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Abstract This study discusses the results of a Recurrence quantification analysis (RQA) of the Rössler
system with a fractional order (q1) of the derivative in the first equation. The fractional order q1 changes
slightly in the range q1 ∈ 〈0.9, 1.0〉. Even with such relatively small changes in the q1 derivative, significant
changes in the dynamics of the system are observed between the bifurcation diagrams determined for the
bifurcation parameter a. Nevertheless, as q1 decreases one can notice the preservation of some structures
of the bifurcation diagram, in particular the main periodic windows of the integer-order Rössler system.
The RQA shows clear differences between various regular windows of the integer system and only slight
changes in these windows are caused by an increase in the system’s fractionality. Nonetheless, by selecting
appropriate recurrence variables it is possible to expose the changes occurring in the regular windows under
the influence of the fractionality of the system. This approach allows for the detection of the fractional
character of the system through a recurrence analysis of the time series taken from periodic regions.

1 Introduction

Systems of differential equations with a fractional
derivative order (fractional systems) are increasingly
used to model real phenomena and technical processes
[1–12]. They describe the evolution of dynamical sys-
tems for which the current state depends not only on
the current state but also on previous states (i.e. on
the history of the system), which is clearly visible in
their mathematical definitions [13]. Since the end of
the 20th century fractional order derivatives have also
been used more and more in modelling highly complex
phenomena [5]. The mathematical apparatus of frac-
tional derivatives plays an important role in solving
many engineering problems [1–4, 6]. Quite often it is
used to model and control magnetic systems [7–9], and
it has also been successfully implemented in completely
different disciplines, such as biology [3], medicine [11],
and physiology [10]. The fractional models are applied
to describe systems and objects of various scales, from
the nanoscale [12], up to cosmic scales [14].

Methods for detecting nonlinearities and chaos in
integral and fractional systems are constantly being
developed and tested [15, 16]. In the case of explo-
ration and/or control of such systems, the ability to
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detect the fractional nature of the system, identify frac-
tional terms, and evaluate the order of fractional deriva-
tives may be very important. System identification is
crucial for steering problems. The introduction of var-
ious definitions of fractional derivatives and methods
of solving them was followed by the development in
the identification of fractional systems [17]. These early
works assumed a given order of the fractional deriva-
tive and were focused on finding the system parameters
using the standard least square method [18, 19]. Further
works extended the scope of identification of the order
of the derivative of the fractional system [20, 21]. Some
identification methods cope very well even with noisy
time series, where the proposed scheme offers a high
degree of accuracy for erroneous data [20]. Similarly like
in systems with integer order derivatives, the identifica-
tion of the fractional system is performed using meth-
ods working in the time domain [22, 23], and in the
frequency domain [2, 24–26]. Recently further refine-
ments to methods of identification of fractional order
systems have been developed [27–30]. In the presented
work we show a numerical method of detection of frac-
tionality in the Rössler system, which is based on the
recurrence analysis of a periodically oscillating system.
The proposed approach does not call for complex math-
ematical algorithms. It is based on the statistics of the
recurrence plot dots, depicting the return of the sys-
tem to the vicinity of its earlier states. The advantage
of this approach is its computational simplicity, which
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can be performed on relatively short time series [31].
This method also gives good results in the analysis of
complex time series [32], signals with noise [33], non-
stationary [34] and transients [35]. Recurrence quantifi-
cation analysis (RQA) is a method which has already
been used effectively to study changes in the dynamics
of various systems, using a variety of measures, proce-
dures, and algorithms [36–39]. Despite this, studies of
recurrences in fractional systems are hard to find. Of the
three found [40–42], two were written by the authors of
the current study Considering such a wide and effective
application of RQA in the study of various dynamical
systems, this method was chosen as a potential tool to
evaluate the fractionality of dynamical systems.

The current numerical tests check whether the results
of recurrence analysis can show changes depending on
the system fractionality large enough to enable the
evaluation of the fractional character of a dynamical
system. The Rössler system [43, 44] is chosen as the
research subject, with weak nonlinearity appearing only
in the third equation. In this study, an additional slight
fractionality is adopted in the first equation of the
system. Based on the changes in the bifurcation dia-
gram, resulting from the change in the system frac-
tionality, two windows of the bifurcation parameter a
were selected for further recurrence analysis. These win-
dows correspond to intervals of a where the behaviour
is regular. The RQA results change slightly due to slight
changes in the weak fractionality of the system under
study. In chaotic and quasi-periodic regions, recurrence
variables are difficult to separate due to relatively high
level of noise. But in the periodic modes, the noise level
decreases. The obtained results showed that in some
periodic intervals of the regular windows it is possible
to find a RQA subspace in which the changes caused
by the (relatively weak) fractionality of the system are
clearly visible. This confirms that the recurrence quan-
tification analysis can be considered as a potential tool
for the detection and evaluation of fractionalities in
dynamical systems.

The paper is organized as follows. Section 2 gives
the equations defining the fractional Rössler system.
Section 3 describes the numerical methods and tech-
niques used for solving the fractional differential equa-
tions (Sect. 3.1), computing the recurrence variables
(Sect. 3.2), and determining the bifurcation diagrams
(Sect. 3.3). The results of the analysis of the bifurca-
tion diagrams, determined for different system fraction-
alities, are presented in Sect. 4.1. Recurrence results are
discussed in Sects. 4.2 and 4.3. The part of the study
devoted to the discussion of numerical results ends with
Sect. 4.3, in which the presented approach was applied
to time series with different noise levels. The last section
concludes and summarises.

2 Rössler system

The Rössler system was developed in 1976 by Otto
Rössler [43], and is the simplest three-dimensional

chaotic system, with nonlinearity only in the third
equation. In the generalization with fractional order
derivatives, the system is defined as follows [44, 45]:

Dq1
t x = −y − z,

Dq2
t y = x + ay,

Dq3
t z = b + z(x − c), (1)

where we adopt b = 2, c = 4, and the initial values
at t = 0 equal to x(0) = 0, y(0) = 1, z(0) = 9. The
operator Dα

t means the fractional derivative of order α.
Its meaning and the method of numerical calculation
are given in Sect. 3.1. qn, (n = 1, 2, 3) are in general the
fractional orders of derivatives with values q2 = q3 = 1
and q1 ∈< 0.9, 1.0 > adopted in the current study. The
bifurcation parameter a is swept in a wide interval with
bounds depending on the q1 value.

Numerical solutions of the fractional system (1) for a
given a value were obtained by implementation of the
Grünwald–Letnikov method (Sect. 3.1), solutions of the
integer system (q1 = 1) were obtained using a simple
Euler algorithm with a small time step. The follow-
ing parameters affect the results of all simulations: the
integration step h, the settling time ST and the next
period of time AT from which the data were collected
for further numerical analysis. For the integer system
h = 2 · 10−4, ST = 5000, and AT = 3000. In the
simulations of the fractional system, it was assumed:
h = 10−3, ST = 10, 000, and AT = 300.

3 Numerical methods

3.1 Fractional derivative

In the numerical calculations of this work, the
Grünwald–Letnikov method [46, 47] was adopted
to solve the fractional differential equation.
Grünwald–Letnikov’s approach is a direct exten-
sion of the derivative of integer order n to that of a
fractional order q and is given by the formula

Dq
t y(t) = lim

h→0
h−q

∞∑

k=0

(−1)k

(
q
k

)
y(t − kh). (2)

Discretization of the independent variable t in time lim-
its 〈0, tn〉 (tn = nh) gives the approximation

Dq
t y(tn) ≈ h−q

n∑

k=0

(−1)k

(
q
k

)
y(tn−k). (3)

The binomial coefficients c
(q)
k = (−1)k

(
q
k

)
are com-

puted recursively [48]:

c
(q)
0 = 1, c

(q)
k =

(
1 − 1 + q

k

)
c
(q)
k−1, (4)
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which simplifies further numerical calculations. Apply-
ing the ‘short memory’ principle [49], transforms Eq.
(3) into

LDq
t y(tn) = h−q

p∑

k=0

c
(q)
k y(tn−k), (5)

where L = mh is a short time interval from which the
values of previous states are taken to compute the solu-
tion at time tn, p = n for tn < L and p = m for tn ≥ L.
Assuming the general form of the fractional equation

LDq
t y(tn) = f(y(tn), tn), (6)

the solution at the n-th time step is given by

y(tn) = f(y(tn), tn)hq −
p∑

k=1

cq
ky(tn−k). (7)

In calculating the solutions of fractional systems, the
system history length L = 17, 500h was adopted.

3.2 Recurrence analysis

Recurrence plot analysis was initiated in 1987 by Eck-
mann et al. [50], with the idea of representing the
dynamics of a time-varying system using a graphical
chart called a Recurrence Plot (RP). A recurrence plot
is a square matrix of dots with two axes representing
time. The black dots (ti, tj) of the RP correspond to
the moments of time in which

Rε
ij = Θ(ε − ‖V(ti) − V(tj)‖), (8)

detects the proximity of system states V(tk) in the
phase space. ε is the threshold parameter and the
i, j, k = 1, 2, . . . , N indices number the successive val-
ues of the time t for which the values of the vector V
of system states were recorded.

The recurrence quantification analysis is an exten-
sion of RP analysis by developing statistical variables
measuring distribution of dots in the RP . This idea was
developed by Zbilut and Webber [51, 52] and was fur-
ther developed by Casdagli [53], Marwan [32, 54] and
others. In this study, we examine the three-dimensional
Rössler system, described by the full set of three dif-
ferential equations, so the time delay embedding [55] is
not required here. Before the construction of the RP ,
all system variables are normalised according to the fol-
lowing scheme: xN = (x − x)/σx, where x is a chosen
system variable and σx is the standard deviation of the
variable x . In the presented studies of the system the
following recurrence variables were implemented to test

the dynamics of the Rössler system:

RR =
1

N(N − 1)

N∑

i, j = 1
i �= j

Rij , (9)

〈D〉 =
∑N−1

l=2 lHD(l)
∑N−1

l=2 HD(l)
, (10)

LAM =
∑N−1

v=2 vHV (v)
∑N

i, j = 1
i �= j

Rij

, (11)

TT =
∑N−1

v=2 vHV (v)
∑N−1

v=2 HV (v)
, (12)

LEnt = −
N−1∑

l=2

pL(l)log(pL(l)), (13)

V Ent = −
N−1∑

v=2

pV (v)log(pV (v)), (14)

where

pL(l) =
HD(l)

∑N−1
l=2 HD(l)

, pV (v) =
HV (v)

∑N−1
v=2 HV (v)

are the probability of occurrence of a diagonal line of
length l and a vertical line of length v , respectively.
HD and HV are histograms of diagonal (D) and ver-
tical (V ) line length distribution. In the above formu-
las, the main diagonal of RP is consistently omitted,
because it represents the closeness of the system states
with themselves and therefore does not add any valu-
able recurrence information. RR (recurrence rate) is the
dots density of the RP ; 〈D〉 is the average length of the
diagonal lines and TT (trapping time) is the average
length of the vertical lines. LAM (laminarity) is defined
as the ratio of the number of dots on vertical lines to
all recurrence dots. LEnt and VEnt are the Shannon
entropy of the diagonal and vertical line length distri-
butions, respectively. Definitions and interpretations of
recurrence measures (9)–(14) are given in detail in [56].
As shown in [57] for the Duffing system and in [58] for
the Rössler system, recurrence variables also strongly
depend on the density of time series from which the
RP is built. In this study, the time series taken for the
RQA analysis were AT = 300 long and were diluted to
a density of 20 points per unit of t , giving 6000 points
used to build recurrence plots.

3.3 Bifurcation diagrams

The bifurcation diagram gives the general characteris-
tics of a dynamical system in which one of the param-
eters, called the bifurcation parameter, changes. In our
study, the a parameter was selected for this role.
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Fig. 1 Bifurcation
diagrams obtained for
decreasing value of q1. The
scale of the a axis in the
subsequent diagrams is
changed with reference to
the regular windows R2 and
R3 marked by rectangles in
the first diagram, where R2
starts at a ≈ 0.457 and R3
starts at a ≈ 0.5 in the
bifurcation diagram
obtained with q1 = 1

To build a bifurcation diagram, one must determine
the puncture points of the Poincaré plane (x = 0)
through the time series which is the solution of the sys-
tem (1) for a given a, in the time interval of NS sec-
onds after the settlement time (ST ). The bifurcation
diagram presents the projections of Poincaré points on
the Y axis for all values of the bifurcation parameter a.
Each bifurcation diagram was computed for 1920 values
of the parameter a. For the entire range of the bifur-
cation parameter, its values changed with the ha step,
the value of which was selected taking into account the
range of changes of the bifurcation parameter and the
system characteristics.

4 Results and discussion

4.1 Bifurcation diagrams of fractional system

The main inspiration for this research were the mod-
ifications of the bifurcation diagram caused by the

increasing fractionality of the system (due to the
decreasing of q1). The selected results obtained for
decreasing value of the q1 parameter are presented in
Fig. 1.

The step Δa for the bifurcation diagrams q1 = 1.00,
q1 = 0.97 and q1 = 0.94 was 1.15 · 10−04, and for
the bifurcation diagram q1 = 0.92 it was reduced to
0.9 ·10−04 (to compensate for the diagram compression
effect due to the increase in the fractionality). Increas-
ing fractionality in the first equation shifts the bifurca-
tion diagram towards higher values of the bifurcation
parameter a. It is interesting that as the fractionality of
the system increases, the windows R2 and R3 (marked
in Fig. 1) maintain approximately the same position in
relation to the diagram, while many other regular win-
dows appear and disappear during this process. The
scale of the a axis in the subsequent diagrams in Fig. 1
is changed in such a way that the regular windows R2
and R3 are aligned vertically, thus indicating stability
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Fig. 2 a Change in the position of the reference points BP (the first bifurcation point) and EoR3 (the end of the R3
regular window) on the axis of the bifurcation parameter involved while decreasing q1 value. aBP and aEoR3 are vectors
containing the positions of both reference points. b With the same changes of q1, the distance between the reference points
Δ(i) = aEoR3(i)−aBP (i) decreases—the bifurcation diagram is compressed. In this case, an auxiliary straight line has been
added to facilitate the evaluation of these changes
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Fig. 3 a The trajectory of the transition of the integer system through the R3 window, as observed in the {RR,〈D〉,LEnt}
RQA subspace. The marker colors correspond to the values of the bifurcation parameter a according to the attached color
bar. b Comparison of the R3 and R2 regular windows trajectories’ in the same RQA subspace

of these dynamical regions in the bifurcation character-
istics of the system.

To determine the changes in the position and size
of the bifurcation diagram following the decrease of q1
value, two reference points were selected: BP—the point
of the first bifurcation marked by a circle in the diagram
obtained for q1 = 1 (Fig. 1) and EoR3—the end of
interval of the regular window R3.

As can be seen in Fig. 2a, decreasing the value of
q1 shifts both reference points towards higher values of
the bifurcation parameter. At the same time, the dis-
tance between these characteristic points is decreasing
(Fig. 2b). This shows that the bifurcation diagram of
the system, when decreasing the order of the derivative
of the first equation, shifts towards the higher values of
the bifurcation parameter and becomes compressed.

Despite the deformation of the bifurcation diagram
with respect to the bifurcation parameter, the result in
Fig. 1 shows that wide regular windows do not change

their bifurcation characteristics and relative position in
the diagram. Taking into account previous studies [58]
which showed that recurrences of regular windows are
very sensitive to changes in the dynamics of the sys-
tem, two intervals corresponding to two regular win-
dows: R2 and R3, marked in Fig. 1, were selected for
further recurrence tests. Further details of bifurcation
diagrams are given in Appendix A.

4.2 Regular windows of integer-order system

When a system parameter is changed, its dynamics
change, which is reflected in the results of the recur-
rence analysis. It is shown in Fig. 3a for the R3 window.

In this case, the parameter a is scanned in the range
a ∈< 0.5000, 0.5121 >, which shifts the dynamics of the
system through the R3 window. The colors of the mark-
ers reflect the values of the a parameter. The system at
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Fig. 4 The results obtained in the {RR,〈D〉,LEnt} RQA subspace for integer and fractional (q1 = 0.99) systems in windows
R2 (a) and R3 (b)
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Fig. 5 The results obtained for a sweep of a through the R3 windows for different q1 values in the: a {RR, LEnt},
b {RR, LAM}, c {RR, V Ent}, and d {RR, TT}, subspaces. The area in which the differences between the individual
results are clearly distinguishable is marked in the c figure. The calculations assumed a value of the threshold parameter of
ε = 0.05
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the beginning is chaotic (dark blue markers in the upper
right corner), next it jumps sharply to the periodic
mode (lower left corner), and returns to chaos (yellow
markers) through the period doubling cascade and the
quasi-periodic region. Figure 3b compares trajectories
of R2 and R3 regular windows in the {RR,〈D〉,LEnt}
RQA subspace. The results obtained for both regular
windows are clearly separated in this space. Thus the
RQA can potentially be used to identify different regu-
lar windows of the Rössler system.

4.3 RQA of the fractional system in regular windows

In order to check whether RQA can detect differences
in system fractionality, the calculations of the RQA
variables were performed for both selected regular win-
dows (R2,R3), according to the formulas given in Sect.
3.2. Figure 4 compares the results obtained in the
{RR,〈D〉,LEnt} RQA subspace for integer and frac-
tional systems in R2 (a) and R3 (b) regular windows
for low fractionality defined by q1 = 0.99.

Under these conditions, a slight difference can be
noticed in the results obtained for the regular window
R2 (Fig. 4a), while the results of the integer and frac-
tional systems obtained for the R3 window almost coin-
cide (Fig. 4b). This corresponds to the results of bifur-
cation, which in the range of higher values of the param-
eter a are more resistant to the fractional nature of the
system.

By increasing the fractionality of the system, a slight
shift and modification in the individual recurrence
results are observed. This is shown in Fig. 5 for the
results of four RQA measures: LEnt (a), LAM (b),
V Ent (c) and TT (d) for a sweep of the a parame-
ter through the R3 window, and for several q1 values.
The results of all RQA measures presented in Fig. 5 are
plotted as a function of the density of RP dots (RR).

As can be noted, the largest differences in the results
caused by the change in the fractionality of the system
are visible for the variable V Ent (Fig. 5). Similar anal-
yses performed for the R2 window gave qualitatively
similar results—the biggest changes in the recurrence
results due to the change in the system fractionality
occur for the variable V Ent (Fig. 6). The areas marked
on Figs. 5c and 6 correspond to periodic modes in which
the RQA variables stabilize, thus they become better
separated and better identify solutions that differ in
fractionality.

The differences that are clearly visible in the results
of V Ent obtained for different values of q1 occur in a
limited range of changes in the bifurcation parameter
a. In search of location of these intervals, the V Ent
results obtained in the periodic area of the R3 win-
dow for individual q1 values were plotted as a function
of the parameter a and compared with the bifurcation
diagram (Fig. 7).

A detailed analysis has shown that the largest differ-
ences in V Ent occur in a narrow window of the bifur-
cation parameter (Δa), which is located just after the
first bifurcation point of the period doubling cascade.
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Fig. 6 The results obtained for a sweep of a through the
R2 window in the {RR, V Ent} subspace for different q1
values. The area in which the differences between the indi-
vidual results are clearly distinguishable is marked. The
calculations assumed the value of the threshold parameter
ε = 0.035

This area is marked with vertical lines on Fig. 7a for
q1 = 0, 99 and for q1 = 0, 96 on Fig. 7b.

The regular window R3 was selected for further anal-
ysis, because its bifurcation characteristics are stable
in the whole range of changes in the fractionality of
the system which are examined in the current study. In
order to find the range of the biggest sensitivity of the
variable V Ent to changes in the fractional structure of
the system, additional calculations were performed in
the periodic range of the R3 window (Sect. 4.4). The
question why the V Ent measure works effectively in
this case is discussed in Appendix B.

4.4 Revealing fractionality by the R3 periodic
window

The preliminary results showed that the method of
determining the Δaq1 intervals (for individual q1 val-
ues) on the basis of the results presented in Fig. 7 is
not accurate enough. To obtain a satisfactory separa-
tion of results in the subspace {RR, V Ent}, the inter-
vals Δaq1 should be determined based on the area of
the highest differences in {RR, V Ent}. Such areas are
boxed in Figs. 5c and 6. This approach is demonstrated
on the example of the series of results obtained for
the extended set of fractional order values in the R3
window, for q1 ∈ {.90, 0.92, 0.94, 0.96, 0.97, 0.98, 0.99, 1}
and for ε = 0.06 (Fig. 8a). The value of ε was selected
as a non-optimal value to demonstrate that sharp opti-
misation of the threshold parameter is not required, see
Appendix C for more details.

As in the case of Figs. 5c and 6, the separation area is
marked with a black frame. For each result, the frame
limits the ΔRR range in which it is best separated
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Fig. 7 Comparison of the V Ent results and the bifurcation diagram in the periodic area of the R3 window. The range
of variability of the parameter a corresponds to the first step in the period doubling cascade. a q1 = 0.99, b q1 = 0.096.
Vertical red lines represent the ranges Δa of changes of a, in which the results of V Ent are most sensitive to changes in q1
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Fig. 8 a The results obtained for a sweep of a through the R3 window in the {RR, V Ent} subspace for an extended set
of q1 values. The area in which the differences between the results for different q1 is clearly distinguishable is marked by
a black frame. The calculations assumed the value of the threshold parameter ε = 0.06. b Sample result of RR(a) for
q1 = 0.98 and transformation of ΔRR0.98 into Δa0.98

from the rest of the results in the {RR, V Ent} sub-
space. As can be noticed in Fig. 8a, only a small frac-
tion of the points are in the marked area. Here too,
we intentionally want to show the effectiveness of the
procedure when using non-optimal initial data. In this
case it means that we can start the analysis from the
scan of the bifurcation parameter through the whole
regular window. Based on the separation area, ΔRRq1
intervals are determined, corresponding to the results
obtained for the individual q1 values. The ΔRRq1 inter-
vals are then converted to Δaq1 intervals using the
RR(a) relationships. Figure 8b illustrates this transfor-
mation for q1 = 0.98. In the next step, the calculations
are repeated for all q1 values in their respective Δaq1
intervals. For each q1, 128 time series were calculated
for 128 a values, uniformly covering the respective Δaq1
interval. Then, the full RQA was performed for these
points, which gave the results presented in Fig. 9a, in

the {RR, V Ent} RQA subspace on which the current
study is focused.

The frame drawn in Fig. 9a has the same coordinates
as the frame in Fig. 8a. The mismatch of some results
to the framed area is the result of a (intentionally) non-
optimal selection of the initial data (Fig. 8a). Figure 9b,
presents points obtained by averaging of the RR and
V Ent variables for each result indexed by q1. As one
can see, positions of these points in the {RR, V Ent}
RQA subspace correlate with the fractionality of the
system. The dependence of the averaged V Ent values
on q1 (Fig. 10) confirms the effectiveness of the pro-
posed approach in detecting the weak fractionality of
the Rössler system without noise. The effects of noise
are detailed in Appendix C.
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Fig. 9 a The results of the V Ent variable obtained for individual values of q1 in narrow Δa intervals, which were determined
using the procedure illustrated in Fig. 8a,b. b The same results shown on the left side (a), after averaging the values of RR
and V Ent for each q1
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Fig. 10 Dependence of averaged values of V Ent on the
system fractionality

5 Summary

In this study, bifurcation diagrams and recurrence anal-
yses were used to study the fractional Rössler system. It
was assumed that the system fractionality is relatively
weak and is caused by the fractional order q1 of the
derivative occurring only in the first equation of the
system and varying in the range q1 ∈ 〈0.9, 1.0〉. The
bifurcation diagram of the integer system determined
for the bifurcation parameter a changes as the system
fractionality changes. As q1 decreases, the bifurcation
diagram shifts towards higher values of a, undergoes
compression and local modifications. However, when
comparing the diagrams with respect to selected spe-
cific reference points, it can be seen that some large
regular windows are not affected by weak fractional-
ity of the system. The recurrence results calculated for
these regular areas show clear differences between the
various regular windows and change slightly in response
to slight changes in the system fractionality.

The use of the proposed approach as a tool for detect-
ing and assessing the fractionality of the Rössler system
requires the predefinition of appropriate values for the
main parameters of the analysis, i.e. for the density of
time series points and the threshold parameter ε. The
ε value should be chosen depending on the noise level
of the analysed signal, based on appropriate calibra-
tion. As the detailed analysis of the R3 regular window
has shown, an important element of the procedure is
to determine the appropriate range of the bifurcation
parameter value (Δa), in which the recurrence results
show the largest changes under the influence of the
change in the Rössler system fractionality.

In conclusion, as a result of numerical tests of both
selected regular windows, recurrence variables were
found which in the dynamic region correspond to the
period doubling cascade and which show clear differ-
ences between systems that slightly differ in fractional-
ity. In this way, we showed the potential possibilities of
using recurrence analysis for detection and evaluation
of the weak fractionalities in the Rössler dynamical sys-
tem.

Acknowledgements The research was financed in the
framework of the project Lublin University of Technology-
Regional Excellence Initiative, funded by the Polish Min-
istry of Science and Higher Education (contract No.
030/RID/2018/19).

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which per-
mits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropri-
ate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third
party material in this article are included in the arti-
cle’s Creative Commons licence, unless indicated other-
wise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and

123



92 Eur. Phys. J. Spec. Top. (2023) 232:83–98

your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Data availibility statement Data availability statement:
no data associated in the manuscript.

A Details of the bifurcation diagram
modified by weak fractionality

The change in the Rossler system fractionality implies
many interesting changes in its bifurcation diagram,
determined for the bifurcation parameter a. Some of
them, of particular interest for the analysis under con-
sideration, are discussed below.

For example, the R2 window is poorly detectable
for q1 = 0.92, but it is an example of an interest-
ing phenomenon in the bifurcation representation of
changes in system dynamics. Figure 11 presents bifur-
cation diagrams made for the R2 window range, for
q1 = 1 (Fig. 11a), q1 = 0.96 (Fig. 11b) and q1 = 0.92
(Fig. 11c).

In cases (a) and (b), the window R2 is immersed in
a chaotic surroundings. However, for q1 = 0.92, the R2
window gives the impression of being superimposed on
changes in dynamics taking place in its surroundings.
It looks like the ‘fixed’ R2 window is superimposed on
the background dynamics of the system. The ‘back-
ground’ dynamics change with increasing parameter a
from chaotic, through quasi-periodic (invisible), period

halving cascade (‘thin branches’—partially visible), to
periodic. Finally, there is a sudden return of system
dynamics to a chaotic mode. It seems that the origi-
nal regular windows result from the intrinsic properties
of the system and it is difficult to eliminate them by
changing the dynamics of the system by modifying its
parameters.

In Fig. 1 there is another wide window, located for
a ≈ 4.1 (for q1 = 1). Let’s call this window R1. It
can be seen from Fig. 1 that the window R1 disappears
for q1 > 0.94, whereas the R2 and R3 windows still
exist at this level of the system fractionality. However,
with a further increase in the fractionality of the sys-
tem (by reducing q1), the arrangement of the two fixed
windows is disturbed. The R3 regular window is intact
in the results obtained for q1 = 0.9 (Fig. 12), while the
R2 window is clearly modified in this case by strong
changes in bifurcations.

These results (especially Fig. 12) show that the
increase in the fractional structure of the system causes
strong changes invading the bifurcation diagram, espe-
cially from the side of low values of parameter a.

B Suitability of V Ent for analysis
of the periodic mode

It is obvious that for the periodic mode and a small ε
value, the statistics of vertical lines are very simple. To
answer the question stated above, this section is ded-
icated to discuss the specific properties of the V Ent
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Fig. 11 Enlarged areas of the R2 window for: a q1 = 1, b q1 = 0.96, and c q1 = 0.92

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. Spec. Top. (2023) 232:83–98 93

Fig. 12 Bifurcation
diagram obtained for
q1 = 0.9
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Fig. 13 RP obtained for a fractional time series (q1 = 0.96
and a = 0.557979) in the interval Δt = 25

measure using the results obtained in Sect. 4.4 (Fig. 9a).
Since we compare here the RQA results computed from
single time series obtained for different q1, for each q1
one result lying in the middle of its corresponding Δaq1
interval is chosen. When an RP is built for a periodic
system, its dots form a pattern of thin diagonal lines.
When the tested time series is periodic and complex,
gaps and local thickenings may appear on some diag-
onal lines of the RP . In Fig. 13, the exemplary RP is
presented, calculated for the time series obtained from
the fractional system (q1 = 0.96) in the time interval
Δt = 25.

When a small value of the threshold parameter is
used, the local thickenings of the diagonal lines are only
a few dots wide. As a result, the distribution of the
length of the vertical lines of such a layout is very sim-
ple and the statistics of these lines do not contain much
information. Therefore, the special role played by V Ent
in the present study may be surprising, although the
results of studies of various dynamical systems were pre-
viously reported in which the interesting characteristics
of this variable were also explored [58]. In order to check
the reasons for the effectiveness of the V Ent measure in
the assessment of some phenomena, the results of the
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Fig. 14 Histograms of the distribution of the length of diagonal (a) and vertical (b) lines. In both cases, the results
obtained for q1 = 1 (a = 0.5048863) and q1 = 0.98 (a = 0.53177015) are compared

123



94 Eur. Phys. J. Spec. Top. (2023) 232:83–98

2 2.5 3 3.5 4 4.5 5

v

10 1

10 2

10 3

10 4

10 5
n

q
1
=1.00

q
1
=0.99

q
1
=0.98

q
1
=0.97

q
1
=0.96

q
1
=0.94

q
1
=0.92

q
1
=0.90

Fig. 15 Set of histograms of vertical line lengths obtained
for Δt = 300

Fig. 16 Phase portraits of the system developed for three
different values of ε

RQA were analysed, calculated for the data selected
from the sets discussed in the previous section (shown
in Fig. 9a). The next two graphs (Fig. 14) show the
length histograms of the diagonal (a) and vertical (b)
lines, calculated for two cases: q1 = 1 and q1 = 0.98.
The calculations were made for Δt = 300.

Diagonal line histograms (Fig. 14a) are very complex
and show complex differences between the two results
being compared. Such characteristics of the diagonal

lines histogram mean that when changing the q1 param-
eter, the LEnt values have a large dispersion and a
very weak correlation with the q1 values. Unlike LEnt ,
the histograms of both V Ent scores are very simple
(Fig. 14b). Extending this result to all tested fractional-
ities of the system gives the set of histograms presented
in Fig. 15.

It shows that the histograms of vertical lines,
although they are very simple, change systematically
with the change of the value of q1. This result is trans-
ferred to the statistical measure of V Ent, the values of
which also change systematically with the change of q1.

The statistical results confirm the effective operation
of the V Ent measure in distinguishing Rössler systems
that differ slightly in fractionality. To interpret the effi-
ciency of this variable in the context of the phase space
and basics of RQA, the phase portraits of three systems
differing in the q1 value are compared in Fig. 16.

Interpretation can be derived from two features of
phase portraits. First, all results presented in Fig. 16
are obtained for the value of the bifurcation parameter
slightly higher than the value corresponding to the first
bifurcation point (Fig. 7). Which means that the tra-
jectories in this figure have a double loop structure, and
local distance between these loops varies in both direc-
tion and value. Second, phase portrait obtained for a
given q1 shows turning points near which the density
of trajectory points decreases. As a result, when the
RP is constructed, the number of points crossing the
ε ball changes markedly at the turning points, which
is further enhanced by the slight separation of points
lying on different trajectory loops. Changes in q1 cause
changes in the trajectory of the system, which entails a
change in both discussed features of the phase portrait.
This implies changes in the pulsation of the thickness
of the diagonal lines, resulting in a different value of the
V Ent measure.

This interpretation gives rise to the most important
conditions that must be taken into account in the pre-
sented analysis. First of all, the density of the points
in the time domain must be appropriate to the com-
plexity of the periodic trajectory. Time series should be
obtained from a narrow periodic area, located slightly
after the first bifurcation point. Finally, the ε parameter
should be selected so as to obtain the greatest possible
difference in the statistics of vertical lines for changes in
trajectories caused by weak changes in the fractionality
of the system.

C Importance of the ε parameter

Figure 17 shows the V Ent(RR) results obtained for
the periodic range of the R3 window, for different sys-
tem fractionalities and for three values of the threshold
parameter.
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Fig. 17 The results of V Ent obtained for a sweep of a through the R3 windows for different q1 and ε values: a ε = 0.05,
b ε = 0.06, and c) ε = 0.07

In the Fig. 17a–c, the V Ent axis has the same range,
which makes it possible to notice the decreasing sep-
aration of the results with increasing ε. To show that
the proposed approach gives valuable results for a range
of ε (i.e. it does not require sharp optimisation of the
threshold parameter), a non-optimal value ε = 0.06 was
adopted in further calculations.

D Influence of noise

The method presented above was also applied to the
Rössler system, where noise was introduced to each
variable v ∈ {x, y, z}. Before the recurrence analysis
each of the variables was normalised according to the
formula vN = v−v̄

σv
. Then Gaussian noise of order 5%,

10% and 15% was added, which resulted in signals with
an SNR of 26, 20, and 16.5 dB, respectively.

Due to the assumptions limiting the analysis to peri-
odic modes, its application in the real world is limited
to stationary signals. Possible value shifts and scale dif-
ferences of individual variables are corrected by normal-
izing their values. The addition of noise brings the anal-
ysed series very close to real periodic signals, but many
features of real (measured) time series were not included
in this study. The potential adaptation of the proposed
approach to the analysis of real signals requires fur-
ther research and preferably confronting the presented
numerical method with real oscillators described by
both integer and fractional equations.

The RQA results of the signals with noise are pre-
sented in Fig. 18 in a manner analogous to the results
obtained for the time series without noise (Fig. 9).

On the left hand side the results for the subspace
{V Ent, RR} are shown for (a) SNR = 26dB, (b)
SNR = 20dB, and (c) SNR = 16.5dB. On the right
hand side the results for the corresponding average val-
ues of V Ent and RR can be seen: (d), (e), and (f),
respectively. The introduction of noise into the inves-
tigated time series necessitates higher values of the
threshold parameter when calculating the entries of an

RP matrix. In the analysis of the signal with noise the
values of ε were obtained in simple comparative tests.
No systematic investigation towards optimisation of ε
for different levels of noise and fractionality were con-
ducted. Based on the comparative tests, an appropriate
value of the threshold parameter ε was established for
each of the three different noise levels. The layout of the
points in subspace {RR, V Ent} obtained by averaging
(Fig. 18d–f) depends on the adopted ε value. Hence,
the criterion used in the comparative tests was based
on finding the ε value for which the points are arranged
in an orderly and monotonically variable manner, best
showing the differences between the results obtained
for different q1 values. In this way, the following thresh-
old parameter values were determined for the individual
noise levels: (a) ε = 0.10 for SNR = 26dB, (b) ε = 0.20
for SNR = 20dB, and (c) ε = 0.27 for SNR = 16.5dB.
The results for the average values show good data point
separation in the recurrence subspace, and that they
are correlated with corresponding values of q1 is clearly
visible. However, when a noise level is added to the sys-
tem vibrating in periodic mode, the diagonal lines of
its RP become disturbed, which change the statistics
of the diagonal and vertical lines and results in mod-
ification of the RQA variables. This entails a change
in the {RR, V Ent} results, which are used in the cur-
rent study to assess the fractionality of the system. As
can be seen in Fig. 18d–f, an increase in the noise level
reduces the differences between the V Ent coordinates
of the averaged points, and at the same time increases
the differences between their RR coordinates. Thus,
as the noise level increases, the result of the separa-
tion depends less and less on the V Ent variable and
more and more on the RR variable. Unfortunately, the
obtained results are not sufficient to make a thesis that
the increase in the noise level will always be reflected
in a systematic shift of the average value of the RR
measure. This issue requires further detailed analysis.
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Fig. 18 Recurrence results obtained in the {RR, V Ent} subspace for individual values of q1 for time series with different
noise levels: a SNR = 26dB, b SNR = 20dB, and c SNR = 16.5dB. The corresponding plots on the right (d–f) show the
same results obtained after averaging both recurrence measures. The colouring scheme is coherent for all panels, and is as
given in panel (a)
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