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Abstract The present paper deals with the modeling of the COVID-19 via fractal interpolation func-
tion (FIF) and the estimation of the dimension of constructed FIF. Further, we determine the adjoint of
the fractal operator defined on L2 space associated with the FIF.

1 Introduction

Several outbreaks have occurred in India over the last
century, but none have been as deadly as the COVID-
19 outbreaks. The first indication that the COVID-19
outbreak has spread to India is on January 27, 2020,
when the first case of infection in Kerala, India, was
reported. Since then, the entire country has been in a
state of chaos and turbulence as a result of the virus’s
increasing casualties. Coronavirus disease caused by the
coronavirus strain, viz., Severe Acute Respiratory Syn-
drome Coronavirus 2 (SARS-CoV-2), mainly affects the
respiratory system of the human body. The disease is
highly contagious, which explains the high death toll. In
the battle with this infectious disease, mankind has had
to discover a strategy to survive. Active surveillance of
the increase in the number of infected cases and deaths
due to COVID-19 through a fractal interpolation poly-
nomial provides a way to better understand the dynam-
ical nature of the virus. In this attempt, several authors
studied the dynamic nature of the COVID-19 virus via
the fractal-based models [11, 14, 19, 28].

There are numerous real-world applications for func-
tional interpolation from a given data set. In the
classical approach, the interpolation has been accom-
plished by smooth functions, sometimes infinitely differ-
entiable, but natural phenomena may occur with sud-
den changes. In 1986, Barnsley [6, 7] used the concept of
an iterated function system (IFS) to introduce continu-
ous interpolation functions called fractal interpolation
functions (FIFs). For more details about these IFS and
related concept, we refer the interested reader to, for
instance, [12, 16, 22].
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In advance of the classical approach, these FIFs pos-
sess a self-similar nature on small scales and are not
essentially smooth. Due to advancements in its proper-
ties, this theory gained remarkable attention in mathe-
matical modeling. Following that Navascués [25] intro-
duced α-fractal functions on a real compact interval.
Motivated by Navascués work, bivariate [9, 21–23], mul-
tivariate [1, 29, 30], vector-valued [39], complex-valued
[40], set-valued [31] α-fractal functions as well as frac-
tal functions on the fractal domains [2, 3, 32, 34] are
constructed and studied recently. We also encourage to
see some recent works [5, 10, 17, 18, 35, 36] on non-
stationary fractal functions which are generalizations of
fractal functions and fractal dimension of fractal func-
tions. The fractal interpolation function has numerous
applications in real life and medical science [13, 15, 28,
41].

Computation of the fractal dimension of a given set,
the graph of a function and measure is an integral part
of fractal analysis. Fractal dimension has a nice con-
nection with some topological properties of a metric
space. For example, if box dimension of a set is strictly
less than 1, then the set will be totally disconnected,
for more details, see [12]. Liang [20] proved that for a
continuous function of bounded variation on the unit
interval [0, 1], its graph has box dimension 1. We can
also note (see, for instance, [12]) that if a real-valued
function is Hölder continuous with Hölder exponent σ,
then the upper box dimension of its graph is less than
2−σ. Some works related to the estimation and compu-
tation of fractal dimension of fractal sets and functions
can be seen in [1, 2, 8, 10, 12, 18, 22, 29, 38].

The paper is organized as follows. In Sect. 2, we pro-
vide background related to the article where we dis-
cussed in detail the construction of the fractal inter-
polation function and the basic of fractal dimensions.
In Sect. 3, we modeled COVID-19 using the data col-
lected from the second wave in India and estimate the
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fractal dimension of the constructed FIFs. Further, we
define the fractal operator on L2 space and determine
the adjoint of the fractal operator using series expan-
sions. In Sect. 4, we close the discussion of this paper
by writing some concluding remarks and some possible
future works.

2 Fractal functions

Let the interpolation data set be given as {(xi, yi) ∈
I×R : i = 0, 1, 2, . . . , N} such that x0 < x1 < . . . < xN .
Consider the intervals I = [x0, xN ] and In = [xn−1, xn],
for n ∈ {1, 2, . . . , N}. Define a function Ln : I → In

such that it is a contractive homeomorphism and satis-
fies

Ln(x0) = xn−1 and Ln(xN ) = xn.

Define a continuous function Fn : I ×R → R such that
it is a contraction in second co-ordinate and satisfies
the join-up condition, that is,

|Fn(x, y) − Fn(x, y∗)| ≤ cn|y − y∗|,
for (x, y), (x, y∗) ∈ I × R,

where 0 < cn < 1 and

Fn(x0, y0) = yn−1 and
Fn(xN , yN ) = yn, for n ∈ {1, 2, . . . , N}.

Define a function Wn : I × R → I × R as

Wn(x, y) = (Ln(x), Fn(x, y)), for (x, y) ∈ I × R.

Thus, {I × R; Wn : n = 1, 2, . . . , N} is an iterated
function system (IFS). Using Theorem 1 of [7], the IFS
defined above has a unique attractor which is the graph
of the continuous function f : I → R satisfying the self-
referential equation given as

f(x) = Fn(L−1
n (x), f(L−1

n (x))), for x ∈ In, and n ∈ {1, 2, . . . , N},

that is, f(Ln(x)) = Fn(x, f(x)), for x ∈ I.

The functions Ln : I → In and Fn : I × R → R men-
tioned above can be chosen as

Ln(x) = anx + bn, for x ∈ I

Fn(x, y) =αny + qn(x), for (x, y) ∈ I × R,

where an, bn, αn ∈ R such that 0 < |αn|< 1 and qn :
I → R is a continuous function given as

qn(x) = f(Ln(x)) − αnb(x), for x ∈ I,

where the continuous function b : I → R is called a base
function satisfying b(x0) = y0 and b(xN ) = yN and f :
I → R is the original interpolating function satisfying

the interpolation points, called the germ function. Since
the function Fn also satisfies the join-up conditions, we
obtain,

qn(x0) = f(Ln(x0)) − αnb(x0) and qn(xN )

= f(Ln(xN )) − αnb(xN ).

Consequently, the IFS {I × R; Wn : n = 1, 2, . . . , N}
has a unique attractor given by the graph of the con-
tinuous function f , denoted by fα and satisfies the self-
referential equation given as

fα(x) = f(x) + αn(fα − b)(L−1
n (x)),

for x ∈ In and n ∈ {1, 2, . . . , N}.

Therefore, for any partition Δ of the interval I =
[x0, xN ], scaling vector α = (α1, α2, . . . , αN ) and base
function b, we get a fractal interpolation function fα

Δ,b,
called α-fractal interpolation function. For box dimen-
sions, we refer the reader to [12].

Definition 2.1 Let A be a non-empty bounded subset
of the metric space (X , d). The box dimension of A is
defined as

dimB A = lim
δ→0

log Nδ(A)
− log δ

,

provided the limit exists, where Nδ(A) denotes the
smallest number of sets of diameter at most δ that can
cover A. If this limit does not exist, then the upper and
the lower box dimension, respectively, are defined as

dimBA = lim sup
δ→0

log Nδ(A)
− log δ

,

dimBA = lim inf
δ→0

log Nδ(A)
− log δ

.

The following result is a special case of Theorem 3 in
[8] applied to Lipschitz functions.

Theorem 2.2 Let Δ = (x0, x1, . . . , xN ) be a parti-
tion of I = [x0, xN ] satisfying x0 < x1 < · · · < xN

and let α = (α1, α2, . . . , αN ) ∈ (−1, 1)N . Assume that
f and b are Lipschitz functions defined on I with
b(x0) = f(x0) and b(xN ) = f(xN ). If the data points
{(xi, f(xi)) : i = 0, 1 . . . , N} are not collinear, then

dimB(Gr(fα
Δ,b)) =

{
D, if

∑N
i=1|αi| > 1;

1, otherwise,

where Gr(fα
Δ,b) denotes the graph of fα

Δ,b and D is the
unique positive solution of the equation given as

N∑
i=1

|αi|aD−1
i = 1.
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3 COVID-19

Our objective is to understand the epidemic from a
fractal point of view which will be a better method
to analyze the growth of the virus. In that facet, we
collected the data from India and constructed the α-
fractal interpolation function following the procedure
mentioned before. The number of positive cases at a
difference of forty days starting from 15th Nov 2021 is
taken as shown in Table 1. All the data that is shown
in Table 1 is gathered from ourworldindata.org [42].

Thus, the set of interpolation points is given by
{(xi, yi) : i = 0, 1, 2, . . . , 10}. In the first case base func-
tion b is taken to be line passing through (x0, y0) and
(x10, y10), that is, b(x) = −8733x+8865 and germ func-
tion f is taken as

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−18780x + 8865 for 0 ≤ x < 0.1
1424070x − 135420 for 0.1 ≤ x < 0.2
−1465180x + 442430 for 0.2 ≤ x < 0.3
−3350x + 3881 for 0.3 ≤ x < 0.4
14210x − 3143 for 0.4 ≤ x < 0.5
161770x − 76923 for 0.5 ≤ x < 0.6
−115530x + 89457 for 0.6 ≤ x < 0.7
−52110x + 45063 for 0.7 ≤ x < 0.8
11420x − 5761 for 0.8 ≤ x < 0.9
−43850x + 43982 for 0.9 ≤ x ≤ 1.

For n ∈ {1, 2, . . . , 10}, the function Ln(x) = (0.1)x +
xn−1, where x ∈ [0, 1]. Now by varying α, the vector
scale function, we get different fractal function repre-
sented in a graph. For α = 0.05, its fractal function
is represented in Fig. 1a. Again for α = 0.4, its frac-
tal function is represented in Fig. 1b. Now for α =
(0.1, 0.09, 0.5, 0.2, 0.05, 0.06, 0.08, 0.9, 0.09, 0.07), we get
Fig. 1c.

Consider the germ function f given before and take
base function b as a Bernstein polynomial B2(f) of

Table 1 Cases of Covid-19

S.No. Date xi yi (Number of
positive cases)

0 15 Nov, 2021 0 8865

1 25 Dec, 2021 0.1 6987

2 3 Feb, 2022 0.2 149394

3 15 March, 2022 0.3 2876

4 24 April, 2022 0.4 2541

5 3 June, 2022 0.5 3962

6 13 July, 2022 0.6 20139

7 22 Aug, 2022 0.7 8586

8 1 Oct, 2022 0.8 3375

9 10 Nov, 2022 0.9 4517

10 20 Dec, 2022 1 132

order 2 written as

b(x) = B2(f)(x) = Σ2
k=0

(
2
k

)
f(

k

2
)xk(1 − x)2−k,

that is,

b(x) = 1073x2 + (−9806)x + 8865.

Now by varying α, we get different fractal interpola-
tions represented in a graph. As for α = 0.05, we get
Fig. 2a, and for α = 0.1, we get Fig. 2b. Again for
α = (0.1, 0.09, 0.5, 0.2, 0.05, 0.06, 0.08, 0.01, 0.09, 0.07),
the fractal function obtained is represented in Fig. 2c.
Let us note the following:

• All functions fi and bi are Lipschitz functions for each
i = 1, 2, . . . , 10.

• The data set {(xi, yi) : i = 0, 1, 2, . . . , 10} are not
collinear.

In view of the above, we can apply Theorem 2.2 to com-
pute the fractal dimension of the graphs of the α-fractal
functions associated with these data set and considered
functions to analyze fluctuation in the number of posi-
tive cases.

• In Fig. 1a, we have ai = 0.1 and αi = 0.05. Since∑10
i=1 0.05 = 0.5 ≤ 1, using Theorem 2.2, we get

dimB (Gr(fα
Δ,b)) = 1.

• In Fig. 1b, we have ai = 0.1 and αi = 0.4. Since∑10
i=1 0.4 = 4 > 1, using Theorem 2.2, we get

dimB (Gr(fα
Δ,b)) = D, which is calculated as,

10∑

i=1

(0.4)
( 1

10

)D−1
= 1 =⇒ 4

( 1

10

)D−1
= 1 =⇒ 10D−1 = 4.

After taking the log on both sides, we get

D = 1 + 2 log 2 ≈ 1.60.

• In Fig. 1c, we have ai = 0.1 and α =
(0.1, 0.09, 0.5, 0.2, 0.05, 0.06, 0.08, 0.9, 0.09, 0.07).
Since

∑10
i=1|αi|= (0.1 + 0.09 + 0.5 + 0.2 + 0.05 +

0.06 + 0.08 + 0.9 + 0.09 + 0.07) = 2.14 > 1, using
Theorem 2.2, we get dimB (Gr(fα

Δ,b)) = D, which is
calculated as,

(0.1 + 0.09 + 0.5 + 0.2 + 0.05 + 0.06 + 0.08 + 0.9

+ 0.09 + 0.07)
( 1

10

)D−1

= 1

=⇒ (2.14)
( 1

10

)D−1

= 1 =⇒ 10D−1 = 2.14.

After taking the log on both sides, we get

D = 1 + log 2.14 ≈ 1.33.
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Fig. 1 a fα when αn =
0.05 for n ∈ {1, 2, . . . , 10}
and dimB(Gr(fα)) = 1.
b fα when αn = 0.4 for n ∈
{1, 2, . . . , 10} and
dimB(Gr(fα)) = 1.60. c fα

when α =
(0.1, 0.09, 0.5, 0.2, 0.05, 0.06, 0.08,
0.9, 0.09, 0.07) and
dimB(Gr(fα)) = 1.33
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Fig. 2 a fα when αn =
0.05 for n ∈ {1, 2, . . . , 10}
and dimB(Gr(fα)) = 1.
b fα when αn = 0.1 for n ∈
{1, 2, . . . , 10} and
dimB(Gr(fα)) = 1. c fα

when α =
(0.1, 0.09, 0.5, 0.2, 0.05, 0.06,
0.08, 0.01, 0.09, 0.07) and
dimB(Gr(fα)) = 1.10
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• In Fig. 2a, we have ai = 0.1 and αi = 0.05. Since∑10
i=1 0.05 = 0.5 ≤ 1, using Theorem 2.2, we get

dimB (Gr(fα
Δ,b)) = 1.

• In Fig. 2b, we have ai = 0.1 and αi = 0.1. Since∑10
i=1 0.1 = 1 ≤ 1, using Theorem 2.2, we get

dimB (Gr(fα
Δ,b)) = 1.

• In Fig. 2c, we have ai = 0.1 and α =
(0.1, 0.09, 0.5, 0.2, 0.05, 0.06, 0.08, 0.01, 0.09, 0.07).
Since

∑10
i=1|αi|= (0.1 + 0.09 + 0.5 + 0.2 + 0.05 +

0.06 + 0.08 + 0.01 + 0.09 + 0.07) = 1.25 > 1, using
Theorem 2.2, we get dimB (Gr(fα

Δ,b)) = D, which is
calculated as,

(0.1 + 0.09 + 0.5 + 0.2 + 0.05 + 0.06

+ 0.08 + 0.01 + 0.09 + 0.07)
( 1

10

)D−1

= 1

=⇒ (1.25)
( 1

10

)D−1

= 1 =⇒ 10D−1 = 1.25.

After taking the log on both sides, we get

D = 1 + log 1.25 ≈ 1.10.

3.1 A fractal operator

Let f ∈ C(I) be the germ function and let the base
function b = Lf , where L : C(I) → C(I) be a bounded
linear map such that (Lf)(x1) = x1, (Lf)(xN ) = xN ,
and Lf �= f . We shall denote the corresponding α-
fractal function by fα

Δ,L. Let us fix the elements in the
corresponding IFS, namely, the partition Δ, scale vector
α, and operator L. Let us note the following definition
due to Navascués [24].

Definition 3.1 We refer to the transformation Fα
Δ,L =

Fα which assigns fα
Δ,L to f , as a α-fractal operator or

simply fractal operator with respect to Δ and L.

Navascués [25, Theorem 3.3] proved the next theo-
rem.

Theorem 3.2 Let |α|∞= max {|αn|: n ∈
{1, 2, . . . , N}}, and let Id be the identity opera-
tor on C(I).

1. For any f ∈ C(I), the perturbation error satisfies

‖fα − f‖∞≤ |α|∞
1 − |α|∞ ‖f − Lf‖∞.

2. The fractal operator Fα : C(I) → C(I) is a bounded
linear map. Further, the operator norm satisfies

‖Fα||≤ 1 +
|α|∞

1 − |α|∞ ‖Id − L‖.

3. For |α|∞< ‖L‖−1, Fα is bounded below. In partic-
ular, Fα is an injective map.

4. |α|∞< (1 + ‖Id − L‖)−1, then Fα is a topo-
logical isomorphism (that is, bijective bounded
map with bounded inverse). Moreover, ‖(Fα)−1‖≤

1 + |α|∞
1 − |α|∞‖L‖ .

5. For |α|∞< ‖L‖−1, the fractal operator Fα is not a
compact operator.

Remark 3.3 According to item (1) of the previous the-
orem, the collection of maps fα

Δ,b constitutes contin-
uous functions containing f as a particular case (for
α = 0). Furthermore, the inequality therein reveals that
by appropriate choice of the scale vector α or operator
L, the fractal perturbation fα

Δ,b can be made close to
the original function f . Thus, fα

Δ,b is a simultaneously
interpolating and approximating fractal function to f .

Let f ∈ C(I). The Bernstein polynomial Bn(f) of
order n is defined as

Bn(f)(x) :=
n∑

k=0

(
n
k

)
f(

k

n
)xk(1 − x)n−k.

Note 1 Let us note the following:

Bn(f)(x) =
n∑

k=0

(
n

k

)
xk(1 − x)n−kf(

k

n
).

Choosing f = 1, we have

Bn1(x) =
n∑

k=0

(
n

k

)
xk(1 − x)n−k = 1.

This implies that ‖Bn‖≥ 1 and ‖Bm
n ‖≥ 1. Now, for

every f ∈ C(I), we get

Bn(f)(x) ≤ ‖f‖∞
n∑

k=0

(
n

k

)
xk(1 − x)n−k = ‖f‖∞.

Since the Bernstein operator Bn is a linear positive
operator, the previous inequality gives

Bm
n (f)(x) ≤ ‖f‖∞,

which produces ‖Bm
n ‖≤ 1. Therefore, we have ‖Bm

n ‖=
1 for all m ∈ N. We know that for a bounded linear
operator T and the operator norm ‖.‖, the spectral
radius ρ(T ) of T is given by

ρ(T ) = lim
k→∞

‖T k‖ 1
k .

Since ‖Bm
n ‖= 1, ∀ m ∈ N, we have

ρ(Bn) = lim
m→∞‖Bm

n ‖ 1
m = 1.
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3.2 Adjoint of Fα on L2(I)

We now consider the Banach space of functions with
finite energy:

L2(I) = {g : I → R : g is measurable and ‖g‖2< ∞},

where the norm is defined by

‖g‖2 =
(∫

I

|g(x)|2 dx

)1/2

.

Note that the space L2(I) is in fact a Hilbert space with
respect to the inner product

〈g, h〉 =
∫

I

g(x)h(x)dx, for g, h ∈ L2(I).

It is worth to note that the construction of fractal
functions in L2(I) was initiated by Prof. Navascués
in her work [25], wherein she also showed that every
complex-valued square integrable function defined in
a real bounded interval can be well approximated by
a complex fractal function. Let f ∈ L2(I). To con-
struct the fractal function in L2(I) corresponding to
f , there are two approaches in the literature. One is
to apply the density of C(I) in L2(I) to obtain a frac-
tal analog of f ∈ L2(I) using α-fractal functions cor-
responding to continuous functions; see, for instance,
[25]. Though this approach is natural and elementary,
the self-referentiality of the fractal analog of f ∈ L2(I)
is not evident in this case. Using another approach due
to Massopust ([23, Theorem 2]), one may easily deduce
the next theorem.
Theorem 3.4 Let f ∈ L2(I) be chosen arbitrarily and
held fixed. Suppose that Δ = {xi : i = 0, 1, 2, . . . , N}
is a partition of I satisfying x0 < x1 < x2 < . . . <
xN , I∗

i := [xi, xi+1) for i = 0, 1, 2, . . . , N − 2 and
I∗
N−1 := [xN−1, xN ]. Let Li : [x0, xN ) → I∗

i be affine
maps satisfying Li(x0) = xi and Li(x−

N ) = xi+1 for
i ∈ {0, 1, 2, . . . , N − 2}. Further suppose that LN−1 :
I → I∗

N−1 is an affinity satisfying LN−1(x0) = xN−1

and LN−1(xN ) = xN . Let the affinities be given by
Li(x) = aix + bi for i ∈ J := {0, 1, 2, . . . , N − 1}.
Fix αi ∈ (−1, 1) for all i ∈ J and b ∈ L2(I). Define
T : L2(I) → L2(I) by

Tg(x) = f(x) + αi(L
−1
i (x))[g(L−1

i (x)) − b(L−1
i (x))],

x ∈ I∗
i , i ∈ J.

If the scaling factors αi, i ∈ J satisfy
[ ∑

i∈J aiα
2
i

]1/2

<

1, then the operator T is a contraction on L2(I). Fur-
thermore, the corresponding unique fixed point fα

Δ,b

(denoted for notational convenience by fα) in L2(I)
satisfies the self-referential equation:

fα(x) = f(x) + αi(fα − b)(L−1
i (x)), x ∈ I∗

i , i ∈ J.

Note 2 Let L : L2(I) → L2(I) be a bounded lin-
ear operator L �= I. Taking b = Lf , in the previous
theorem, one obtains fractal function fα = fα

Δ,L cor-
responding to the germ function f ∈ L2(I). Further, a
bounded linear operator Fα : L2(I) → L2(I), f 
→ fα

arise.
Let Fα : L2(I) → L2(I) be the aforementioned

fractal operator. The adjoint of the fractal operator is
defined by

〈Fα(f), g〉 = 〈f, (Fα)∗(g)〉.

In what follows we attempt to obtain an expression for
(Fα)∗.

〈Fα(f), g〉 = 〈fα, g〉
=

∫
I

fα(x)g(x)dx

=

N−1∑
n=0

∫
In

[f(x) + αn(f
α − Lf) ◦ L−1

n (x)]g(x)dx

=

∫
I

f(x)g(x)dx+
N−1∑
n=0

αn

∫
In

(fα−Lf) ◦ L−1
n (x)g(x)dx.

With the change of variable L−1
n (x) = t for the second

term on the right-hand side, we have
∫

In

(fα − Lf) ◦ L−1
n (x)g(x)dx

= an

∫
I

(fα − Lf)(t)g(Ln(t))dt.

= an

∫
I

fα(t)g(Ln(t))dt − an

∫
I

(Lf)(t)g(Ln(t))dt.

From the previous equations

〈fα
, g〉 = 〈f, g〉 +

N−1∑

n=1

αnan[〈fα
, g ◦ Ln〉 − 〈Lf, g ◦ Ln〉].

= 〈f, g〉 +

N−1∑

n=0

αnan

[
〈f, g ◦ Ln〉 +

N−1∑

m=1

αmam

{〈fα
, g ◦ Ln ◦ Lm〉 − 〈Lf, g ◦ Ln ◦ Lm〉} − 〈Lf, g ◦ Ln〉

]
.

Expanding the terms to infinite times and writing L∗
as the adjoint operator of L we get
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〈fα, g〉 =〈f, g〉 −
N−1∑
k1=0

αk1ak1

[
〈f, L∗g ◦ Lk1〉 +

N−1∑
k2=0

αk2ak2

{
〈f, L∗g ◦ Lk1 ◦ Lk2〉

+
N−1∑
k3=0

αk3ak3(〈f, L∗g ◦ Lk1 ◦ Lk2 ◦ Lk3 〉 + . . . )
}]

+
N−1∑
k1=0

αk1ak1

[
〈f, g ◦ Lk1 〉

+
N−1∑
k2=0

αk2ak2{〈f, g ◦ Lk1 ◦ Lk2 〉

+
N−1∑
k3=0

αk3ak3(〈f, g ◦ Lk1 ◦ Lk2 ◦ Lk3〉 + . . . )}
]
.

That is

〈fα, g〉

=

〈
f, g −

N−1∑
k1=0

αk1ak1

[
L∗g ◦ Lk1

+
N−1∑
k2=0

αk2ak2{L∗g ◦ Lk1 ◦ Lk2

+
N−1∑
k3=0

αk3ak3(L
∗g ◦ Lk1 ◦ Lk2 ◦ Lk3 + . . . )}

]

+
N−1∑
k1=0

αk1ak1

[
g ◦ Lk1 +

N−1∑
k2=0

αk2ak2{g ◦ Lk1 ◦ Lk2

+
N−1∑
k3=0

αk3ak3(g ◦ Lk1 ◦ Lk2 ◦ Lk3 + . . . )}
]〉

= 〈f, (F α)∗(g)〉.

Consequently, we have

(Fα)∗(g) =g −
N−1∑

k1=0

αk1ak1

[
L∗g ◦ Lk1 +

N−1∑

k2=0

αk2ak2

{
L∗g ◦ Lk1 ◦ Lk2

+

N−1∑

k3=0

αk3ak3(L
∗g ◦ Lk1 ◦ Lk2 ◦ Lk3 + . . . )

}]

+

N−1∑

k1=0

αk1ak1

[
g ◦ Lk1 +

N−1∑

k2=0

αk2ak2

{
g ◦ Lk1 ◦ Lk2

+

N−1∑

k3=0

αk3ak3(g ◦ Lk1 ◦ Lk2 ◦ Lk3 + . . . )
}]

.

Further simplification provides the following expression
for (Fα)∗(g)

g + (I

−L∗)

( ∞∑
m =1

( N−1∑
k1 =0

N−1∑
k2 =0

. . .
N−1∑

km =0

αk1ak1αk2ak2 . . . αkmakmg

◦ Lk1 ◦ Lk2 ◦ . . . ◦ Lkm

))
.

Since (A+B)∗ = A∗ +B∗, we get the following expres-
sion for (Fα)∗(g)

g + (I − L)∗
( ∞∑

m=1

( N−1∑
k1=0

N−1∑
k2=0

. . .

N−1∑
km=0

αk1ak1αk2ak2 . . . αkmakmg ◦ Lk1 ◦ Lk2 ◦ . . . ◦ Lkm

))
.

Remark 3.5 Let us assume that the scaling vector is
constant and the partition is equidistant. In this case,
with the help of the above expression for the adjoint
operator, we could deduce that the fractal operator
turns out to be a topological isomorphism for a slightly
wider range of values of the scaling factors than that
prescribed in [25, Theorem 4.10]. It should also be noted
that we may get better results for a fractal operator
associated with non-stationary fractal functions [17, 27,
35] via the adjoint operator. To keep the article at a
reasonable length we avoid the details.

Remark 3.6 Since fractal functions in L2(I) can be dis-
continuous, we can use this space to model more nat-
ural phenomena with the help of fractal interpolation
theory.

4 Concluding remarks and future directions

In this article, we computed the exact value of the box
dimension of the graphs of the constructed α−fractal
functions generated by the COVID-19 data over some
specific time period. We also provided an expression for
the adjoint operator of the associated fractal operator
in terms of an infinite series. Calculating the fractal
dimension of the epidemic curve is a new approach for
observing the epidemic and retrieving the missing infor-
mation via fractal functions. The higher the dimension
of the graph of the epidemic curve, the higher the com-
plexity of the distribution of the COVID-19 virus and
it is affected by the parameter in the surrounding. In
the future, we will try to estimate other fractal dimen-
sions such as the Hausdorff dimension and Assouad
dimension of the α-fractal functions. As the Assouad
dimension gives more local information, estimating this
dimension for fractal functions generated by COVID-19
data may help us to understand the spread of the virus
in a better way. We believe that our method of using
fractal dimension and α-fractal functions can be used to
study fluctuations or randomness in the stock market
and heart rate.
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