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Abstract This study, the effect of constitutional supercooling appearing ahead of the crystallization front
and leading to the mushy layer origination is considered. An approximate analytical theory determining the
time of mushy layer initiation is constructed. Theoretical predictions are in good agreement with numerical
simulations carried out in previous studies.

1 Introduction

Phenomena of directional crystallization of supercooled
and supersaturated liquids are the basis of many tech-
nological processes of metal production and are broadly
encountered in nature during freezing of water and
solidification of lava [1–10]. The driving force of such
processes is the temperature or concentration gradi-
ent that defines the spatial crystallization direction
of the system. In this case, the phase transformation
can take place with a sharp frontal boundary sepa-
rating purely solid and liquid phases. In addition to
this situation, a phase transformation may take place
in an extended domain (two-phase layer) that consists
of complex entwined structures of solids between which
there is a liquid phase [11–16]. In this area, both direc-
tional growth of the solid phase and bulk phase trans-
formation (nucleation and growth of nuclei [17–20], evo-
lution of dendritic crystals [21–25]) may occur. A good
example of a two-phase layer in nature is the ice slush,
which cannot freeze completely. The ice displaces sea-
water around it, the salinity of which becomes so great
that it remains in a liquid state inside the pack ice dur-
ing the winter season.
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This paper deals with the formation of a two-phase
(mushy) layer of constitutional supercooling in the pro-
cess of directional crystallization. Due to the impurity
displacement by the growing solid phase (crystalliza-
tion front), the impurity concentration ahead of the
front in liquid accumulates and, at some point in time,
the concentration gradient −m∂C/∂z (m is the equilib-
rium liquidus slope) begins to exceed the temperature
gradient ∂T�/∂z at the front (C and T� are the impu-
rity concentration and temperature in liquid, z is the
spatial coordinate of crystallization process). At later
moments, a layer of constitutional supercooling arises
ahead of the front, and the transition of the crystalliz-
ing system from a planar front to a two-phase (mushy)
layer model is determined by the equality of aforemen-
tioned gradients [26–28]. Below a theory of transition
of directional crystallization from a planar front model
to a mushy layer model is constructed, in which the
processes of solid phase growth can be more complex.

2 The model and its solution

Let us consider the crystallization process in the region
of length L. In the melt (Z(t) < z < L) and solid
(0 < z < Z(t)) phases, the thermal conductivity and
impurity diffusion equations hold true

∂T�

∂t
= a�

∂2T�

∂z2
, Z(t) < z < L, (1)
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∂Ts

∂t
= as

∂2Ts

∂z2
, 0 < z < Z(t), (2)

∂C

∂t
= D

∂2C

∂z2
, Z(t) < z < L, (3)

where Ts is the solid phase temperatures, a� and as are
the thermal diffusivity coefficients of liquid and solid
phases, D is the impurity diffusion coefficient (impurity
diffusion in the solid phase is traditionally neglected),
Z represents the coordinate at time t .

At the phase transition boundary, the temperature
continuity condition, the equality of temperature to the
phase transition temperature, and the heat and mass
balances are fulfilled. Namely,

T� = Ts, z = Z(t), (4)

T� = T∗ − mC, z = Z(t), (5)

λs
∂Ts

∂z
− λ�

∂T�

∂z
= LV

dZ(t)
dt

, z = Z(t), (6)

(1 − k)C
dZ(t)

dt
+ D

∂C

∂z
= 0, z = Z(t). (7)

Here, T∗ represents the phase transition temperature of
pure melt, λs and λ� are the thermal conductivity coef-
ficients of solid and melted phases, respectively, LV is
latent heat of solidification, k is the impurity segrega-
tion coefficient, which is equal to the ratio of impurity
concentration Cs in the solid phase to the impurity con-
centration in melt at the crystallization front, i.e.

k =
Cs

C
, z = Z(t). (8)

As the diffusion of impurity in the solid phase is
neglected, relation (8) gives the value of the impurity
concentration absorbed by the flat solidification front
at each time moment and, thus, allows us to determine
the concentration profile in the solid phase.

At the right boundary, z = L, we set the condition
of its impermeability for the impurity and fix the heat
flux as

∂C

∂z
= 0, z = L, (9)

∂T�

∂z
= g�, z = L, (10)

where g� is the given temperature gradient.
At the left boundary, z = 0, we set the condition of

its smoothly increasing cooling with time in the form
of

λs
∂Ts

∂z
= λ�g� + αt, z = 0, (11)

where α is the cooling coefficient.

As the initial conditions, we set the position of the
crystallization front, as well as the temperature and
concentration profiles of the following form

Z(0) = εL, (12)

T� = T∗ − mC∞ + g�(z − Z(0)), t = 0,

Z(0) < z < L, (13)

Ts = T∗ − mC∞ +
λ�

λs
g�(z − Z(0)),

t = 0, 0 < z < Z(0), (14)

C = C∞, t = 0, Z(0) < z < L, (15)

where C∞ is the constant impurity concentration at the
initial moment of time and ε � 1 is a small parameter.

Thus, initially, the crystallization front is supposed
to already exist at some small distance from the left
boundary. The linear temperature profile is given with
its slope on both sides of the crystallization front. At
the initial moment t = 0, the difference of heat at the
front is zero and, hence, the velocity dZ/dt of the front,
according to the boundary condition (6), is also zero.

The time t∗ of the two-phase layer origination is
defined from the condition of constitutional supercool-
ing [26–28]

−m
∂C

∂z
=

∂T�

∂z
, z = Z(t). (16)

The model (1)–(16) was numerically analyzed in Refs.
[27, 29], and condition (16) corresponding to the nar-
row quasi-equilibrium two-phase layer approximation
was used in the case of constitutional supercooling [27].
Note that the relation −m∂C

∂z > ∂T�

∂z is satisfied when
there is a supercooled liquid region ahead of the solidi-
fication front.

Figure 1 represents the results of these calculations
for an iron-nickel alloy at time t = 360 s (a) and
t∗ = 221.9 s (b), respectively. The calculations showed
that the temperature profiles in both phases during the
entire crystallization time remain almost linear func-
tions of the spatial coordinate, which is also clearly vis-
ible from Fig. 1. This result can be explained by the
fact that the relaxation times of the temperature fields
in both phases are several orders of magnitude shorter
than the relaxation time of the diffusion field. It is also
obvious from the calculations that in the case when the
length of the two-phase layer between the solid phase
and the melt is sufficiently small, its presence has cer-
tain differences in the character of the impurity dis-
tribution over the solid phase in comparison with the
standard formulation of the problem on solidification
with a flat solidification front. In this case, the concen-
tration of impurity in the solid phase will monotonically
grow with the increasing spatial coordinate, as shown
in Fig. 1b.
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Fig. 1 Concentration (dashed lines) and temperature
(solid lines) profiles, phase transition temperature (horizon-
tal straight line) and position Z (t) of the crystallization
front during solidification of iron-nickel melt at: a t = 360
s; b t = 221.9 s. Point t = t∗ corresponds to the maximum
impurity concentration in the solid phase, x = z/L. Calcu-
lation parameters are: m = 2.65 ◦C, k = 0.68, T∗=1529.5
◦C, LV = 3398.5 cal/cm3, D = 5 · 10−5 cm2/s, C∞ = 0.3,
λs = 0.177 cal/(s cm ◦C), λ� = 0.1 cal/(s cm ◦C), α = 0.02
cal/(s2 cm2), as = 0.25 cm2 /s, a� = 0.14 cm2 /s, g� 10
◦C/cm, ε = 0.01, L = 1 cm

The linearity of the temperature profiles at all times,
clearly visible in Fig. 1a and b, allows us to approximate
Equs. (1) and (2) by their stationary analogs

∂2T�

∂z2
= 0, Z(t) < z < L;

∂2Ts

∂z2
= 0, 0 < z < Z(t),

(17)

whose solution has the form

T�(t, z) = A1(t) + A2(t)z, Ts(t, z) = B1(t) + B2(t)z.
(18)

Substitution of solutions (18) into conditions (10), (11),
and (4) defines the coefficients A2, B2 and the linear
combination between the coefficients A1 and B1 as

A1(t) = B1(t) +
(

λ�

λs
g� − g� +

α

λs
t

)
Z(t), (19)

A2 = g�, B2(t) =
λ�

λs
g� +

α

λs
t. (20)

Then, substituting the distributions (18) into the
boundary condition (6), and considering (19), we obtain

dZ

dt
=

α

LV
t = μt. (21)

This condition representing a linear law for the crys-
tallization rate, agrees perfectly with numerical calcu-
lations carried out in Ref. [27].

Let us now find the time t∗ of the two-phase
layer origination. Considering a reference frame moving
with the velocity μt and introducing the new variable
q(t, y) = C(t, y)−C∞, we obtain the following problem

∂q

∂t
= μt

∂q

∂y
+ D

∂2q

∂y2
, 0 < y < ∞, (22)

(1 − k)μtq + (1 − k)μtC∞ + D
∂q

∂y
= 0, y = 0,

(23)

∂q

∂y
= 0, y → ∞, (24)

q = 0, t = 0. (25)

At time t∗, the impurity concentration in liquid takes a
maximum value in the whole occupied volume for any
coordinate y . We take the left part of Eq. (22) and
integrate the result over y from zero to infinity. Using
condition (24) and the relation q → 0 at y → ∞, we
get

q =
Dg�

mμt∗
, y = 0, t = t∗. (26)

Here we also assumed that according to (16), (18) and
(20) ∂q/∂y = −g�/m at y = 0, t = t∗. Combining
relations (23) and (26), we find the time of two-phase
layer origination and the impurity concentration at the
front as

t∗ =
kDg�

(1 − k)μmC∞
, C =

C∞
k

, y = 0, t = t∗.

(27)

Figure 2 shows the dependence of the two-phase laayer
origination on the cooling parameter α (note that
μ = α/LV ). As can be easily seen, expression (27)
agrees well with the numerical solution of the problem
obtained in Ref. [29].

Let us now consider the concentration problem
(22)–(25) at sufficiently small times after the beginning
of the crystallization process and represent the concen-
tration q as an expansion q = q0+q1+q2+..., when each
subsequent summand is assumed to be much smaller
than the previous one. Then we find q0 and q1 as

∂q0
∂t

= D
∂2q0
∂y2

, 0 < y < ∞;
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Fig. 2 The time t∗ for the two-phase layer origination ver-
sus the cooling parameter α for different gradients g�. The
points are the results of numerical solution according to Ref.
[29]

(1 − k)μtC∞ + D
∂q0
∂y

= 0, y = 0, (28)

∂q1
∂t

= μt
∂2q0
∂y2

+ D
∂2q1
∂y2

, 0 < y < ∞;

(1 − k)μtq0 + D
∂q1
∂y

= 0, y = 0 (29)

with conditions (24) and (25) taking the form

∂qi

∂y
= 0, y → ∞; qi = 0, t = 0 (30)

(they are valid for all qi (i = 0, 1, ...)).
Each of the problems (28)–(30) can be solved using

the Laplace integral transform. Then, finally, we obtain

q0(t, y) =
C∞(1 − k)μ√

πD

t∫
0

exp
[
− y2

4Df

]
t − f√

f
df,

(31)

q1(t, y) =
C∞(1 − k)μ2

2D
√

π

(
5

2
(1 − k) − 9

8
− 9y

8
√

D

)

×
t∫

0

exp

[
− y2

4Df

]
(t − f)2√

f
df − C∞(1 − k)μ2y2

192D2
√

π

×
t∫

0

exp

[
− y2

4Df

]
(t − f)4√

f
df. (32)

Thus, if the solidification process occurs at large cool-
ing coefficients, corresponding to small times t∗ accord-
ing to Fig. 3, the obtained result completely determines
the solution of the frontal problem up to the moment
of two-phase layer formation.

Fig. 3 The distribution of impurities in the solid and liq-
uid phases at time t = 10 s (solid lines) and the positions of
the crystallization front (dashed lines). The concentrations
of impurities in the liquid and solid phases at the front are
0.319 and 0.217, respectively, and the position of the crys-
tallization front is 0.013 cm. Parameter α = 0.2 cal/(s2 cm2)

3 Conclusion

In summary, we have developed the analytical theory
describing the mushy layer initiation ahead of a planar
solid— liquid interface due to the effect of constitu-
tional supercooling. This effect leans upon the process
of impurity displacement by the growing solid–liquid
interface into the liquid (melt) phase. As this takes
place, the smaller the segregation coefficient, the more
the impurity is displaced and the faster the concen-
tration supercooling sets in. The analytical theory
under consideration enables us to find the time t∗ of
mushy layer incipience corresponding to switching from
a mathematical model with a planar front to a model
with a two-phase (mushy) layer. In other words, at this
point in time, a supercooled region forms ahead of the
purely solid phase, where complex dendrite-like struc-
tures can grow and new crystallites can nucleate.

Generally speaking, when constitutional supercool-
ing occurs (after a lapse of time t∗), one of the two-
phase layer models (e.g. quasi-equilibrium, weakly or
highly nonequilibrium) [14–16, 30–37] should be used
to describe the crystallization process. In addition, the
crystallization process may be influenced by dynamic
instability of the two-phase layer (e.g. leading to self-
oscillation of this layer) [38–42], convective fluid cur-
rents (e.g. forming channels in this layer) [43–45],
additional impurity components (e.g. forming cotectic
region) [46, 47], etc. These questions represent impor-
tant research directions in the theory of crystallization
with a two-phase layer.
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