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Abstract We derive the exact form of the spectral interaction of two strings mediated by a constant
scalar field using methods derived from noncommutative geometry. This is achieved by considering a
non-product modification of the Connes–Lott model with two-dimensional manifolds. The analogy with
the latter construction justifies the interpretation of the scalar field as being of Higgs type. Working in
dimension two requires the use of the spectral zeta function instead of the Wodzicki residue techniques
applicable to four-dimensional models. In the latter case, an analogous non-product geometry construction
leads, for specific choices of metrics, to the so-called “doubled geometry models”, which can be thought
of as a spectral modification of the Hassan–Rosen bimetric theory. We find that in dimension two, the
interaction term depends explicitly on zweibeins defining the Dirac operators and only in some special
cases can they be expressed solely using the metrics. The computations can be performed analytically for
an arbitrary choice of zweibeins defining geometry on the two strings.

1 Introduction

The spectral methods of noncommutative geometry [1,
2] can be successfully applied to describe both General
Relativity [3, 4] and Standard Model of particle physics
together with its potential extensions [5–8]. The fun-
damental object in noncommutative geometry, a spec-
tral triple, is motivated by the observation made by
A. Connes that for any sufficiently regular Riemannian
manifold M that allows spinor fields, one can asso-
ciate a triple consisting of an algebra A = C∞(M) of
smooth functions on M represented on a Hilbert space
H = L2(S) of square-integrable spinors and the Dirac
operator given locally as D = iγμ(∂μ + ωμ), where ω
is the spin connection on M and γ’s are the usual gen-
erators of the associated Clifford algebra. By Connes’
reconstruction theorem [2, 9], any suitably regular triple
(A,H,D), with an abelian algebra A, is of the above
canonical form. This motivates the notion of a spec-
tral triple as a basic object that generalizes the notion
of geometry to objects that are discrete spaces, frac-
tals, or that are described by algebras, which are no
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longer assumed to be commutative. The data of a spec-
tral triple consists of a ∗-algebra A represented (faith-
fully) on a Hilbert space H on which D is as an essen-
tially self-adjoint operator having compact resolvent,
such that its commutators with elements of the alge-
bra A are bounded. A set of possible additional struc-
tures, like grading and real structure, can be incorpo-
rated into this picture and additional compatibility con-
ditions between all these elements can be assumed. For
a more detailed discussion see e.g. [10, 11].

Out of the above spectral data, one can compute the
so-called spectral action [12] which is essentially a func-
tional in D. By spectral action principle, its leading
terms in heat kernel expansion, [13] describe the phys-
ical model obtained from the geometry associated with
a given spectral triple. This generalizes Einstein’s idea
of equivalence between geometry and physics (gravity).
Indeed, the computation of the (leading terms of) the
spectral action for the canonical spectral triple associ-
ated with a given manifold leads to the Hilbert-Einstein
action. This picture was expanded to include Yang-
Mills gauge theories within the framework of almost-
commutative geometry when the spectral triple is a
product of the canonical one and another one with both
an algebra and a Hilbert space being finite-dimensional
[1, 2]. Appropriate choice of the finite part (closely
related to the gauge group one is interested in) allowed
for a formulation of the Standard Model of particle
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physics within this framework and to study its prop-
erties as well as symmetries [14–16].

However, the almost-commutative framework seems
not to be the final answer for all physically relevant
questions. In particular, it is very restrictive in the grav-
itational sector and it leads (in its bare version) to some
unphysical behavior in particle physics models. Sev-
eral non-product modifications of almost-commutative
geometries were, therefore, proposed. Some of them are
formulated at the level of Kasparov modules [17, 18],
whereas others are direct modifications motivated by
potential applications both for the Standard Model [19,
20] as well as for modified gravity theories. In [21], an
approach based on the straightforward modification of
the Connes–Lott model [5] was proposed. The basic
idea was to replace the almost-commutative geometry
M × Z2 by a direct sum of two copies of M but con-
sidered with different metrics on each summand. This
so-called doubled geometry model was further studied
in the case of Friedmann–Lemâıtre–Robertson–Walker
metrics in [22] and for other classes of metrics also in
[23]. Since the resulting action contains interactions
between the two metrics, it is natural to ask about
potential relations to Hassan–Rosen bimetric gravity
theories [24, 25]. We have discussed partially this aspect
in [22] and continued in [26], where the picture of
two four-dimensional branes interacting effectively by
Higgs-like potential was introduced.

Let us briefly summarize main steps in the construc-
tion of the doubled models with two copies of the spin
manifold M of dimension d > 0. As the Dirac operator,
we take

D =
( Dg γΦ

γΦ∗ Dh

)
, (1)

where Dg (resp. Dh) is the standard Dirac operator cor-
responding to the Riemannian manifold (M , g) (resp.
(M , h)), Φ is a (constant) field and γ is taken so that
γ2 = ±1 and it anticommutes with the Dirac operators
on both sheets. The computation of all relevant terms
of the spectral action is, however, dimension dependent.
The leading term can be expressed using the Wodzicki
residue of |D|−d and will give the sum of volumes of
each copy of M (with respect to the metric g and h,
respectively). However, the next term, which will con-
tain the sum of integrated scalars of curvature for each
copy, will also have an interaction term between the
two metric manifolds. In the case of d = 2, the explicit
computation of these terms necessitates the use of the
zeta function [27, 28].

The tools to compute the corresponding terms of
spectral action are based on the calculus of pseudod-
ifferential operators. We first need to find the symbols
of the operator D2 by replacing each derivative ∂j with
a formal variable iξj . Let ak denotes the part of this
symbol that is homogeneous in ξ′

μs with the homogene-
ity degree k . In the next step, we compute the symbols
b• for D−2 [29], and it turns out that only two of them
(b0 and b2) are enough to obtain two leading terms of
the spectral action.

Motivated by the fact that this approach can produce
spectral interactions of branes, we focus in this paper
on the case of two-dimensional branes, the strings. Our
model does not assume any ambient space in which
the strings propagate as the action is fully intrinsic
and arises from the scalar field that links the two
strings. Another possible interpretation is that of a
“thick string” where the resulting action is the inter-
action of its boundaries (surfaces) in the Higgs back-
ground.

We concentrate on the situation where the action
comes from the generalized Dirac operator that involves
the Higgs field. Thus, we work with metrics given in
terms of zweibeins. In Sect. 2, we formulate the two-
dimensional Riemannian doubled geometry model in
terms of zweibeins and derive the resulting effective
action using spectral methods. Then, in Sect. 3, we
briefly discuss a reformulation of this model in terms of
the corresponding metrics. Finally, in Sect. 4, we shortly
discuss the Lorentzian formulation, interpretation, and
present an outlook.

2 Formulation in terms of zweibeins

For a two-dimensional Riemannian spinc manifold with
a given metric g defined in terms of a zweibein eμ

a (with
an inverse metric gμν = eμ

aeν
b δab), we consider the Dirac

operator of the form

Dg = iσaeμ
a∂μ − 1

2
σa∂μ(eμ

a), (2)

with both a, b = 1, 2 and μ = 1, 2, and the Pauli matri-
ces σa satisfying {σa, σb} = 2δabI. Let

K =
(

a1 d1
c1 b1

)
,

be the matrix corresponding to the zweibein eμ
a , i.e.

with entries Kμ
a := eμ

a . Since there is no one-to-one cor-
respondence between metrics and zweibeins (a zweibein
determines the metric but a metric can correspond to a
class of zweibeins), in this paper, we treat the zweibein
eμ
a , rather than the metric g , as a more fundamental

object.
In the doubled model, we denote the second metric

by h, the second zweibein by fμ
a and its corresponding

matrix by L.
Since we are interested mostly in the form of the

interaction potential, we can omit terms with deriva-
tives of zweibeins. Under this assumption, the Dirac
operator for the doubled geometry model takes the form

D = iσaAμ
a∂μ + σF, (3)

with

Aμ
a =

(
Kμ

a 0
0 Lμ

a

)
, F =

(
0 Φ

Φ∗ 0

)
, (4)
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where Φ is assumed to be a constant, and σ = χσ3 with
χ chosen s.t. σ2 = κ = ±1. We can now easily compute
the operator D2, and its symbols read

a2 =
(

(Kξ)2 0
0 (Lξ)2

)
=

(‖ξ‖2g 0
0 ‖ξ‖2h

)
,

a1 = [F,Aμ
a ]σaσξμ,

a0 = κF 2,

(5)

where ξ =
(

ξ1
ξ2

)
is the vector of symbols of derivatives

(i.e. ∂j ↔ iξj for j = 1, 2).
The computation of the symbols of D−2 simplifies for

the derivative-free case and we get [29]:

b0 = (a2 + 1)−1, b2 = −b0a0b0 + b0a1b0a1b0.
(6)

We remark that the above form of the b0 symbol is
a consequence of the fact that the manifold is two-
dimensional [27, 28].

To proceed with the computation of the spectral
action, we first notice that

Tr TrCl(b20) = 2
(

1
((Kξ)2 + 1)2

+
1

((Lξ)2 + 1)2

)

(7)

and

∫
d2ξ

((Kξ)2 + 1)2
=

π

det(K)
, (8)

where the trace Tr is over the discrete degrees of free-
dom and TrCl is the trace over the Clifford algebra.
Then, the contribution to the action from this term is
simply

2π

(
1

det(K)
+

1
det(L)

)
,

and gives the standard cosmological constant terms for
the two metrics.

For the next term in the action, we obtain first,

Tr TrCl(−b0a0b0)

= −2κ|Φ|2
[

1
((Kξ)2 + 1)2

+
1

((Lξ)2 + 1)2

]

= −2πκ|Φ|2
(

1
det(K)

+
1

det(L)

)
,

(9)

which is just a correction to the previous part.

Finally, the integrand of the remaining part of the
potential is,

Tr TrCl(b0a1b0a1b0)

= −2κb0[F,Aμ
a ]b0[F,Aν

b ]b0δabξμξν ,
(10)

which gives

Tr TrCl(b0a1b0a1b0)

= 2κ|Φ|2det(b0)Tr(b0)((K − L)ξ)2,
(11)

and, as a result, we obtain the following integration
formula

2κ|Φ|2
∫

d2ξ

(
((K − L)ξ)2

((Kξ)2 + 1)2((Lξ)2 + 1)

+
((K − L)ξ)2

((Kξ)2 + 1)((Lξ)2 + 1)2

)
.

(12)

Let us denote the above contribution (12) to the poten-
tial by V1. In order to compute this integral, notice that
the second term is just obtained from the first one by
exchanging K with L. So, for a moment we concentrate
on the first term only. Let then S be an orthogonal
matrix that diagonalizes (K−1)T LT LK−1 to ΛT Λ, i.e.

S−1(K−1)T LT LK−1S = ΛT Λ, (13)

and take P = K−1S. Here we have used the fact that
(K−1)T LT LK−1 have positive eigenvalues.

Then changing the coordinates according to Pη = ξ
we obtain

det(K−1S)
∫

d2η
((S − LK−1S)η)2

(η2 + 1)2((Λη)2 + 1)

≡ det(K−1S)
∫

d2η
(Wη)2

(η2 + 1)2((Λη)2 + 1)
,

(14)

where we have introduced W = S − LK−1S.
As the denominator is symmetric with respect to η,

only the parts with η2
1 , η

2
2 in the numerator will enter,

so the considered part of the potential reads

V1 = 2κ|Φ|2det(K−1S)

×
∫

d2η
(
(W 2

11 + W 2
21)η

2
1 + (W 2

22 + W 2
12)η

2
2

)

×
(

1
(η2 + 1)2((Λ1η1)2 + (Λ2η2)2 + 1)

+
1

(η2 + 1)((Λ1η1)2 + (Λ2η2)2 + 1)2

)
,

(15)

where we used the fact that (Wη)2 = ηT WT Wη is
symmetric with respect to the interchange K ↔ L. This
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can be written as

2κ|Φ|2det(K−1S)
[
(W 2

11 + W 2
21)I1(1, 1,Λ1,Λ2)

+ (W 2
22 + W 2

12)I1(1, 1,Λ2,Λ1)

+ (W 2
11 + W 2

21)I1(Λ1,Λ2, 1, 1)

+ (W 2
22 + W 2

12)I1(Λ2,Λ1, 1, 1)
]
,

(16)

where

I1(a, b, c, d)

=
∫
R2

ξ21dξ1dξ2
(a2ξ21 + b2ξ22 + 1)2(c2ξ21 + d2ξ22 + 1)

=
c

a

π

(c2 − a2)(bc + ad)
+

π

(c2 − a2)3/2(b2 − d2)1/2

×
[
arcsin

(
a
√

b2 − d2√
b2c2 − a2d2

)

− arcsin

(
c
√

b2 − d2√
b2c2 − a2d2

)]
. (17)

Since

I1(1, 1,Λ1,Λ2) + I1(Λ1,Λ2, 1, 1)

=
π

Λ1 + Λ2

1
Λ1

,
(18)

we finally get

V1 =
2πκ|Φ|2det(K−1S)

Λ1 + Λ2

×
(

W 2
11 + W 2

21

Λ1
+

W 2
22 + W 2

12

Λ2

)

=
2πκ|Φ|2det(K−1S)

Tr(Λ)
Tr(WT WΛ−1). (19)

But since S is an orthogonal matrix, this expression can
be further reduced to

2πκ|Φ|2 Tr(WT WΛ−1)
Tr(Λ) det(K)

. (20)

Let us now express (20) in terms of invariants of the
matrix X = LK−1. First, by (13), we have

Tr(Λ) = Tr((XT X)1/2). (21)

Next, again by (13) and the fact that XT Xis positive
(hence ΛT Λ has positive eigenvalues), we have

Λ−1 = (S−1XT XS)−1/2 = S−1(XT X)−1/2S

= ST (XT X)−1/2S, (22)

and therefore

WT WΛ−1 = ST (XT X)−1/2S

− ST X(XT X)−1/2S

− ST XT (XT X)−1/2S

+ ST (XT X)1/2S, (23)

so that

Tr(WT WΛ−1) = Tr((XT X)−1/2)

− Tr(X(XT X)−1/2)

− Tr(XT (XT X)−1/2)

+ Tr((XT X)1/2). (24)

Moreover, since XT Xhas only positive eigenvalues, we
also have

(X(XT X)−1/2)T = ((XT X)−1/2)T XT

=
[(

(XT X)1/2
)T

]−1

XT

=
[(

(XT X)T
)1/2

]−1

XT

= (XT X)−1/2XT (25)

and therefore,

Tr
(
XT (XT X)−1/2

)
= Tr

(
(X(XT X)−1/2)T

)

= Tr(X(XT X)−1/2), (26)

so that

Tr(WT WΛ−1) = Tr((XT X)−1/2)

− 2Tr(X(XT X)−1/2)

+ Tr((XT X)1/2). (27)

As a result,

V1 =
2πκ|Φ|2
det(K)

· 1
Tr((XT X)1/2)

×
[
Tr((XT X)−1/2) − 2Tr(X(XT X)−1/2)

+Tr((XT X)1/2)
]
. (28)

Since for the 2 × 2 matrix (XT X)1/2, we have

Tr((XT X)−1/2) =
Tr((XT X)1/2)
det((XT X)1/2)

=
Tr((XT X)1/2)

|det(X)| , (29)
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this expression can be further rewritten as

V1 =
2πκ|Φ|2
det(K)

×
(

1 +
1

|det(X)| − 2
Tr(X(XT X)−1/2)

Tr((XT X)1/2)

)
.

(30)

In order to proceed further, we use the fact [30] that
for a 2 × 2 positive matrix Y we have

√
Y =

Y +
√

det(Y )I√
Tr(Y ) + 2

√
det(Y )

, (31)

and hence

Tr(
√

Y ) =
√

Tr(Y ) + 2
√

det(Y ). (32)

Furthermore,

Y −1/2 =
√

Y −1

=
Y −1 +

√
det(Y −1)I√

Tr(Y −1) + 2
√

det(Y −1)

=
Y −1 + 1√

det(Y )
I

√
Tr(Y )
det(Y ) + 2√

det(Y )

=

√
det(Y )Y −1 + I√

Tr(Y ) + 2
√

det(Y )
. (33)

Therefore,

Tr(XY −1/2) =

√
det(Y )Tr(XY −1) + Tr(X)√

Tr(Y ) + 2
√

det(Y )
(34)

and

Tr(XY −1/2)
Tr(Y 1/2)

=

√
det(Y )Tr(XY −1) + Tr(X)

Tr(Y ) + 2
√

det(Y )
.

(35)

But in our case Y = XT X, so that XY −1 =
X(XT X)−1 = XX−1(XT )−1 = (XT )−1and hence
Tr(XY −1) = Tr(X−1) = Tr(X)

det(X) . Furthermore,√
det(Y ) = |det(X)| and therefore

Tr(XY −1/2)
Tr(Y 1/2)

=
(1 + sgn(det(X)))Tr(X)
Tr(XT X) + 2|det(X)| . (36)

For det(X) < 0, this term vanishes identically. On the
other hand, for det(X) > 0, we get

V1 =
2πκ|Φ|2
det(K)

×
(

1 +
1

det(X)
− 4Tr(X)

Tr(XT X) + 2 det(X)

)
.

(37)

Observe that the first two terms are, in fact, again of
the same type as (9), however, with an opposite sign.
Therefore, in the end, the additional term proportional
to the volumes of the manifolds that is proportional to
|Φ|2 vanishes due to this cancellation. What remains as
an effective interaction between the zweibeins on the
two worldsheets is

Vint = −8πκ|Φ|2
det(K)

(
Tr(X)

Tr(XT X) + 2 det(X)

)
. (38)

This can be further simplified using the fact that

det(X) =
1
2
(
Tr(X)2 − Tr(X2)

)
.

Note that although the expression above uses K and
X , it can be equivalently rewritten using L and X−1as
it is completely symmetric.

We remark that the above cancellation was possible
due to the fact that we are working in two dimensions.
Indeed, the first term in (37) has its form because for a
2× 2 matrix the trace of its inverse can be expressed in
terms of the trace of the original matrix and its deter-
minant, as it was done in Eq.(29). As a result, in two
dimensions, the contribution to the action from b2 does
not affect the effective cosmological constant, in con-
trast to dimension four [22]. Moreover, the interaction
is non-zero only if det(X) is positive, i.e., both K and
L have determinants of the same signs.

Before we discuss the dependence of the above term
on the metrics let us consider a special case, of diagonal
zweibeins.

2.1 A special case: diagonal constant zweibeins

We consider now the diagonal case, i.e. with K =
diag(a1, b1) and L = diag(a2, b2). In such a situation
we have

X = diag
(

a2

a1
,
b2
b1

)
,

so that

Tr(X) =
a1b2 + a2b1

a1b1
, Tr(XT X) =

a2
1b

2
2 + a2

2b
2
1

a2
1b

2
1

,

det(X) =
a2b2
a1b1

,

(39)

and, therefore, if we assume that det(X) > 0 then
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Vint = − 8πκ|Φ|2
a1b2 + a2b1

. (40)

3 Formulation in terms of metrics

The derivation of the interaction terms between the
two worldsheets was expressed in the previous section
directly in terms of zweibeins, which define the Dirac
operators. However, it is interesting to see which part of
it can be rewritten explicitly in terms of the metrics. In
this section, we discuss this possibility, using the met-
rics g , h on the two layers of the doubled model.

First of all, observe that if a zweibein is given by the
matrix

K =
(

a1 d1
c1 b1

)
, (41)

then we have

g−1 =
(

a2
1 + d21 a1c1 + b1d1

a1c1 + b1d1 b21 + c21

)
, (42)

and the metric

g =
1

(a1b1 − c1d1)2

×
(

b21 + c21 − (a1c1 + b1d1)
−(a1c1 + b1d1) a2

1 + d21

)
. (43)

Therefore,

det(K) = a1b1 − c1d1 =
√

det(g−1), (44)

and similarly for the matrix L and the metric h. Next,

X =
√

det(g)
(

a2b1 − c1d2 a1d2 − a2d1
b1c2 − c1b2 a1b2 − d1c2

)
(45)

and

det(X) =
det(L)
det(K)

=

√
det(h−1)√
det(g−1)

=
√

det(gh−1) = det
(√

gh−1
)
.

(46)

Therefore, the only obstruction to rephrasing the action
in terms of metrics rather than zweibeins is given by the
term that contains a trace of the matrix X as well as
the trace of XT X.

If the zweibeins are such that these quantities are
expressible in terms of invariants of g , h, and/or gh−1,
then the full action can be unambiguously written on
the level of metrics. However, in the most general case,
we are dealing with interactions between zweibeins

rather than metrics. This is in contrast to the standard
bimetric theory, which was formulated from the begin-
ning using metrics. The vielbein version was shown [31]
to be dynamically equivalent to the usual bimetric the-
ory, however, that is not necessarily true for multi-
metric models (see [32]). Of course, this is a conse-
quence of the assumed model of interactions between
the two vielbeins and the basic structure where spinor
fields and vielbeins are fundamental objects. It is inter-
esting whether there exists a model of the full Dirac
operator, where the effective potential depends only on
the metrics.

3.1 A special case: diagonal constant zweibeins

In the case of diagonal zweibeins, from the form of the
principal symbol, we easily read that the metrics are
such that their inverses are of the form diag(a2, b2),
i.e., they are also diagonal. In this case

√
det(g) = 1

a1b1

and
√

det(h) = 1
a2b2

.
Let us consider the matrix X =

√
g−1h. Its eigenval-

ues are x = a1
a2

and y = b1
b2

, and therefore,

Vint = −8πκ|Φ|2
√

det(g)
xy

x + y︸ ︷︷ ︸
V

(√
g−1h

)

= −8πκ|Φ|2
√

det(h)V
(√

h−1g
)
.

(47)

4 Lorentzian formulation and conclusions

Since the derivation and applicability of the spectral
methods rely on a purely Riemannian framework, the
final action describes a Riemannian model. However,
we can use the standard Wick rotation argument to
make contact with the Lorentzian formulation. The pro-
cedure is as follows. Since we started with the modi-
fied Connes–Lott model, the effective interaction orig-
inating from the field Φ has the character of a Higgs-
like one. The two-dimensional Riemannian manifold we
started with is now replaced by a (1 + 1)-dimensional
string, and we end up with a model of two Lorentzian
strings interacting via a Higgs-like field. The interac-
tion is given at the level of corresponding zweibeins for
these two strings. This is the two-dimensional gener-
alization of the picture with four-dimensional branes
we discussed previously in [26] to make a comparison
between doubled geometry models [21, 22] and Has-
san–Rosen bimetric gravity theories [24].

Contrary to the four-dimensional situation, in dimen-
sion two we compute the zeta function rather than a
residue, and the resulting potential can be computed
analytically for generic zweibeins. The resulting inter-
action is non-zero only if the matrices corresponding
to the zweibeins have determinants of the same signs,
and is then expressed in terms of the invariants of the
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matrix X = LK−1 with parts of the result expressible
only in terms of metrics. This is analogous to the for-
mulation of bimetric gravity in terms of vielbeins and
metrics [31] and similar to certain choices for vielbeins
that ensure the existence of real square root

√
g−1h

[33]. We postpone the detailed discussion of this aspect
for future research.
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