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Abstract Electroencephalography (EEG) allows recording of cortical activity at high temporal resolution.
Creating features useful for the analysis of the EEG recording can be challenging. Here we introduce a new
method of pre-processing the time-series for the analysis of the resting state and binary task classification
using recurrence quantification analysis (RQA) and compare it with the existing state-of-the-art approach
based on signal embedding. To reveal patterns that unfold brain dynamics, we present a new pipeline that
does not rely on selection of embedding parameters for RQA. Instead of using EEG time-series signals
directly, Short-term Fourier transform (STFT) is used to generate new time-series, based on the power
spectra from sliding, overlapping windows. Recurrence plots are created in a standard way from embedded
EEG signals, and the STFT vectors. The efficiency of RQA features extracted from such plots is compared
in classification of EEG segments that correspond to open and closed eye conditions. In contrast to the
common approaches to such analysis, no filtering into separate frequency bands was needed. Differences
between the two representations of EEG signals are illustrated using histograms of RQA features and
UMAP plots. Classification results at the 95.9% level were obtained using selected features for less than
10 electrodes.

1 Introduction

Electroencephalography (EEG) provides a way to
observe dynamic neuronal activity and regionally dis-
tinct oscillatory activity of the brain, in frequency
ranges that extend over multiple orders of magnitude
[1]. EEG is widely used in clinical diagnostics, brain dis-
orders, estimation of mental workload and fatigue, emo-
tion recognition, motor imagery, brain-computer inter-
faces, sleep scoring, neuroergonomics and many other
applications [2, 3]. An extensive work has been done to
find biomarkers of brain disorders correlated to neural
activity [4]. Diagnosis of sleep disorders (for example
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narcolepsy), head injuries, degeneration of brain tissue,
brain hemorrhage, stroke, brain infection, Alzheimer’s
or Parkinson’s disease can be supported by extracting
specific features of the EEG signals. EEG is also used
in the monitoring of the depth of anesthesia and con-
sciousness disorders. Another popular application area
of EEG is in the construction of brain-computer inter-
faces [2, 3].

Many original methods have been proposed for EEG
analysis. Complex neural networks and deep learning
may frequently provide good classification results. Such
models learn specific kernels and use them for convolu-
tion of the time-series signals, but they do not provide
features that allow for a clear interpretation [5]. One of
the most important problems in mental disease diag-
nostics based on the EEG signals is opening the black
box of complex classifiers, and providing comprehen-
sible explanations based on features that offer useful
information. Cognitive, behavioral and emotional tasks
can be used to elicit the responses of individuals to cog-
nitive stimuli [6]. Such test-focused methodology is use-
ful in neurology and psychiatry to provide personalized
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diagnostics. New approaches are needed to support the
development of biomarkers of various brain disorders
from the resting-state and task-related measurements.
One promising direction to create objective biomarkers
of brain disorders is based on the identification of abnor-
mal dynamical connections measured in the resting
state, using functional-connectivity magnetic resonance
imaging (rs-fcMRI) [7]. This is an expensive technique
that is hard to standardize, but it provides good quanti-
tative results, showing the importance of neurodynamic
assessment for clinical diagnosis and underlining the
significance of searching for EEG-based biomarkers that
could replace fcMRI.

The recurrence quantification analysis (RQA) is a
method of nonlinear data analysis that quantifies the
number, duration, and structure of recurrences of
dynamical system states [8, 9]. This analysis is based on
a fundamental property of recursion, observed in many
complex systems, including brain neurodynamics. A
recurrence plot (RP) enables the visualization of higher-
dimensional phase spaces using a two-dimensional chart
that displays the similarity of the current state to
the past states. Patterns contained in recurrence plots
include information about: metastable states (when sys-
tem trajectory is fluctuating in some basin of attraction
but does not change significantly), frequency of recur-
rence of specific states, and similarity between signals
from spatially distributed regions indicating synchro-
nized subnetwork activity. The RQA analysis of the
EEG signal has been successfully used to characterize
the various stages of dreams, episodes of sleep apnea
[10], and to assess the depth of anesthesia [11]. It also
enables the automated identification of epileptic EEG
signals [12]. In this area, RQA is a new tool that pro-
vides the means to observe dynamical changes in the
activity of the brain that were hard to notice by other
types of EEG signal analysis methods. Non-linear fea-
tures extracted from RQA have potential in clinical
applications, being not only useful in diagnostics, but
also helping to understand brain dynamics.

The standard procedure to work with non-linear
time-series is to use the embedding theorem due to
Takens [13], significantly extended in recent papers
by many researchers [14]. These theorems provide the
basis for optimal state-space reconstruction from uni-
variate time series, creating a shadow version of the
original multidimensional manifold simply by analyz-
ing a single component of a multi-dimensional time-
series. This enables reconstruction of the trajectory
that preserves essential mathematical properties of the
original system, such as the topology of the manifold
on which the trajectory lies. A one-to-one mapping
between the original attractor and its reconstruction is
established, allowing the discovery of a low-dimensional
manifold describing the state of the original dynamical
system. This requires sampling of the time series with
time delays, and embedding results in higher dimen-
sional space. Optimal hyperparameters for representa-
tion of the original data require the determination of
the embedding dimension and time-delays (TD-EMB)
[8, 9, 14].

Although we have mathematical proof that attrac-
tors of dynamical systems may be recreated using the
embedding approach [13, 14], in practice such meth-
ods have succeeded only for relatively simple systems.
Most reconstructions of dynamics based on the embed-
ding theorems have been tested on low-dimensional
chaotic systems, such as the Rössler system, Duffing
oscillator, or the Mackey–Glass delay equation [8, 9].
EEG data is much more complex. Specifying embedding
and time-delay hyperparameters can be very challeng-
ing, especially when analyzing the resting state brain
activity data. The hyperparameters defining the time-
delay embedding may be selected for each frequency
band separately, providing a detailed analysis of the
delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–14 Hz), beta
(14–30 Hz) and gamma (above 30 Hz) bands. Each band
is associated with different brain processes and men-
tal states, from deep sleep to relaxation, anticipation,
perception and attention. An extensive review of differ-
ences in frequency bands in eyes open and closed con-
ditions showed substantial overlap across a spectrum
of psychiatric disorders and large variability within dis-
orders [15]. Parameters for every frequency band need
to be optimized and calculations performed separately.
Such an approach may lose important information when
peak frequencies shift between several bandpasses. In
the resting-state analysis, we would like to focus on
features that are present in the whole spectrums of the
brain waves. Because the EEG signal is a complex, non-
stationary mixture of many oscillations, it is difficult to
create a useful set of features that can be used to reli-
ably estimate the similarity of its states, needed for the
creation of recurrence plots.

There is growing evidence that brain dynamics
evolves in low-dimensional latent spaces [16]. Coarse
description at the level of local field potentials may
contain more information than detailed, spiking-neuron
models provide [17]. Pinotsis and Miller [16] claim that
the emergence of stable electrical fields provides a stable
representation of memory. If this hypothesis proves to
be true, investigation of local field potentials, and EEG
as their proxy, maybe the best road to understanding
brain processes. So far, extracting useful information
from the EEG signals has had limited success. We need
to explore new ways of EEG analysis and find a new
language for the description of brain processes.

Our main goal in this paper is to compare non-
linear features extracted from recurrence plots build
in two ways: using the standard embedding approach
to create a time-dependent representation of signals,
and using Short-Time Fourier Transform (STFT) to
convert the input signal from the time domain into
the time–frequency domain. Two types of vectors con-
structed in this way endow recurrence plots with differ-
ent properties, reflected in features that are extracted
from the recurrence plots using the recurrence quantita-
tive analysis (RQA). Embedded representation of time-
series EM-RQA is based on the sampling of the origi-
nal, quickly oscillating signal, and it is not easy to find
parameters that faithfully recreate underlying attrac-
tor states. The STFT-RQA representation is based on
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the distributions of power spectra that show peaks for
certain frequencies, stabilizing the process of similarity
estimation and facilitating meaningful interpretation.
While STFT has been recently combined with RQA
in a few applications, we have not seen EEG analysis
done in this way. A combination of STFT with precise
timing of neural events in recurrence plots may offer
the most effective feature-based approach to character-
ize the nonstationary and largely chaotic EEG signals.
Interpretation of recurrence is in this case rather simple:
it is the return of oscillations that have similar power
spectra, playing a specific role in the information flow
in the brain.

Our strategy to compare the usefulness of these two
methods of EEG signal representation involves the con-
struction of recurrence matrices, extraction of RQA fea-
tures, and using them in the classification of resting-
state data acquired in the eyes open and eyes closed
conditions. This is a rather simple, but non-trivial task.
It requires a search for the best parameters for embed-
ding, construction of recurrence matrices, and STFT
calculation. The discriminatory power of RQA features
is assessed by inspection of their distributions for each
subject and each condition. Using a linear SVM classi-
fier allows for the selection of the most useful combina-
tions of features and electrodes. A single prototype for
each class was used as a reference vector in the nearest
prototype method. This approach is sufficient to reach
our goal without an extensive comparison of various
approaches to construct recurrence plots.

In the next section, steps used in our calculation
pipelines, and the description of 64-channel EEG time
series data used for testing are described. The third
section presents details of the methods used to con-
struct signal representation for the construction of
recurrence matrices, calculations of distances, and fea-
ture extraction using recurrence quantification anal-
ysis. Section IV contains the results of the calcula-
tions. Parameters of the TD-EMB-RQA and STFT-
RQA approaches have been selected to achieve the
best classification results in tenfold cross validation.
The distribution of the selected RQA feature values
obtained for each of the 64 electrodes, calculated for
each subject, illustrates differences among individual
subjects. Histograms of the selected RQA feature val-
ues distributed over all subjects, show the discrimina-
tory power of these features. RQA features calculated
for each electrode provide spaces in which the linear
SVM method creates a discriminating hyperplane. His-
tograms of projections on the direction perpendicular
to this hyperplane show overlapping distributions for
open and closed eyes conditions. Selecting the largest
SVM coefficients shows that a few features for specific
electrodes are sufficient to achieve the best results. Fea-
ture vectors are also displayed using UMAP visualiza-
tion. The final section contains conclusions and plans
for future work.

2 Preliminaries

Non-linear features are created from the analysis of
signals measured by single electrodes. Starting with
the original data matrix Uk = (uik ), where the
index i enumerates time-series samples and index k
refers to electrodes (data streams, input channels),
two types of matrices representing time series are
constructed, labeled Xk and Sk . First, the vectors
representing original samples from each electrode are
replaced by the time-delayed embedded vectors x ik =
(uik , uik+τ ,. . . ,uik+(m − 1)τ ). Here m is the embedding
dimension and τ is an index enumerating time delays
[18]. A sequence of these vectors creates an Xk matrix,
containing the representation of the time-series in the
m-dimensional embedded space, separate for each chan-
nel. The recurrence matrix RXk is created by compar-
ing the distance between x ik vectors. RQA features FX
describing properties of dynamics are extracted from
the RXk matrix. Thus, the TD-EMB-RQA pipeline
used to generate non-linear features for each channel
k involves Uk → Xk → RXk → FXk transforma-
tions. A set of features for each electrode defines the
input space for classifiers.

In the second approach, STFT is used to determine
the power spectrum for a range of oscillation frequen-
cies in a short time-window that contains fragments
of EEG signals. STFT was used with good results in
a wide range of applications in the Brain-Computer
Interfaces (BCI), e.g. analysis of signals during imag-
ined writing [19], and many applications in neurology,
such as the classification of seizure prediction [20]. Vec-
tors s ik = STFT([uik ,uik+n ]) are created, where n is
the number of samples in the time window and s ik (f )
components represent the EEG power at frequency f in
the time window i . We have filtered frequencies to the
0–50 Hz range, with signal sampling rate at 160 Hz and
discretized the whole spectrum to 257 points (obtained
from 512 FFT frequency bins), so this is the dimension
of s ik vectors in the STFT representation. Vectors for
all time windows i are collected in the matrix S. Obser-
vation of power distribution changes over time, rising
and waning peaks in different frequency bands, is done
in consecutive time windows, shifted by a few samples.
To preserve temporal resolution we have used a shift by
a single sample. Calculating distances between columns
of Sk matrix recurrence matrix RSk is created. The
RSk matrix is analyzed to obtain a set FSk of RQA
features. The STFT-RQA pipeline for the generation
of non-linear features is: Uk → Sk → RSk → FSk.

Which set of features, FX or FS, contains more use-
ful information, and which is easier to optimize and
calculate? To answer this question we have performed
various analyses of the EEG resting state data collected
with open and closed eyes.

EEG Recordings: a subset of data from the BCI2000
project [21] was used for our tests. It contains prepro-
cessed data of 109 subjects. This dataset has been pub-
licly available as a part of PhysioNet resources [22].
The BCI2000 project facilitates the implementation of
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different BCI systems as well as various psychophysio-
logical experiments. It is available with full documenta-
tion and has been used in a variety of studies by many
research groups. To avoid artifacts, we have removed 10
subjects, leaving the data for 98 people.

Electrodes were placed according to the 10–10 inter-
national electrode placement system [23], excluding the
following 11 channels at the circumference of the skull:
Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, and
P10. This leaves 64 electrodes. The sampling rate of
EEG recordings was 160 Hz (relatively low) for 64 chan-
nels. We set up an average reference for the electrodes
and use the data with pre-applied preprocessing. For
the purpose of our analysis, we have extracted the two
1-min baseline runs, one with eyes open and one with
eyes closed. For our computations, only 31 s of the sig-
nal from both baselines were used, each containing 5000
samples per channel. For EEG preprocessing and data
handling pipeline, we used the MNE-Python library
[24].

3 Methods

Here the details of methods used to create our two rep-
resentations, TD-EMB and STFT, are described.
Time-delay embedding (TD-EMB): to create X

matrix that contains EEG signals x i = (ui ,
ui+τ ,. . . ,ui+(m − 1)τ ) for each channel (for simplicity
we will drop the k index here) one has to determine
hyperparameter m, the embedding dimension and time
delay τ , equal to the number of samples each compo-
nent is shifted by [18]. The real-time delay is equal to
τΔt , where Δt is the sampling time (in our case Δt =
6.25 ms = 1000/160).

The value of the τ parameter is often estimated by
selecting the delay corresponding to the first local min-
imum value of mutual information (DMI) [18]. One of
the methods recommended to select embedding dimen-
sions is based on the number of the false nearest neigh-
bors (FNN, [18]). Here we have used these aforemen-
tioned methods implemented in the NoLiTSA pack-
age [25]. Moreover, we have estimated the FNN num-
ber (and the values of RQA parameters) as a func-
tion of embedding dimension, finding a minimum for m
between 4 and 6, correlated with relatively high trap-
ping time and other RQA features. This was true for
the whole frequency range as well as in separate bands,
from delta to gamma.

After creation of the X matrix, the recurrence matrix
Ri,j = Θ(ε −‖x i -x j‖), i,j = 1. . .N is computed. Here
N is the number of vectors after embedding (equal to
the total number of samples minus (m − 1)τ), and ε
is the distance threshold (also called the neighborhood
parameter), a maximum distance that vectors may dif-
fer to be considered similar. Θ(·) is the binary step func-
tion, and ‖·‖ is the norm used to measure distances
[8]. We have used the Euclidean distance for embedded
signals. For the power spectra, we have experimented

with the Wasserstein distance metric, but it made cal-
culations slower and Euclidean distances gave similar
results, so they were used in both methods.

Selecting values of embedding parameters shows one
problem with this approach: it is usually done using
various heuristics. The choice of ε is somehow arbi-
trary and it has to be adjusted to the estimated embed-
ding and delay parameters. To this day, a golden stan-
dard for the ε has not been established. Selecting dif-
ferent thresholds for each channel, subject and time
segment could probably give better results, but the
whole procedure would be very tedious and require con-
siderable computations. Automatic procedures for the
selection of embedding parameters have been published
recently, but have not yet been used with such com-
plex time series as the EEG signals [14]. Selection of a
non-uniform time delay embedding, like the one devel-
oped in [14], might give better results with time-delay
embedding method. However, our goal is not to maxi-
mize classification accuracy, but to compare the advan-
tages of two approaches to EEG time series represen-
tation. Here we have used a well-established approach,
selecting ε value for the fixed global recurrence rate.
Specifically, we have calculated ε as the 4th percentile
of the distance distribution [26].

Despite optimization of codes and parallelization for
the Compute Unified Device Architecture (CUDA) of
the Tesla V100 24 GB cards, the complete pipeline,
from construction of representation to the final classi-
fication, takes more than two hours on a PC worksta-
tion. However, our goal was not to achieve the high-
est possible classification accuracy, but to compare the
advantages of two approaches to EEG time series rep-
resentation. Therefore, for the sake of simplicity during
classification, we fixed the m and τ parameters at the
most frequent values: m = 5 and τ = 9.

After obtaining m, τ and ε parameters, recurrence
matrices are calculated separately for each electrode.

Short-Time Fourier transform (STFT): to create S
matrices, STFT was computed in sliding time windows,
separately for every electrode and each subject. For this
purpose, we have used the TensorFlow implementation,
defining Hamming window type with 240 samples (cor-
responding to 1488 ms), shifted by a single sample.
This number of samples proved to be a good compro-
mise, as shorter time frames will introduce uncertainty
in the frequency determination of the Fourier trans-
form and larger windows increase the uncertainty of
time in which calculated spectra arise. High gamma fre-
quencies have very small amplitudes; therefore, a cut-
off frequency of 50 Hz was used, well below the 80 Hz
Nyquist frequency for the 160 Hz sampling rate. With
this relatively slow sampling frequency and 240 samples
in the window, a low-frequency resolution of 2/3 Hz is
obtained (Rayleigh frequency). The number of vectors
generated in this way is equal to N minus the window
size (here 4800–240 = 4560). Between each sampling
point we have Δt = 6.25 ms. At 50 Hz each oscillation
lasts 20 ms, about three times longer. Although we have
calculated STFT starting from every sampling point, a
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sliding window of 3 points (or more for higher sampling
frequencies) should be sufficiently accurate.

STFT analysis returns 257 samples representing each
si vector for each time window, with the number of
frequency bins set to 512. This operation resulted
in a matrix S containing a representation of time
series based on STFT (Fig. 1). These vectors have a
clear interpretation, showing peaks of characteristic fre-
quency. The separation of EEG signals into separate fre-
quency bands may distort such power shifts. In Fig. 1,
the main alpha peak is shifting towards a slightly higher
frequency. The usual boundary between alpha and beta
bands is at 12–13 Hz.

Power peaks of similar frequencies observed in spec-
tra for different electrodes indicate patterns of synchro-
nized activity, but investigation of these processes is left
for future work.

Recurrence matrices from STFT vectors RX matrices
are calculated directly from the columns of X matrix,
using Euclidean distance with the threshold (neighbor-
hood parameter) ε equaled to the 4th percentile of the
distance distribution. To create RS recurrence matri-
ces, we have also used the Euclidean distance metric.

Every column vector in matrix S, representing the
power spectrum in a given time window, is compared
with all previous vectors using the Euclidean distance
metric. Figure 2 shows the spectrogram with a rather
stable alpha peak and weaker power in other frequen-
cies. The threshold parameter was similarly calculated
as the 4th percentile of the distance distribution, creat-
ing the recurrence plots with rather large basins of sim-
ilarity (Fig. 2b). Note that column vectors X and S are
of very different size, m components versus 257 com-
ponents, therefore also the neighborhood size param-
eter is quite different. In the STFT case we expect
to see many distinct metastable states, correspond-
ing to similar power spectra and similar fragments of
the time/frequency spectrograms. The distance is small
when peaks and shapes of the power spectra are similar,
indicating recurrence to a similar state. While recur-
rence plots do not show precisely which frequencies
contribute to this result, we can identify states that
belong to groups that have similar spectra and which
states form a distinct group. Recurrence matrices con-
tain information about the spectra with sets of peaks of
different frequency values. If ε is small, all states seem to
be different, similarity basins are small and only a few
off-diagonal elements appear. If ε is large, everything
seems to be quite similar. We know that microstates,
clusters of similar global power distributions, have typ-
ical duration of about 100 ms [27]. One way to esti-
mate ε value is to require that recurrence plots should
show rich structure within a stripe of no more than a
few hundred milliseconds near the diagonal, indicating
metastable and transition states, as in Fig. 2b. We can
also check how the value of ε will influence classification
accuracy at our final step.

Recurrence Quantification Analysis (RQA): non-linear
features are calculated from the matrices RX and RS

using the recurrence quantitative analysis. We have
used the PyRQA library [28] to extract RQA fea-
tures FX from each electrode for each subject, and
to plot the recurrence matrices. For the FS features,
we have used our own implementation of recurrence
quantification analysis, based on modification of the
recurrence_python software [29].

In both cases computed RQA features included: TT
= trapping time (also called dwell time), DET = deter-
minism, L = average diagonal line length, Lentr =
entropy of diagonal lines and LAM = laminarity (see
[8] for the definition of these quantities). Although it is
possible to extract at least 12 additional features from
the RQA analysis [29], these five features were the most
useful in the prediction of autism from the infant EEG
data [30] and are quite sufficient to compare TD-EMB-
RQA and STFT-RQA approaches. Non-linear EEG fea-
tures have so far been used only in the analysis of a
relatively small number of subjects. Here we have 98
subjects, allowing for more reliable statistics. We may
expect better results using more features, but relative
advantages of the two methods should not change.

Features generated from RX and RS matrices may
be compared using histograms in Fig. 3 and 4. They
show only 3 features: trapping time (TT), average diag-
onal line length (L), and determinism (DET). The his-
togram for laminarity (LAM) is quite similar to deter-
minism and entropy of diagonal lines (Lentr), so these
histograms are not shown to save space. The histogram
for TT resembles L, LAM is similar to DET.

Distributions shown in Fig. 3 and 4. have been nor-
malized and outliers, due to the artifacts produced by
some electrodes, removed using Robust Chauvenet Out-
lier Rejection [31]. This procedure has been extensively
tested in radio astronomy, but so far has never been
used for the EEG data. For most subjects histograms
of the FS features show distributions that have lower
values for the open-eyes condition. This is understand-
able, as the brain activation is in this case more varied,
and trapping times are shorter. Oculometry data would
probably show a correlation between the frequency of
eye movements and the distribution of these feature
values. It also indicates that even single features with
selected electrodes may have discriminative power. The
variance of feature values is quite large and that points
to the importance of the selection of the most useful
EEG channels. In a few cases subjects have similar dis-
tributions of feature values that may point to vivid
imagery, making it hard to distinguish between brain
activations in eyes open or closed conditions.
FX features show strong overlaps for most subjects.

Distributions of all RQA feature values from all elec-
trodes also are quite similar for open and closed eyes.
There is a small tendency towards higher values in the
open eyes condition, quite the opposite as in the FS
case. The high variance shows that careful selection of
electrodes for which extreme values are calculated may
be helpful in discrimination of the two conditions.

Figures 5 and 6 show L, TT, and DET histograms
for the FS and FX features for all subjects. From these
histograms we may also conclude that in the case of
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Fig. 1 Example of STFT
vectors calculated in time
windows of about 1.5-s
length, showing a shift of
the alpha peak frequency in
the power spectra after
100 ms and 200 ms,
measured by the O1
electrode (occipital area)
during eyes closed condition

closed eyes L, TT, and DET calculated from the FS
features have in general larger values than in the case
of open eyes. TT shows the largest difference, therefore
it may be the most useful feature in classification. This
is followed by L, and to a lower degree by DET, where
the peaks of the two distributions are much closer to
each other. Brain dynamics is less chaotic with eyes
closed. Differences seen here may be attributed mostly
to the strong, persistent alpha peaks in the eyes closed
condition, as seen in the spectrogram in Fig. 1. STFT
representation of EEG signal shows these differences
quite clearly. Strong alpha peaks may contribute to the
higher values of these parameters. In the case of FX
features (Fig. 6) it is not so explicit. Overlaps of fea-
ture distributions are much stronger. There is a small

shift of TT and L values in the eyes open conditions
towards lower values. Therefore these features will not
be of much use to distinguish between our two exper-
imental conditions. Interpretation of these results may
be fallacious.

4 Classification results

FX and FS features calculated for each channel define
vector space for the EEG classification. Although many
approaches could be applied here, and probably achieve
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Fig. 2 a Example of a spectrogram, with brighter colors for higher powers. b Fragment of recurrence plot that contains
STFT column vectors for each point in time, with periods of rapid changes (red dot) and relative stability (orange dot),
when the system is trapped in a meta-stable state. c Red and orange color dots/markers for the two time points shown in
the spectrogram plot correspond to the two power distributions

slightly better results, we have used the Linear Sup-
port Vector Machine (LSVM) algorithm. This is a ver-
sion of the linear discrimination algorithm that finds
a hyperplane in high-dimensional space dividing two
classes of data. For our goal—comparison of representa-
tions based on two sets of features—this has important
advantages. The linear classification approach allows for
a simple interpretation that is lost when non-linear ker-
nels are used. LSVM allows for visualization of results,
creating histograms of data for each class projected on
the vector perpendicular to the discriminating hyper-
plane [32]. The weights obtained from LSVM show the
importance of the combination of each feature/channel
for discrimination. This allows for the estimation of the
feature/channel usefulness. The creation of filters based
on a small number of electrodes, with algorithms that
extract specific information from each channel, is very
important for clinical applications. A step in this direc-
tion is done here.

LSVM classification and visualization of results We
now have two sets of nonlinear features. Combining
five features with all 64 electrodes creates vectors Z

with 320 components that contain all information avail-
able in our feature space. This should allow for better
discrimination than single features in Figs. 5 and 6.
Classification accuracy for the whole group of 98 sub-
jects was calculated with the linear SVM classifier using
these vectors as inputs. For the cross-validation, the
stratified k -fold method was chosen with k = 10. This
method shuffles the data randomly and splits it into k
− 1 groups which are used as a training set and one
test set, all with a balanced number of condition val-
ues. The whole procedure is repeated k times. The total
mean classification accuracy as well as the mean accu-
racy for each condition type derived from the confusion
matrix were calculated. The SVM implementation from
Scikit-learn Python library was used.

To exclude redundant electrodes and features, we
have performed recursive feature elimination with ten-
fold cross-validation using the Scikit-learn function. In
every step of this process, the algorithm removed one
component from the data with the lowest absolute value
of the SVM coefficient, performing cross-validation in
the space of reduced dimensionality.
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Fig. 3 Examples of histograms of the three FS feature values (from the STFT column vectors, window size = 240) from
the RQA analysis (other features have similar histograms), showing for all 98 subjects distribution of TT, L and DET
values extracted from 64 electrodes

Fig. 4 Examples of histograms of the three FX feature values (X column vectors for m = 5, τ = 9) from the RQA analysis
(other features have similar histograms), showing for all 98 subjects distribution of TT, L and DET values, extracted from
64 electrodes
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Fig. 5 Histograms of the
RQA features for all 98
subjects: a TT (trapping
time), b DET
(determinism), c L (average
diagonal line length),
calculated for the FS
features (STFT parameters
as in Fig. 3)

The STFT-RQA classification achieved fairly good
results with 88.2% total accuracy. Elimination of redun-
dant features increased the score up to 95.9% for 194
selected dimensions.

Results for TD-EMB-RQA representation happened
to be lower than for STFT technique. Analysis of RQA
features has not shown much discriminatory power, giv-
ing total mean accuracy of 80%. However, removal of
components in the cross-validation scheme significantly
increased accuracy, reaching 89.2% for 80 selected com-
ponents.

Using the weight vectors W obtained from the
LSVM, a scalar product z = W · Z projects individ-
ual cases on the line perpendicular to the discrimina-
tion hyperplane [32]. Figure 7 shows the histogram of

these projections for features from the STFT-RQA, and
Fig. 8 from the TD-EMB-RQA pipelines. Overlaps of
the two distributions are very small for SVM based on
FS features (Fig. 7), but are significantly larger using
FX features (Fig. 8). This could also be expected by
comparing the accuracy of classification on the test par-
tition of data: based on FX features it is at the level of
89.2% and on the FS features at 95.9%.

We have also defined a single prototype for each con-
dition, averaging normalized vectors for each class, and
using the nearest prototype algorithm for classifica-
tion with tenfold cross-validation. This simple proce-
dure gives 75.5% for STFT-RQA and 58.2% for TD-
EMB-RQA representation.
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Fig. 6 Histograms of the
RQA features for all 98
subjects: a TT (trapping
time), b DET
(determinism), c L (average
diagonal line length),
calculated for the FS
features (embedding
parameters as in Fig. 4)

Visualization of similarity of all feature/electrode
vectors using the UMAP (Uniform Manifold Approx-
imation and Projection for Dimension Reduction)
method (Fig. 9) showed pure clusters. UMAP is an algo-
rithm for dimensionality reduction that is frequently
used to plot high-dimensional data in two or three
dimensions. It has similar applications as t-SNE for
general non-linear dimensionality reduction and visu-
alization [33]. Perfect clusterization for TD-EMB-RQA
is quite surprising, but this just shows that using whole
data a low-dimensional manifold may be constructed,
capturing the similarity of vectors for each condition.
UMAP dimensionality reduction is not a projection, so

we cannot add additional test data that have not been
used for the creation of the model.

Examples of the recurrence plots for eyes open and
closed conditions are presented in Fig. 10a, b for the
RS matrices, and c, d for the RX matrices. These plots
are strongly dependent on the neighborhood thresholds
and selection of electrodes. In the case of RS, we can
see precisely structured, short metastable states, lasting
from about 100 ms (typical times for microstates), to
more than a second. The power spectra in these states
are relatively stable, and as can be seen in the vertical
columns return to the similar distribution, more often
in the eyes closed case. In the TD-EMB-RQA case, RX
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Fig. 7 Histograms of the projection of 320 FS feature val-
ues (5 RQA features for 64 electrodes), for all subjects,
in the direction perpendicular to the LSVM hyperplane
(parameters as in Fig. 3), for all data

matrices show more diffused structure. This is under-
standable, because in this representation EEG signal
is quickly oscillating, so distances between vectors at
each time step (6.25 ms) also tend to fall in and out of
the ε threshold. Although precise interpretation is more
difficult in this case nevertheless looking at the verti-
cal columns of these plots recurrent structure is clearly
observed.

Looking at the power spectra for specific time win-
dows, we may identify the dominance of alpha states,
combinations of theta with alpha, and short beta peaks.

Fig. 8 Histograms of the projection of 320 FX feature val-
ues (5 RQA features for 64 electrodes), for all subjects,
in the direction perpendicular to the LSVM hyperplane
(parameters as in Fig. 4), for all data

The separation of EEG into 4 bands would show a bit
clearer picture. In the case of eyes closed, recurrence
plots show the rising of relatively stable alpha peaks.
Recurrence plots show many structures that can be
interpreted, such as intermittent pulsation, and slow
oscillations that bring the system into roughly the same
states.

Recently Férat et al. [27] performed calculations
on EEG in eyes open/closed conditions, segmenting
microstates either in the broadband (1–30 Hz) or in four
frequency bands. Separation increases accuracy from 73

Fig. 9 a Visualization of the 320-dimensional Z column vectors based on the STFT-RQA approach for 98 subjects using
UMAP dimensionality reduction. Two embedding dimensions shows high similarity of vectors representing the eyes open
and closed conditions. Separability of these two conditions is high. UMAP shows only the topological structure of data.
b Visualization for the TD-EMB-RQA approach shows lower similarity and separation.
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Fig. 10 Example of recurrence plots, 30 s, electrode O1, subject S001. Dark dots show distances inside the ε neighborhood.
The structure seen in plots of the RS matrix is much more precise than in the RX matrix plots. Each recurrence plot has
the same recurrence rate = 0.04. a RS matrix, STFT column vectors, window size = 240 samples, ε = 10.23, eyes open,
and b for the eyes closed condition with ε = 15.84. c RX matrix, embedding dimension m = 5, time delay τ = 9, ε = 0.21,
eyes open and d for the eyes closed condition with ε = 0.36

to 80%. The separation of signals into four classical fre-
quency bands would expand our feature space to 1280
components. Adding more RQA features will expand
it to many thousands. Training such high-dimensional
models would require a large number of subjects, while
typical EEG experiments usually involve only a few tens
of participants.

5 Conclusions and future work

We have been inspired by the excellent results of Bosl,
Tager-Flusberg, and Nelson [30], who showed that RQA
EEG features were very useful in the early diagnosis
of autism. They have used seven RQA features with
two additional nonlinear features computed separately
for the 6 frequency bands and only 19 sensors, for a
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total of 1026 features. The number of children diag-
nosed with autism was small, EEG was collected from
8 to 31 subjects depending on their age. Moreover, it is
not clear how they selected parameters for recurrence
analysis. While promising, such results have to be care-
fully checked and replicated on a larger number of par-
ticipants.

Our main goal in this paper was to show an alterna-
tive route to create recurrence matrices from the EEG
signals. We have compared two approaches that gen-
erate non-linear features, useful for interpretation and
classification of the real EEG data. Both methods, TD-
EMB-RQA and STFT-RQA, require careful selection of
the size of neighborhood parameter ε for the construc-
tion of recurrence matrices. STFT has two parameters:
time window and overlap for the sliding windows, but
both parameters are easy to determine. The embed-
ding approach requires the selection of the embedding
dimension and time delays. The optimal choice of these
hyperparameters is not simple, and the interpretation
of results is not as straightforward as in the STFT case.

Our method to create non-linear features obtained
from recurrence quantification analysis has important
advantages over the standard approach based on the
signal embedding. We have used the short-time Fourier
transform (STFT) with RQA analysis to generate non-
linear features. The STFT-RQA representation has sev-
eral advantages for creating informative features for
EEG time series classification. We did not divide the
signal into frequency bands, as it is usually done.
Results presented in Figs. 3, 4, 5, 6, 7 and 8, and Table
1 shows that features obtained from the RQA using
the STFT approach distinguish the two experimental
conditions in a significantly better way. This is con-
firmed by classification results obtained using the SVM
linear classifier, showing an average improvement over
the embedding approach by as much as 30% when all
feature/electrode components are used.

Equally significant is the insight into the data struc-
ture. We could identify a small number of electrodes
and RQA features that extract information important
for the classification of brain states. Recurrence plots
may be interpreted using the language of dynamical
systems. Periods of metastability are better delineated
in the case of STFT (Fig. 10). In the eyes closed condi-
tion they are much longer than in the case of eyes open.
This is also seen in histograms Figs. 3, 4, 5 and 6. The
stable alpha rhythm that dominates in the eyes-closed
condition may be seen in the filtered alpha-band signal,
but it is also seen in the recurrence plots using a broad
frequency band. During the resting state, many acti-
vations appear in different parts of the brain and the
broadband power spectra analyzed here may include
power peaks that shift between different bands. One
of the most important reasons for using the STFT in
our pipeline is the ability to identify peaks of the EEG
power spectra that are meta-stable for a relatively long
time.

Although we present here only univariate analy-
sis, we hope that recurrence analysis based on the

STFT column vectors will provide more precise infor-
mation about global brain states than is contained in
the microstate dynamics [34]. An alternative to the
feature-based approach is based on the two-dimensional
time/frequency images analyzed using deep neural net-
works. It has been applied to various disorders, such
as major depression, epilepsy, autism, and schizophre-
nia (see the review by Craik, He, and Contreras-Vidal
[35]). We are sure that feature-based approaches can be
applied to the same data, providing not only compara-
ble accuracy but also interpretation and explanation of
results that deep networks are not yet capable of.

The time for STFT-RQA computations is longer
than needed for a single run using the TD-EMB-RQA
approach. This is due to the large number of time win-
dows (almost equal to the number of samples) used for
the STFT calculations. A standard method based on
embedding is faster only if the time needed to select
optimized parameters for embedding dimensions and
delays is not taken into account. A lower sampling rate
limits the accuracy of our power spectra to 2/3 Hz.
For comparison of the two methods of signal represen-
tation, it was not important. However, small shifts of
peak frequencies may have diagnostic value. For exam-
ple, a shift of frequency peaks towards lower values in
mild cognitive impairment may be used as a measure
of progress toward Alzheimer’s disease [15, 36]. There-
fore, higher sampling rates should be used in testing the
usefulness of the STFT-RQA method in clinical appli-
cations. This will allow for testing how large shifts of
sliding windows may be used.

The results presented here may be improved in many
ways, using more sophisticated classifiers, various fea-
ture selection methods [37], or adding more features.
The weights obtained from LSVM show, which combi-
nation of feature/channel is most useful for discrimi-
nating. For example, we have found that SVM column
vector coefficients corresponding to the TT feature are
much larger than those of the L and DET features.
This allows for a reduction of the number of features
and EEG channels, and it may be used as a basis to cre-
ate filters specifically for different applications, working
with simpler EEG equipment.

More non-linear features that characterize neurody-
namics may be generated and tested. As our goal was
to show the advantages of this approach compared to
the standard embedding procedure, we have restricted
ourselves to the six features only, although the PyRQA
software we have used [29] generates up to 19 features.
We can also add NOnLinear measures for Dynamical
Systems (NOLDS). Sample entropy (SAMPEN) is fre-
quently used to evaluate the complexity of information
in the EEG time series. Other potentially useful non-
linear features include correlation dimension (CORR-
DIM), a measure of the fractal dimension of a time
series that is also related to its complexity. The Hurst
exponent (HURST-RS) is a measure of the “long-term
memory” of time series. It can be used to determine
long trends in the data. Detrended fluctuation analy-
sis (DFA) is a measure of the Hurst parameter H. It
is similar to the Hurst exponent, but DFA can also be
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Table 1 Summary of the test results of classification using LSVM with tenfold cross validation (CV) with selection of
features/electrodes with recursive feature elimination (RFE) for the STFT-RQA (a) and TD-EMB-RQA (b) method

(a)

Method Window Size Cross validation RFE N dimensions Mean Accuracy %

Total Open Closed

STFT-RQA 240 10 CV – 320 88.2 88.6 89.6

+ 194 95.9 94.7 96.9

(b)

Method Time
delay

Embedding
dimension

Cross
validation

RFE N dimensions Mean Accuracy %

Total Open Closed

TD-EMB-RQA 9 5 10 CV – 320 80 78.4 81.6

+ 80 89.2 90.8 87.8

used for non-stationary processes, where mean and/or
variance change over time [38]. Features generated from
the topological data analysis should also be tested [39].

As an alternative to the STFT approach, Short Time
Padé Transform (STPT) can be used. In the resting
state EEG microstates research, interesting data struc-
tures have been discovered using this technique: dis-
crete, frequency-modulated oscillatory processes, called
“oscillations” [34]. For a specific task, for example, diag-
nosis of any disease, our approach may be combined
with feature selection methods, creating specific filters
with a minimal number of features and electrodes. This
should help to find features that will improve the gen-
eralization of results and help with their interpretation.
Instead of using thresholds, instantaneous amplitude
correlations (IAC) between the envelopes of EEG sig-
nals have recently been used [40]. To speed up the cal-
culation, the influence of reduced overlaps of time win-
dows will be checked, and the selection of features and
channels performed.

The next important step is to test our approach on
various datasets. Multivariate STFT signal represen-
tation should be used after the reconstruction of the
source signals. This will help to discover functional con-
nections between subnetworks of sources with similar
frequency of power peaks in the same time windows.
The goal is to reveal subsets of brain regions that form
active subnetworks and provide insight into brain pro-
cesses that should be more detailed than microstate
analysis provides. Fuzzy symbolic dynamics may then
be used to visualize trajectories, providing complemen-
tary information to recurrence plots [41]. There are
many open research pathways worthy of exploration.
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