Skip to main content

Advertisement

Log in

Detecting epileptic seizures using machine learning and interpretable features of human EEG

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Epilepsy is a neurological disorder distinguished by sudden and unexpected seizures. To diagnose epilepsy, clinicians register the signals of brain electric activity (electroencephalograms, EEG) and extract segments with seizures. It enables characterizing their type and finding an onset zone, a brain area where they originate. This procedure requires manual EEG deciphering, which is slow and necessitates the assistance of machine learning (ML) algorithms. Traditionally, ML handles this issue in a supervised fashion, i.e., after the training on the representative data, it constructs a boundary in the feature space that separates classes. As the number of features grows, this boundary becomes complex and less generalized. The feature space of brain data is high dimensional. The standard recording includes 30 signals and 50 frequencies resulting in 1500 features. Using additional time-domain features may further enlarge the feature space. Thus, selecting appropriate features is a big part of the successful classification. The selection procedure relies on either a data-based mathematical approach (e.g., principal components, PCs) or the expert domain knowledge of data (explainable features, EFs). Here, we demonstrate the benefits of using EFs. For the EEG data of 30 epileptic patients, we trained a RandomForest algorithm using PCs and EFs. The feature importance analysis revealed that explainable features outperform principal components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from National Medical and Surgical Center named after N. I. Pirogov of Russian Healthcare Ministry but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of National Medical and Surgical Center named after N. I. Pirogov of Russian Healthcare Ministry.

References

  1. W.H. Organization, G.C. against Epilepsy, P. for Neurological Diseases, N.W.H. Organization), I.B. for Epilepsy, W.H.O.D. of Mental Health, S. Abuse, I.B. of Epilepsy, I.L. against Epilepsy, Atlas: epilepsy care in the world (World Health Organization, 2005)

  2. E. Beghi, The epidemiology of epilepsy. Neuroepidemiology 54(2), 185–191 (2020)

    Google Scholar 

  3. R.S. Fisher, C. Acevedo, A. Arzimanoglou, A. Bogacz, J.H. Cross, C.E. Elger, J. Engel Jr., L. Forsgren, J.A. French, M. Glynn et al., Ilae official report: a practical clinical definition of epilepsy. Epilepsia 55(4), 475–482 (2014)

    Google Scholar 

  4. R.D. Thijs, R. Surges, T.J. O’Brien, J.W. Sander, Epilepsy in adults. Lancet 393(10172), 689–701 (2019)

    Google Scholar 

  5. G. Motamedi, K. Meador, Epilepsy and cognition. Epilepsy Behav. 4, 25–38 (2003)

    Google Scholar 

  6. J.W. Sander, The use of antiepileptic drugs-principles and practice. Epilepsia 45, 28–34 (2004)

    Google Scholar 

  7. S. Ghosh, J.K. Sinha, T. Khan, K.S. Devaraju, P. Singh, K. Vaibhav, P. Gaur, Pharmacological and therapeutic approaches in the treatment of epilepsy. Biomedicines 9(5), 470 (2021)

    Google Scholar 

  8. P. Ryvlin, J.H. Cross, S. Rheims, Epilepsy surgery in children and adults. Lancet Neurol. 13(11), 1114–1126 (2014)

    Google Scholar 

  9. G.K. Bergey, Neurostimulation in the treatment of epilepsy. Exp. Neurol. 244, 87–95 (2013)

    Google Scholar 

  10. World Health Organization, Epilepsy: a public health imperative (World Health Organization, 2019)

    Google Scholar 

  11. C.E. Elger, C. Hoppe, Diagnostic challenges in epilepsy: seizure under-reporting and seizure detection. Lancet Neurol. 17(3), 279–288 (2018)

    Google Scholar 

  12. D.E. Friedman, L.J. Hirsch, How long does it take to make an accurate diagnosis in an epilepsy monitoring unit? J. Clin. Neurophysiol. 26(4), 213–217 (2009)

    Google Scholar 

  13. S.D. Shorvon, The etiologic classification of epilepsy. Epilepsia 52(6), 1052–1057 (2011)

    Google Scholar 

  14. E.M. Goldberg, D.A. Coulter, Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nat. Rev. Neurosci. 14(5), 337–349 (2013)

    Google Scholar 

  15. G.D. Hammer, S.J. McPhee, M.H. Education, Pathophysiology of Disease: An Introduction to Clinical Medicine (McGraw-Hill Education Medical, New York, 2014)

    Google Scholar 

  16. W.O. Tatum IV., Handbook of EEG Interpretation (Springer Publishing Company, New York, 2021)

    Google Scholar 

  17. S. Beniczky, S. Wiebe, J. Jeppesen, W.O. Tatum, M. Brazdil, Y. Wang, S.T. Herman, P. Ryvlin, Automated seizure detection using wearable devices: a clinical practice guideline of the international league against epilepsy and the international federation of clinical neurophysiology. Clin. Neurophysiol. 132(5), 1173–1184 (2021)

    Google Scholar 

  18. E.S. Berner, Clinical Decision Support Systems, vol. 233 (Springer, Berlin, 2007)

    Google Scholar 

  19. M. Mohri, A. Rostamizadeh, A. Talwalkar, Foundations of Machine Learning (MIT Press, Cambridge, 2018)

    MATH  Google Scholar 

  20. M.K. Siddiqui, R. Morales-Menendez, X. Huang, N. Hussain, A review of epileptic seizure detection using machine learning classifiers. Brain Inform. 7, 1–18 (2020)

    Google Scholar 

  21. A.T. Tzallas, M.G. Tsipouras, D.I. Fotiadis, Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput. Intell. Neurosci. 2007, 80510 (2007)

    Google Scholar 

  22. J. Birjandtalab, M.B. Pouyan, M. Nourani, in First International Workshop on Pattern Recognition, vol. 10011 (International Society for Optics and Photonics, 2016), p. 100110M

  23. V. Chavakula, I.S. Fernández, J.M. Peters, G. Popli, W. Bosl, S. Rakhade, A. Rotenberg, T. Loddenkemper, Automated quantification of spikes. Epilepsy Behav. 26(2), 143–152 (2013)

    Google Scholar 

  24. M. Zabihi, Patient-specific epileptic seizure detection in long-term EEG recording in paediatric patients with intractable seizures. Master's Thesis, Tampere University of Technology (2013)

  25. O. Fasil, R. Rajesh, Time-domain exponential energy for epileptic EEG signal classification. Neurosci. Lett. 694, 1–8 (2019)

    Google Scholar 

  26. O.E. Karpov, V.V. Grubov, V.A. Maksimenko, S.A. Kurkin, N.M. Smirnov, N.P. Utyashev, D.A. Andrikov, N.N. Shusharina, A.E. Hramov, Extreme value theory inspires explainable machine learning approach for seizure detection. Sci. Rep. 12(1), 1–14 (2022)

    ADS  Google Scholar 

  27. C. Donos, M. Dümpelmann, A. Schulze-Bonhage, Early seizure detection algorithm based on intracranial EEG and random forest classification. Int. J. Neural Syst. 25(05), 1550,023 (2015)

    Google Scholar 

  28. N.D. Truong, L. Kuhlmann, M.R. Bonyadi, J. Yang, A. Faulks, O. Kavehei, Supervised learning in automatic channel selection for epileptic seizure detection. Expert Syst. Appl. 86, 199–207 (2017)

    Google Scholar 

  29. K.D. Tzimourta, A.T. Tzallas, N. Giannakeas, L.G. Astrakas, D.G. Tsalikakis, P. Angelidis, M.G. Tsipouras, A robust methodology for classification of epileptic seizures in EEG signals. Heal. Technol. 9(2), 135–142 (2019)

    Google Scholar 

  30. L. Guo, D. Rivero, J. Dorado, J.R. Rabunal, A. Pazos, Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks. J. Neurosci. Methods 191(1), 101–109 (2010)

    Google Scholar 

  31. J. Birjandtalab, V.N. Jarmale, M. Nourani, J. Harvey, in 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS) (IEEE, 2018), pp. 1–4

  32. S. Siuly, E. Kabir, H. Wang, Y. Zhang, Exploring sampling in the detection of multicategory EEG signals. Comput. Math. Methods Med. 2015, (2015)

    Google Scholar 

  33. S. Lahmiri, A. Shmuel, Accurate classification of seizure and seizure-free intervals of intracranial EEG signals from epileptic patients. IEEE Trans. Instrum. Meas. 68(3), 791–796 (2018)

    ADS  Google Scholar 

  34. J.H. Kang, Y.G. Chung, S.P. Kim, An efficient detection of epileptic seizure by differentiation and spectral analysis of electroencephalograms. Comput. Biol. Med. 66, 352–356 (2015)

    Google Scholar 

  35. B. Direito, J. Duarte, C. Teixeira, B. Schelter, M. Le Van Quyen, A. Schulze-Bonhage, F. Sales, A. Dourado, Feature selection in high dimensional EEG features spaces for epileptic seizure prediction. IFAC Proc. Vol. 44(1), 6206–6211 (2011)

    Google Scholar 

  36. V. Harpale, V. Bairagi, An adaptive method for feature selection and extraction for classification of epileptic EEG signal in significant states. J. King Saud Univ. Comput. Inf. Sci. 33(6), 668–676 (2021)

    Google Scholar 

  37. H.U. Amin, A.S. Malik, R.F. Ahmad, N. Badruddin, N. Kamel, M. Hussain, W.T. Chooi, Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Australas. Phys. Eng. Sci. Med. 38(1), 139–149 (2015)

    Google Scholar 

  38. R. Esteller, J. Echauz, T. Tcheng, B. Litt, B. Pless, in 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2 (IEEE, 2001), pp. 1707–1710

  39. C. Guerrero-Mosquera, A.M. Trigueros, J.I. Franco, A. Navia-Vazquez, New feature extraction approach for epileptic EEG signal detection using time-frequency distributions. Med. Biol. Eng. Comput. 48(4), 321–330 (2010)

    Google Scholar 

  40. L. Logesparan, A.J. Casson, E. Rodriguez-Villegas, Optimal features for online seizure detection. Med. Biol. Eng. Comput. 50(7), 659–669 (2012)

    Google Scholar 

  41. G. Koller, E. Schürholz, T. Ziebart, R. Frankenberger, A. Neff, J.W. Bartsch, Clinical evaluation of pathognomonic salivary protease fingerprinting for oral disease diagnosis. J. Personal. Med. 1(9), 866 (2021)

    Google Scholar 

  42. S.P.K. Shiao, J. Grayson, C.H. Yu, Gene-metabolite interaction in the one carbon metabolism pathway: predictors of colorectal cancer in multi-ethnic families. J. Personal. Med. 8(3), 26 (2018)

    Google Scholar 

  43. A. Batmanova, A. Kuc, V. Maksimenko, A. Savosenkov, N. Grigorev, S. Gordleeva, V. Kazantsev, S. Korchagin, A.E. Hramov, Predicting perceptual decision-making errors using EEG and machine learning. Mathematics 10(17), 3153 (2022)

    Google Scholar 

  44. R. Islam, A.V. Andreev, N.N. Shusharina, A.E. Hramov, Explainable machine learning methods for classification of brain states during visual perception. Mathematics 10(15), 2819 (2022)

    Google Scholar 

  45. B. Abbasi, D.M. Goldenholz, Machine learning applications in epilepsy. Epilepsia 60(10), 2037–2047 (2019)

    Google Scholar 

  46. D. Kasteleijn-Nolst Trenité, G. Rubboli, E. Hirsch, A. Martins da Silva, S. Seri, A. Wilkins, J. Parra, A. Covanis, M. Elia, G. Capovilla et al., Methodology of photic stimulation revisited: updated European algorithm for visual stimulation in the EEG laboratory. Epilepsia 53(1), 16–24 (2012)

    Google Scholar 

  47. D.M. White, C.A. Van Cott, EEG artifacts in the intensive care unit setting. Am. J. Electroneurodiagn. Technol. 50(1), 8–25 (2010)

    Google Scholar 

  48. J.S. Ebersole, T.A. Pedley, Current Practice of Clinical Electroencephalography (Lippincott Williams & Wilkins, Philadelphia, 2003)

    Google Scholar 

  49. A. Hyvärinen, E. Oja, Independent component analysis: algorithms and applications. Neural Netw. 13(4–5), 411–430 (2000)

    Google Scholar 

  50. N.S. Frolov, V.V. Grubov, V.A. Maksimenko, A. Lüttjohann, V.V. Makarov, A.N. Pavlov, E. Sitnikova, A.N. Pisarchik, J. Kurths, A.E. Hramov, Statistical properties and predictability of extreme epileptic events. Sci. Rep. 9(1), 1–8 (2019)

    Google Scholar 

  51. O.E. Karpov, V.V. Grubov, V.A. Maksimenko, N. Utaschev, V.E. Semerikov, D.A. Andrikov, A.E. Hramov, Noise amplification precedes extreme epileptic events on human EEG. Phys. Rev. E 103(2), 022,310 (2021)

    Google Scholar 

  52. M. Krauledat, G. Dornhege, B. Blankertz, K.R. Müller et al., Robustifying EEG data analysis by removing outliers. Chaos Complex. Lett. 2(3), 259–274 (2007)

    Google Scholar 

  53. A.E. Hramov, A.A. Koronovskii, V.A. Makarov, V.A. Maximenko, A.N. Pavlov, E. Sitnikova, Wavelets in Neuroscience (Springer, Berlin, 2021)

    MATH  Google Scholar 

  54. A. Aldroubi, M. Unser, Wavelets in Medicine and Biology (Routledge, London, 2017)

    MATH  Google Scholar 

  55. E. Sitnikova, A.E. Hramov, A.A. Koronovsky, G. van Luijtelaar, Sleep spindles and spike-wave discharges in EEG: their generic features, similarities and distinctions disclosed with fourier transform and continuous wavelet analysis. J. Neurosci. Methods 180(2), 304–316 (2009)

    Google Scholar 

  56. A.N. Pavlov, A.E. Hramov, A.A. Koronovskii, E.Y. Sitnikova, V.A. Makarov, A.A. Ovchinnikov, Wavelet analysis in neurodynamics. Phys. Usp. 55(9), 845 (2012)

    Google Scholar 

  57. P. Gloor, R. Fariello, Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy. Trends Neurosci. 11(2), 63–68 (1988)

    Google Scholar 

  58. E. Trinka, J. Höfler, A. Zerbs, Causes of status epilepticus. Epilepsia 53, 127–138 (2012)

    Google Scholar 

  59. H. Adeli, Z. Zhou, N. Dadmehr, Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Methods 123(1), 69–87 (2003)

    Google Scholar 

  60. E. Sitnikova, A.E. Hramov, V.V. Grubov, A.A. Ovchinnkov, A.A. Koronovsky, On-off intermittency of thalamo-cortical oscillations in the electroencephalogram of rats with genetic predisposition to absence epilepsy. Brain Res. 1436, 147–156 (2012)

    Google Scholar 

  61. R.S. Fisher, W.V.E. Boas, W. Blume, C. Elger, P. Genton, P. Lee, J. Engel Jr., Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46(4), 470–472 (2005)

    Google Scholar 

  62. C. Luo, J. Zhan, X. Xue, L. Wang, R. Ren, Q. Yang, in International Conference on Artificial Neural Networks (Springer, 2018), pp. 382–391

  63. K. Park, J.S. Hong, W. Kim, A methodology combining cosine similarity with classifier for text classification. Appl. Artif. Intell. 34(5), 396–411 (2020)

    Google Scholar 

  64. B. Schelter, J. Timmer, A. Schulze-Bonhage, Seizure Prediction in Epilepsy: From Basic Mechanisms to Clinical Applications (Wiley, New York, 2008)

    Google Scholar 

  65. H. Abdi, L.J. Williams, Principal component analysis. Wiley Interdiscipl. Rev. Comput. Stat. 2(4), 433–459 (2010)

    Google Scholar 

  66. G. Biau, E. Scornet, A random forest guided tour. TEST 25(2), 197–227 (2016)

    MathSciNet  MATH  Google Scholar 

  67. L. Breiman, Manual on setting up, using, and understanding random forests v3. 1. Statistics Department, University of California, Berkeley, CA, USA, vol. 1, no. 58, pp. 3–42 (2002)

Download references

Acknowledgements

The study was supported by the Project 36-L-22 of the Priority 2030 program of Immanuel Kant Baltic Federal University. VM thanks The President Grant (MD-2824.2022.1.2) in part of formulating research hypothesis. VG thanks The President Grant (MK-2603.2022.1.6 and MD-590.2022.1.2) in part of data analysis.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by OEK, SA, VVG, VM, SK, NU, and AEH. The first draft of the manuscript was written by VVG, VM, and AEH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alexander E. Hramov.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpov, O.E., Afinogenov, S., Grubov, V.V. et al. Detecting epileptic seizures using machine learning and interpretable features of human EEG. Eur. Phys. J. Spec. Top. 232, 673–682 (2023). https://doi.org/10.1140/epjs/s11734-022-00714-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00714-3

Navigation