eq. (17) within interdendritic space

1

(1− k)

∫ CL

C0

dCL

CL
=

∫ fS

0

dfS

1 + �MZ/�U − (1 + �MZ/�U − 2αk)fs
(18)

defines the final solution of Eq. (14) as

CL = C0

[
1 − fS

(
1 − 2αk

1 + 	MZ/	U

)] k − 1
1 + 	MZ/	U − 2αk

(19)

The solution (19) describes nonequilibrium distribution
of concentration in the liquid, CL, and solid, CS = kCL.
This distribution is a function of solid phase fraction,
fS, and influenced by effects of liquid flow with U �= 0
and solid-state back-diffusion at α �= 0. If the liquid
moves in the direction opposite to the direction of den-
dritic growth, one has U < 0 and 	MZ/	U < 0 due to
Eq. (16). The liquid stream flows along the dendrites’
growth direction with U > 0 and U < 0 giving the sign
for the ratio 	MZ/	U by Eq. (16). Both of theses cases
are shown in Fig. 8).

In the absence of flow, U = 0, one has 	U → ∞ by
Eq. (16) leading to the vanishing ratio 	MZ/	U → 0
accordingly Eq. (15). The solution (19) arrives in this
case at the solution of Brody and Flemings [34] CL =
C0[1 − fS(1 − 2αk)](k−1)/(1−2αk) from which the solu-
tions of Scheil [33] and equilibrium level rule with α = 0
and α = 0.5, respectively, are directly follow.

The solution (19) is plotted in Fig. 9 with α = 0.03,
	MZ/	U = ± 0.2 and k = 0.14 for Al-2wt%Cu. For the
stagnant interdendritic melt, U = 0 and 	MZ/	U =
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Fig. 9 Solid concentration CS = kCL in the Al-2wt%Cu
alloy calculated by the solution (19) with α = 0.03. The con-
vective flow is taken by the ratio of the length scale of mushy
zone 
MZ and the length scale of convection 
U into account.
The incoming flow is modelled by 
MZ/
U = −0.2 (the direc-
tion of liquid flow is opposite to the direction of dendritic
growth, U < 0) as well as the outcoming flow is modelled by

MZ/
U = 0.2 (the liquid flows in the direction of dendritic
growth, U > 0) due to Eq. (16). The stagnant liquid if mod-
elled by U = 0 giving the limit 
MZ/
U → ∞ and leading to
the Brody-Flemings model. For computations, C0 = 2wt%
and k = 0.14 were taken from the book [32]

0, the solid concentration is predicted by the Brody-
Flemings model [34] (see solid curve in Fig. 9. The
incoming flow into interdendritic space, U < 0, is mod-
eled by the parameter 	MZ/	U = − 0.2 that is shown
by the dashed-dotted curve in Fig. 9). In this case, the
concentration of copper in dendritic arms and trunks
becomes higher than it is predicted by the Brody-
Flemings model [34], especially, for the solid fraction
fS ≥ 0.5. This occurs due to accumulation of copper by
the incoming flow which brings additional quantity of
copper to interdendritic space with the stream. Finally,
the flow outcoming from the interdendritic space is
given by the dashed curve in Fig. 9) calculated by
Eq. (19) for U > 0 and with the ratio 	MZ/	U = 0.2.
It is seen that the outcoming flow decreases the copper
concentration in the solid phase in comparison with the
prediction of the Brody-Fleming model [34]. This fact
naturally follows from the possibility of carrying the
copper away from the interdendritic fluid due to the
outgoing convective motion of the melt. As a result,
the branches and trunks of the dendrites are copper-
depleted in comparison to the prediction of the Brody-
Flemings model [34].

The incoming flow considered in the present analy-
sis is analogous to the downward flow in natural con-
vection as well as outcoming flow imitates the upward
flow in the natural convection. Therefore, the present
analytical result and calculations shown in Fig. 9 are
consistent with the results on phase field modeling of
dendritic growth with solutal buoyancy [38]:

(a) the solute is confined to the interdendritic region
due to downward flow, the concentration becomes
higher inside dendrites and within interdendritic spac-
ing;

(b) solute is transported out of the interdendritic
regions with decreasing microsegregation due to exist-
ing upward flow.

The upward and downward liquid flows are of fun-
damental importance in the analysis of the morpho-
logical stability of solidification fronts [39]. In the case
of the upward flow (flows out of the two-phase zone,
flows out from the crystal), the crystal-liquid interface is
always morphologically unstable that forms dendrites,
cells and other crystalline structures. In the case of
downward flow (flows into the two-phase zone, flows
onto the crystal), both interface stability and its insta-
bility with the formation and development of dendrites
(cells) are possible.

Note that in the solution of Eq. (13), it is assumed
that a constant velocity U of the flow is set as a
parameter. However, the problem can be solved con-
sistently with the variable fluid flow in a two-phase
mushy zone. Indeed, the flow velocity in the liquid
core is defined by the Navier–Stokes equation which
might be solved in a chosen approximation analyti-
cally or numerically [40]. The alternating flow velocity
within the two-phase mushy zone can be estaimated by
the Darcy’s law [36]. In this case, the coupling of the
diffusion-convective equation (13) with the Darcy’s law
leads to the self-consistent finding of concentration and
flow velocity within the two-phase mushy zone.

Finally, interdendritic flow may influence the final
morphology of the dendritic structure. Specifically,
intensity and direction of flow may have am essen-
tial effect on the fragmentation of dendritic branches
and even their trunks due to the change of interden-
dritic concentration within the mushy zone of solidi-
fying alloy. Thus, the model presented in this article
describes the effect of flow on microsegregation and the
reverse effect of microsegregation on flow with a possi-
ble change in the shape of dendritic crystals.

7 Conclusions

In the present work, features of the crystalline
microstructure formation in a binary alloy have been
considered for solidifying melt under the influence of the
liquid convective flow. The main result obtained in the
work is the solution of the convective-diffusion equation
for the incoming convective flow into the two-phase zone
and the outcoming flow from it. This solution allows us
to quantitatively estimate chemical microsegregation in
two phase mushy zone and primary dendrite arm spac-
ing as a distance between neighbouring stems of crystals
depending on the flow intensity. The obtained particu-
lar results can be summarized as follows.
First , the model of stagnant boundary layer [24] for

heat- and mass-transport has been analyzed. A thick-
ness δU of the stagnant boundary layer depends on the
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flow velocity U as δU ∝ U−1/2. Because the solute
boundary layer is proportional analytically to the stag-
nant boundary layer, δC ∝ δU, the microstructure char-
acteristics, especially, the distance between primary
stems of dendrites, λ1, also depends on the liquid flow
intensity. This non-linear dependence expressed in the
fact that the characteristic distance λ1 decreases, i.e.
the dendritic phase becomes much denser with the
increase of the flow velocity U at the chosen constant
value of the temperature gradient G inside the two
phase mushy zone of directionally solidifying binary
melt.
Second , the chemical microsegregation affected by

the convective flow has been investigated analytically.
Using the solution of the convective-diffusion transport
equation an effect of the incoming flow and outcom-
ing flow on chemical microsegregation inside two phase
mushy zone has been established. The solute compo-
nent is collected within the interdendritic region due to
incoming flow, playing a role of a downward flow during
buoyancy convective mechanism of flow, to the mushy
zone. As the result, the concentration becomes higher
inside dendrites and within interdendritic spacing. Con-
trary to this, the solute is transported out the interden-
dritic regions with the decrease of chemical microsegre-
gation inside the two phase mushy zone due to existing
outcoming flow, playing (which a role of an upward flow
during buoyancy convective mechanism of flow.
Third , the forced convection induced by external

fields has influence of the microstructure formation of
solidifying metals and alloys. One can recollect that

- the static magnetic field imposed on the solidifying
sample under different directions drastically influences
on the dendrite growth kinetics [26, 41] and formation
of defects [42, 43];

- convection may essentially influence on the forma-
tion of freckle, solute plume and dendritic fragmen-
tation [44, 45] as well as on the Columnar-Equiaxed-
Transition in crystalline structure [46].

Therefore, application of the present approach to the
problem of microstructure formation under forced flow
can be seen as a future perspective work.
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