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Abstract Functional near-infrared spectroscopy (fNIRS) is commonly used as a non-invasive tool to mea-
sure cerebral neurovascular dynamics. Its potential for diagnostics of various brain disorders has been
already demonstrated in many recent studies, including Alzheimer’s disease (AD). fNIRS studies are usu-
ally based on comparing hemoglobin measurements at baseline and during a specific task. At present, many
proposed methods using fNIRS to diagnose AD involve certain tasks, which may be challenging for the
elderly and patients with cognitive decline. Here, we propose a method to characterize AD patients and con-
trol in resting state, by applying spectral entropy (SE) analysis on oxyhemoglobin and deoxyhemoglobin,
HbO and HbR, respectively, and total hemoglobin (HbT) based on fNIRS signals measured from the left
and right sides of the forehead. We applied SE to very low frequency (VLF) (0.008–0.1 Hz), respiratory
(0.1–0.6 Hz), and cardiac (0.6–5 Hz) bands to find out which band delivered the optimum result. Next, a
t test with 0.05 significant level was performed to compare SE values of AD patients and controls. Results
from the VLF band looked promising as SE values from AD patients were always significantly higher than
those from controls. In addition, this phenomenon was consistent for both sides of the forehead. However,
significant differences in SE values in the respiratory band were found from the left hemisphere only, and in
the cardiac band from the right hemisphere only. SE value from the VLF band supports a strong argument
that it provides good predictability related to the development of AD. We demonstrated that SE of brain
fNIRS signal can be an useful biomarker for Alzheimer’s disease pathology.

1 Introduction

Alzheimer’s disease (AD) is a brain disorder character-
ized by a cognitive decline due to neuronal degenera-
tion [1]. AD is preceded by amyloid-β and tau-protein
accumulation in (peri)arterial brain structures decades
before neuronal damage with a spectrum of mild cogni-
tive impairment (MCI) eventually progressing into full
dementia in AD. The speed of the progression differs
from person to person and early detection would be
highly important to be able to start treatments in the
early phase to slow down the progression. Recent neu-
roimaging studies show that an early cognitive decline
coincides with changes in the brain cardiovascular pul-
satility and permeability of blood–brain barrier (BBB)
with respect to the protein accumulations [2–5], which
opens an early window into the diagnostics of AD.
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Current clinical diagnosis of AD is often based on
neurocognitive tests, anatomical magnetic resonance
imaging (MRI) [6], nuclear imaging device such as
positron emission tomography (PET) and single pho-
ton emission computed tomography (SPECT) [7], and
biomarker analysis of the cerebrospinal fluid (CSF)
samples taken from the patient [8]. Such techniques
are labor intensive, requiring clinical laboratories and
highly trained persons to perform the study. They also
require investments in expensive clinical technology. So,
alternatives or supportive methods for the diagnosis,
being much easier to perform, would be of high inter-
est.

Functional near-infrared spectroscopy (fNIRS) is
commonly used as a non-invasive method to measure
blood oxygen saturation (SO2) and cerebral hemody-
namics, for both oxyhemoglobin (HbO) and deoxyhe-
moglobin (HbR). By summing HbO and HbR, we can
provide total hemoglobin (HbT). The fNIRS method is
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based on illumination of light to the scalp using two
or more wavelengths selected from both sides of the
isosbestic point of blood at around 800 nm. Next, the
absorption changes of the detected back-scattered light,
which has reached the brain at a maximum penetra-
tion depth of approximately 1–2 cm [9], are used to
quantify the hemodynamic changes [9]. fNIRS is not
a new technique to study AD. In 1996, Hock et al.
published their work on monitoring HbO and HbT
changes in the frontal cortex during a verbal fluency
task (VFT) [10]. Later, Fallgatter et al. reported a loss
of functional hemispheric asymmetry in Alzheimer-type
dementia during VFT using fNIRS from the frontal cor-
tex area [11]. In addition, Fladby et al. investigated the
olfactory response in the early stages of AD using fNIRS
[12]. Other researchers also demonstrated that fNIRS is
a promising technique to study the early detection of
AD [13–17]. The abovementioned articles involved cer-
tain tasks during their studies. Although we can stan-
dardize the tasks, it does not guarantee that everybody
does them correctly, especially in the case of elderly
and AD patients. So, having measurements without the
need for specific tasks would be preferable.

Spectral entropy (SE) is a measure of spectral power
distribution of a signal based on the Shannon entropy
[18], or a form of Shannon entropy normalized with
power spectrum amplitude [19]. SE reflects the flatness
or complexity of the signal’s spectrum [20–22]. Hence,
SE calculation starts from normalized power spectral
density (PSD). There are many methods to get PSD,
e.g., fast Fourier transform (FFT) and periodogram.
Based on the nature of spectral entropy, a signal with
a flat spectrum should have a maximal SE value [23].
Using SE to analyze signals neglects the order of fre-
quency appearance in the time domain. It means differ-
ent orders of frequency appearance will have the same
SE value as long as the frequency contents remain the
same. SE is commonly used in biosignal analysis, par-
ticularly in electroencephalography (EEG).

A recent study used SE to explore electrophysiolog-
ical and hemodynamic changes in the drug-resistant
epilepsy (DRE) [18] and showed that the dynamic
spatiotemporal features of multimodal SE provided a
marker to separate DRE from healthy controls. Spe-
cific for hemodynamics, SE of DRE patient was always
less than that of controls, but the significant differ-
ences varied among different bands and concentrations.
Helakari et al. applied SE to fast functional MRI (fMRI)
and EEG signals during sleep study and found that
spectral entropy decreases in the VLF and respiratory
bands [24]. Sharma et al. used SE as one of the features
extracted from EEG to separate MCI, dementia, and
controls using support vector machine (SVM) [25]. The
proposed system achieved accuracy of up to 90%. In
addition, SE was also applied to magnetoencephalogra-
phy (MEG) among MCI, AD, and controls [26]. Bruña
et al. found that based on the MEG signal analysis, the
abnormality degree of MCI was between AD and con-
trols [27]. Here, we propose fNIRS technique to charac-
terize AD patients and controls by applying SE without

Fig. 1 Two fNIRS channels (optodes) were placed on fore-
head on left (L) and right (R) side

a need to perform specific tasks during measurements;
hence, subjects are measured in resting state.

2 Materials and methods

2.1 fNIRS device

Our fNIRS device uses wavelengths of 690 nm and
830 nm and a frequency-coding technique to label them
for detection, and lock-in amplification with a very nar-
row bandwidth filter in the receiver to minimize noise
[28]. At the detection part, signals followed by a tran-
simpedance amplifier (TIA) are digitized by a DAQ
card at 800 Hz. Next, the digital signal is fed into a
digital lock-in detection circuit to detect the coded fre-
quency and remove unwanted noise. Light illumination
and detection on the human head were realized by opti-
cal fibers fabricated by Schott and customized for this
study by Fiberoptics Technology. The fiber tips (with
a diameter of 2.5 mm) were attached to the head by
a plastic fiber clip at a 3 cm fiber source-detector dis-
tance, to ensure penetration depth up to the brain tis-
sue, see Fig. 1.

2.2 Measurement protocol

The data collection followed the guidelines established
by the Declaration of Helsinki. All measurements took
place in Oulu University Hospital, Oulu, Finland. This
study was approved by the regional Ethical Commit-
tee of Northern Ostrobothnia Hospital District in Oulu
University Hospital. This study involved 8 patients
(62.6 ± 2.1-year-old) with diagnosed AD and 14 age-
matched controls (63.6 ± 2.9-year-old). All participants
signed informed consent letters before the measure-
ments. Most of the participants also filled out the mini-
mental state exam (MMSE) prior to the measurements.
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Table 1 Subject characteristics

AD patients Controls

Number of participants
(female)

8 (5, 63%) 14 (6, 43%)

Age 62.6 ± 2.1 63.6 ± 2.9

Minimum age 60 52

Maximum age 65 67

MMSE (mean ± SD) 22.8 ± 1.6 28.5 ± 1.5

Minimum MMSE score 19 25

Maximum MMSE score 27 30

Based on the MMSE score, AD patients who partici-
pated in this study were in the mild dementia stage,
see Table 1. All the patients have undergone routine
AD clinical evaluation (neurocognitive tests and MRI)
and some cases with also CSF tau and beta-amyloid
evaluation.

During measurement, all participants were in a
supine position, and scanned simultaneously by fMRI
and fNIRS. Simultaneous measurements of fNIRS and
fMRI were taken place for 5 min in the resting state.
This study focuses on the use of fNIRS only; however,
signal quality of the fNIRS device was verified by the
blood oxygen level dependent (BOLD) signal provided
by the fMRI [28].

2.3 Signal analysis

Modified Beer-Lambert law (MBLL) was used to calcu-
late concentration changes of HbO, HbR, with the fol-
lowing coefficients: 690 nm: 0.3123 for HbO and 2.1382
for HbR, 830 nm: 1.0507 for HbO and 0.7804 for HbR,
with differential path length factor of 5.93 [29]. Prior to
signal analysis, calculated HbO, HbR, and HbT signals
were downsampled at 10 Hz to fit the sampling fre-
quency of the ultra-fast fMRI [30]. The fNIRS analysis
was performed in the very low frequency (VLF) (rang-
ing from 0.008 to 0.1 Hz), respiratory (ranging from
0.1 to 0.6 Hz), and cardiac (ranging from 0.6 to 5 Hz)
bands [31], and for these filtered bands, we calculated
the SE using pentropy function in Matlab™ 2022a by
setting the instantaneous parameter to false to get a
single number. Finally, we used a t test at a significant
level of 0.05 to evaluate whether the SE of AD patients
was different when compared to controls.

3 Results

Figure 2 shows the average normalized spectra of HbO,
HbR, and HbT measured from AD patients (on the left)
and controls (on the right). As can be seen, there are
visible differences between the two spectra.

In the following, Figs. 3, 4 and 5 present comparisons
of SE values of HbO, HbR, and HbT between controls

and AD patients. Three frequency bands are included
when fNIRS measures from the left (L) and right (R)
sides of the forehead (Fig. 1).

SE results show that, in the VLF band, all concentra-
tions can deliver significant differences on both sides of
the forehead. In addition, SE values from AD patients
in both VLF and respiratory bands are always higher
than controls. On the other hand, the opposite occurred
for SE values in the cardiac band.

Figure 6 displays plots of MMSE against SE values
in the VLF band of HbO, HbR, and HbT, from both
left and right. The best fit line in each panel indicates
decreasing trend as MMSE is increasing.

4 Discussion

This is the first study to show that SE of the human
brain fNIRS signals from AD patients is significantly
different from controls. Furthermore, the SE values in
the VLF band decreases as the MMSE scores increases
indicating its potential for a neurocognitive biomarker
in AD. AD patients have significantly higher SE values
in the VLF band in all measured markers, i.e., HbO,
HbR, and HbT. In addition, the respiratory and car-
diovascular bands were altered but not as clearly as the
VLF band. SE values in the VLF band have a small
standard deviation indicating high consistency further
supporting the notion that SE values in the VLF band
can be a good biomarker for AD.

The high SE values indicate high-frequency variance
in the signal. VLF (0.008–0.1 Hz) band corresponds to
vasomotor brain waves, which originate from the vaso-
motor tone of arterial wall smooth muscle cells control-
ling the luminal diameter. Vasomotor activity controls
the regional blood flow with diameter changes affecting
the flow resistance, and thus it is reflected in the flow
and blood volume in the vascular tree, ranging from
arteries to capillaries and veins [32]. These results indi-
cate that AD patients have significantly more variations
in vascular diameter than controls do.

The finding of altered variance in the brain pulsations
is in line with the recent studies indicating altered vari-
ance of the blood flow, blood–brain permeability, and
cardiovascular pulse propagation in the brain [2, 3, 31].
Furthermore, in AD, the amyloid proteins accumulated
in the walls of arteries may alter the vasomotor func-
tion, as shown in the IPAD intramural accumulation of
amyloid in AD [33]. The pulsations drive brain clear-
ance of protein waste, and the failure of brain waste
clearance precedes neurodegenerative tissue changes.

It has been shown that AD is linked to rising blood
pressure that increases the stiffness of blood wall struc-
ture reflected as a loss of neurovascular autoregulation
and vasodilatory activation responses [34]. As the brain
has a vast vascular content, especially in grey matter,
the brain tissue elasticity is also affected by the VLF
vasomotor wave disturbances [35].
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Fig. 2 Average normalized
spectra of HbO, HbR, and
HbT from AD patients and
controls

Fig. 3 VLF band bar
charts of HbO, HbR, and
HbT show that SE from
controls and AD patients
are significantly different; L
left, R right
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Fig. 4 Respiratory band
bar charts of HbO, HbR,
and HbT show that SE
from controls and AD
patients are significantly
different only for the left
side; L left, R right

Fig. 5 Cardiac band bar
charts of HbO and HbR
show that SE from controls
and AD patients are
significantly different only
for the right side; L left, R
right
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Fig. 6 Plots of MMSE vs.
SE in VLF band

AD is also associated with sleep disordered breathing
(SDB) [36, 37] with a prevalence of over 50% [38]. Peo-
ple with SDB experience cognitive impairments such
as attention deficits and memory loss [39], which corre-
late with neuroanatomical changes and grey matter loss
[40]. Interestingly, SDB also advances cognitive decline
in the elderly [41] and obstructive sleep apnea (OSA)
links to neurophysical scores for various brain functions
[42]. Specific to the frontal cortex where we measured
the hemodynamic response, this part is highly associ-
ated with memory, attention, and higher cognitive func-
tion [43] as has been found in AD patients. Although
we did not assess if our subjects experienced SDB, our
finding in the respiratory band seems to support the
relationship between AD and SDB.

The anatomical MRI analysis of our AD patients
detected no lesions in the measurement area of the
NIRS. However, we found one small individual lacuna

infarct from two patients (in insula and in right pari-
etal sensory cortex), one meningioma 8 mm in oppos-
ing parietal cortex and 4 mm subcortical microhaem-
orrhages in upper premotor area. These should have
no effect to NIRS signal. Hippocampal atrophy varied
from grades 0 to 3, and cortical atrophy was mostly
mild (6/8, maximum grades 1) suiting the high MMSE
scores of our AD cases. There were also some white mat-
ter hyperintensities, but these did not reach the frontal
cortex where NIRS was reading the signal either.

Results in the respiratory bands showed that SE val-
ues of AD patient are always larger than those of con-
trols in all concentrations and bands. However, signif-
icant differences of SE value in respiratory band were
found from the left hemisphere only due to a large vari-
ation or standard deviation. In the cardiac band, the SE
values of AD are smaller than those of controls in all
concentrations. These facts encourage to have further
analysis using more data.
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The best fit lines in Fig. 6 show a decreasing trend as
the MMSE value increases. It supports a strong argu-
ment that SE in the VLF band provides good pre-
dictability related to the development of AD. In other
words, it reflects the progression of AD. Based on Table
1, all AD patients who participated in this study were
in mild or early form of dementia. Hence, the differ-
ence between AD patients and controls should be small.
However, SE value in VLF band demonstrated signifi-
cant difference between these two groups, showing the
potential of this method for early detection of glym-
phatic failure in AD, e.g., using SE values to classify
severe, moderate, and mild dementia.

Although the proposed method looked promising,
this finding may be somewhat limited by the small num-
ber of subjects. The balance between AD patients and
controls may also add another limitation. In the future
studies, we will have more subjects involved, we can
estimate the diagnostic accuracy and SE characteristic
among different sex, age, etc., groups.

In conclusion, we show that the SE of brain fNIRS
signal can be a useful biomarker for Alzheimer’s dis-
ease pathology. The proposed method can be used as a
preliminary diagnosis tool prior to more thorough eval-
uations using the abovementioned ones.
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Wahlund, P. Wiig et al., Olfactory response in the tem-
poral cortex of the elderly measured with near-infrared
spectroscopy: A preliminary feasibility study. J. Cereb.
Blood Flow Metab. 24, 677–680 (2004)

13. S. Jahani, A.L. Fantana, D. Harper, J.M. Ellison, D.A.
Boas, B.P. Forester et al., fNIRS can robustly measure
brain activity during memory encoding and retrieval in
healthy subjects. Sci. Rep. 7, 1–14 (2017)

14. R. Li, G. Rui, W. Chen, S. Li, P.E. Schulz, Y.
Zhang, Early detection of Alzheimer’s disease using non-
invasive near-infrared spectroscopy. Front. Aging Neu-
rosci. 10, 1–11 (2018)

15. D. Perpetuini, A.M. Chiarelli, D. Cardone, C. Filippini,
R. Bucco, M. Zito et al., Complexity of frontal cortex
fNIRS can support Alzheimer disease diagnosis in mem-
ory and visuo-spatial tests. Entropy 21, 26 (2019)

16. D. Yang, R. Huang, S.H. Yoo, M.J. Shin, J.A. Yoon, Y.I.
Shin et al., Detection of mild cognitive impairment using
convolutional neural network: temporal-feature maps

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


662 Eur. Phys. J. Spec. Top. (2023) 232:655–662

of functional near-infrared spectroscopy. Front. Aging
Neurosci. 12, 141 (2020)

17. J. Kim, D.K. Yon, K.Y. Choi, J.J. Lee, N. Kim, K.H.
Lee et al., Novel diagnostic tools for identifying cog-
nitive impairment using olfactory-stimulated functional
near-infrared spectroscopy: patient-level, single-group,
diagnostic trial. Alzheimers Res. Ther. 14, 1–10 (2022)

18. H. Helakari, J. Kananen, N. Huotari, L. Raitamaa, T.
Tuovinen, V. Borchardt et al., Spectral entropy indi-
cates electrophysiological and hemodynamic changes in
drug-resistant epilepsy—a multimodal MREG study.
Neuroimage Clin. 22, 101763 (2019)

19. U.R. Acharya, H. Fujita, V.K. Sudarshan, S. Bhat,
J.E.W. Koh, Application of entropies for automated
diagnosis of epilepsy using EEG signals: a review.
Knowl. Based Syst. 88, 85–96 (2015)

20. A. Vakkuri, A. Yli-Hankala, P. Talja, S. Mustola, H.
Tolvanen-Laakso, T. Sampson et al., Time-frequency
balanced spectral entropy as a measure of anesthetic
drug effect in central nervous system during sevoflurane,
propofol, and thiopental anesthesia. Acta Anaesthesiol.
Scand. 48, 145–153 (2004)

21. N. Zaccarelli, B.L. Li, I. Petrosillo, G. Zurlini, Order
and disorder in ecological time-series: Introducing nor-
malized spectral entropy. Ecol. Indic. 28, 22–30 (2013)

22. J. Sun, B. Wang, Y. Niu, Y. Tan, C. Fan, N. Zhang
et al., Complexity analysis of EEG, MEG, and fMRI in
mild cognitive impairment and Alzheimer’s disease: a
review. Entropy 22, 239 (2020)

23. X. Yu, Z. Mei, C. Chen, W. Chen, Ranking power spec-
tra: a proof of concept. Entropy 21, 1057 (2019)

24. H. Helakari, V. Korhonen, S.C. Holst, J. Piispala, M.
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