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Abstract The estimates of the future course of spreading of the SARS-CoV-2 virus are frequently based
on Markovian models in which the duration of residence in any compartment is exponentially distributed.
Accordingly, the basic reproduction number R0 is also determined from formulae where it is related to the
parameters of such models. The observations show that the start of infectivity of an individual appears
nearly at the same time as the onset of symptoms, while the distribution of the incubation period is not an
exponential. Therefore, we propose a method for estimation of R0 for COVID-19 based on the empirical
incubation period distribution and assumed very short infectivity period that lasts only few days around
the onset of symptoms. We illustrate this venerable approach to estimate R0 for six major European
countries in the first wave of the epidemic. The calculations show that even if the infectivity starts 2 days
before the onset of symptoms and stops instantly when they appear (immediate isolation), the value of R0

is larger than that from the classical, SIR model. For more realistic cases, when only individuals with mild
symptoms spread the virus for few days after onset of symptoms, the respective values are even larger. This
implies that calculations of R0 and other characteristics of spreading of COVID-19 based on the classical,
Markovian approaches should be taken very cautiously.

1 Introduction

The ongoing pandemic which resulted from spread of
the SARS-CoV-2 virus has recruited scientists from
various disciplines to apply their knowledge and ideas
in understanding and modeling the epidemic spread-
ing, as support to the effort that the healthcare work-
ers are doing in preventing and mitigating the effects
of the disease. The key modeling tools come from the
mathematical epidemiology that dates back to Daniel
Bernoulli [1] and has been built upon the cornerstones
from the works by Ross [2–4] and Kermack and McK-
endrick [5]. The most famous SIS and SIR models are
well known and applied even in other fields like spread-
ing of rumor and computer viruses [6–8]. Their popu-
larity, as well as that of their extensions, among oth-
ers might be attributed to the mathematical frame-
work used as ground—systems of ordinary differential
equations. The simpler cases allow for analytical treat-
ment to large extent, while numerical solutions are
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applied for the more complex ones. The solutions of
such models provide a perspective of the development of
an epidemic under various constraints and active mea-
sures. For example, for the COVID-19, various exten-
sions have been developed to estimate the numbers
of infected, hospitalized, or casualties under different
scenarios of the epidemic [9–15]. Common feature of
these models is the Markovian assumption, which tech-
nically means that the transitions from one state of
the disease to another, or the related infectiousness
of the individuals, are independent on the past. This
might be appropriate for diseases in which an infected
person can start spreading the disease in very short
period after contracting the pathogen. In general, this
assumption is not always empirically supported. Par-
ticularly, COVID-19 is a disease which has been found
to have particularly long period from infection to onset
of symptoms—incubation period [16–18]. It was also
observed that the spreading ability of an infected indi-
vidual becomes significant only when the incubation
period is near its end [19], thus questioning the reliabil-
ity of the results obtained with the classical Markovian
models. Although this delayed onset of infectiousness
can be somehow addressed with introducing the state
of Exposed (infected, but not yet infectious), in the
Markovian framework, the infectiousness period would
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have distribution with certain form that is not gen-
eral. However, besides this observation, the inherent
mathematical tractability makes the Markovian models
dominant in the contributions related to the epidemic
spreading, while the more general, non-Markovian ones
are still very rare [20–24]. One should note that descrip-
tion and prediction of the development of the COVID-
19 epidemic are not based solely on the compartmental
models. For example, contributions from physical com-
munity apply other approaches like fractal interpolation
method [25, 26] and generalized fractal dimension [27].

The basic reproduction number R0 is the most pop-
ular quantity in epidemic spreading studies, because it
bears key information. When R0 < 1, an outbreak of
epidemic is expected to fade away, while if R0 > 1,
it would grow. In the latter case, R0 determines also
the final size of the epidemic and the herd immunity
level, achieved naturally or through vaccination, which
expressed as fraction of the total population is given as
1−1/R0 [28]. The basic reproduction number is defined
as expected number of newly infected persons by one
infectious individual introduced in a completely sus-
ceptible population. The more general, effective repro-
duction number, R, corresponds to the situation when
certain fraction of the population is already infected.
The individual that passes the pathogen to the others
is known as primary case, or infector, while, those who
get the pathogen from him or her, as secondary cases,
or infectees. In calculations of R0, even in the earli-
est works in mathematical epidemiology, it was applied
the general, non-Markovian framework. It is thus con-
sidered that the contagiousness ability of an infector
depends on the time passed, since she or he become
infected—the age of infection τ . The infectivity poten-
tial of the infector combined with the social behavior
that further determines the spreading effectiveness dur-
ing her or his contacts with the others while being in
different stages of the disease is associated with a sta-
tistical quantity known in epidemiology as generation
interval distribution g(τ). It represents the probabil-
ity density of the time interval between the moments
of infection of the primary and secondary case [29].
Although the approach which relies on the generation
interval distribution considers general form of its shape
and is thus likely most appropriate, its use for estima-
tion of R0 for given epidemic could be rather compli-
cated due to the difficulties in precise determination of
the moments of infection. Accordingly, various approxi-
mate alternatives are applied. Sometimes, as a substitu-
tion one uses the serial interval distribution that is the
probability density of the period between the onset of
symptoms at the primary and secondary case. It is more
reliable to estimate this distribution, since it is easier to
spot the moment, or at least the day of onset of symp-
toms, than the day of infection of an individual. One
interesting observation is that the serial interval might
be negative for significant fraction of infector–infectee
pairs for COVID-19 [30], while the generation interval is
strictly positive. This makes the estimates with this dis-
tribution as a proxy of the generation interval distribu-
tion questionable. In other approaches, only the mean

and variance of the generation interval distribution are
estimated and then these are applied for determination
of R0. We emphasize that while using the generation
interval distribution or its proxies one does not need to
have any particular epidemic spreading model to cal-
culate R0. However, when some Markovian model is
applied for studying an epidemic, the basic reproduc-
tion number is determined through certain relationship
that involve the parameters of that model.

For the COVID-19, one can find estimates of
the basic reproduction number based on different
approaches. There are contributions that rely on the
classical compartmental models by direct analysis of
the models [31, 32], or by applying the next genera-
tion matrix approach [33–35]. In the non-Markovian
setting, there can be found works that use the mean
and variance of the generation interval distribution [36],
or the serial interval distribution as its proxy [37–39]
and so on. To circumvent the difficulties in direct esti-
mate of the generation interval distribution, we pro-
pose a non-Markovian approach that aims to model it,
using the incubation period distribution as a basis. The
latter is further combined with a window function of
infectiousness of an individual—the period when she
or he can infect the others. The incubation period dis-
tribution is much easier to estimate than the genera-
tion interval distribution. For example, one needs to
know only the days of onset of symptoms of infected
individuals which attended a major social event, which
is very likely a place where they have contracted the
pathogen. Collecting such data is more reliable than
deducing possible day of infection of infector–infectee
pairs. The proposed method for design of the genera-
tion interval distribution is used to estimate the basic
reproduction number for the first wave of epidemics in
the spring, 2020, in the six most populous countries
in Europe, where the countrywide epidemic with large
number of cases appeared earlier than in other large
countries. Our estimates from the most conservative
scenarios which were considered are larger than those
obtained with the Markovian approach in the classical
SIR model. The other estimates based on more realis-
tic assumptions are even larger. The observation that
the estimates of R0 with more realistic models like the
one proposed here are larger than those with the clas-
sical approach suggests that the results from the latter
should be considered very carefully. This holds for the
results they provide and for the use of the Markovian
assumption they rely on, which is not always empir-
ically supported. We also believe that this framework
could be further refined to obtain a complementary tool
for determination of the generation interval distribution
and the basic reproduction number of an epidemic.

The paper is organized as follows. In Sect. 2, we pro-
vide the theoretical basis of the formula used for estima-
tion of R0. In Sect. 3, it is elaborated on the generation
interval distribution that is used for estimates of R0. In
the next, Sect. 4 presents the results and a discussion
on them and we finish the paper with the conclusions.
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2 Methods

The derivation of the formula that we use for estimation
of the basic reproduction number for arbitrary genera-
tion interval distribution can be found in various works
in the literature (for example in [29, 40, 41]). We stress
that similar reasoning to its derivation appears already
in the earliest studies in demography by Böckh [42] and
in epidemiology by Lotka [43]. For completeness, we
present here an approach at population level, since it is
more appropriate for study of the available data. Most
of the analysis will be made in discrete time as more
appropriate, but continuous-time version will be given
for completeness.

As is the case of COVID-19, when new cases are
reported on daily basis, it is convenient to have a func-
tion Id(t) that represents the fraction between con-
firmed cases for day t and the total population. When
the epidemic is in inception phase, the number of newly
infected individuals grows exponentially and one has
the following exponential form:

Id(t) = I0e
λt, (1)

where λ is a parameter for the growth rate, while I0 is a
constant. The growth rate λ is related with the period
of doubling with Td = ln 2/λ. For many diseases, the
individuals are not able to infect the others immedi-
ately, but after certain period has passed and this has
to be accounted for. Before doing that, we remind first
that the generation interval distribution g(τ) represents
the probability distribution of the time period between
infection of the primary and secondary case. Another
interpretation is that g(τ) is the likelihood that some
secondary case will appear for time τ later after the
primary case has contracted the pathogen. At popula-
tion level, it quantifies the fraction of new infectees, that
have become infected due to contacts with unit fraction
of infectors with age of infection τ . We emphasize that
it is assumed that the generation interval distribution
depends only on the time that has passed since con-
tracting the disease, or the age of infection τ , but not
on when that happened. This time-invariance assump-
tion is mathematically plausible and is applicable when
the pathogen does not mutate very fast, or condition for
its spread does not change significantly. For that reason,
the time t does not appear in the generation interval
distribution g . We further assume that g(τ) has finite
support T which means that g(τ) = 0, for τ > T . More
details on the shape of this function will be provided
later on. Denote with I(t, τ) the fraction of the total
population of the infectees that have become infected
at moment t , by having a contact with infectors that
have acquired the pathogen τ time units earlier. Assum-
ing homogeneous mixing of the population, I(t, τ), will
be proportional to the fraction of susceptibles S (t), but
also to the fraction of the infectors with age τ , Id(t−τ),
and the intensity of their infectiousness encapsulated in
the generation interval distribution g(τ). Thus, one has

the following relationship:

I(t, τ) = R0S(t)Id(t − τ)g(τ), (2)

where the constant of proportionality R0 will be shown
to be exactly the basic reproduction number. The frac-
tion of the new infectees within given moment will be
obtained as sum that accounts for the contributions
from the infectors of all ages

Id(t) =
T∑

τ=1

I(t, τ), (3)

which will further result in the following recurrent rela-
tionship:

Id(t) = R0S(t)
T∑

τ=1

Id(t − τ)g(τ). (4)

By applying the exponential form for the function of
newly infected individuals (1), in the last relationship,
one will have

I0e
λt = I0R0S(t)eλt

T∑

τ=1

e−λτg(τ), (5)

from where it follows that:

1 = R0S(t)
T∑

τ=1

e−λτg(τ). (6)

Since the basic reproduction number corresponds to the
inception of the epidemic S(t) ≈ 1, for the parameter
R0, one has

R0 =
1

∑T
τ=1 e−λτg(τ)

. (7)

We emphasize that the last relationship holds for gen-
eration interval distribution with general form. Finally,
if one has obtained R0 from (7) and it is assumed to
be constant during the course of the epidemic, then
the herd immunity threshold expressed in terms of
the susceptible fraction Sth when the further spreading
will stop, and which corresponds to unity reproduction
number R = 1, can be obtained from (6) as

Sth =
1

R0
. (8)

It is worth noting that in derivation of the equation
for the basic reproduction number (7), we did not use
any of the well-known deterministic epidemic spread-
ing models like SIS, SIR, or SEIR. Thus, if one needs
only to estimate R0, than it is not needed to refer to
any specific model. However, a noticeable similarity in
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the reasoning in those models and the approach pre-
sented here lies in the determination of the fraction of
new infectees (2). In those models as well as in this
framework, the homogeneous mixing makes the frac-
tion of new infectees to be proportional to the exist-
ing infectors and susceptibles. For that reason, in this
approach, the infected individuals present the Exposed
ones when they do not infect yet, while they correspond
to the Infected compartment when they do transmit the
pathogen to the others. The Quarantined, Vaccinated,
Recovered and other compartments are not considered
in this setting, since they are not needed.

2.1 Self-consistency relationship for R0

The basic reproduction number represents an estimated
multiplicative factor determining the number of newly
infected individuals that will contract the spreading
agent in a contact with certain infected individual.
Here, we use it to denote the growth factor that deter-
mines the new infections that will arise from the sub-
population of all individuals that have become infected
at the same time. Thus, form one side, the fraction of all
infectees that have contracted the pathogen from infec-
tors that become infected at certain moment t should
be R0Id(t). From another side, this fraction can be rep-
resented as forward-time sum of future infectees as fol-
lows:

R0Id(t) =
T∑

τ=1

I(t + τ, τ). (9)

Using (2), one has

R0Id(t) = R0

T∑

τ=1

S(t + τ)Id(t)g(τ). (10)

For slowly growing epidemic, one might assume that
the fraction of susceptibles does not change significantly
in the considered period S(t) ≈ 1. Then, from the last
expression (10), one can see that the constant R0 in the
relationship (2) will be the basic reproduction number,
if the generation interval distribution is properly nor-
malized

∑T
τ=1 g(τ) = 1.

2.2 Continuous-time formula

Although analysis of the data in this work is based
on discrete time, for completeness, we provide the
continuous-time version that can be found in the lit-
erature in similar forms as given here. Denote with
I (t) the fraction of the population that has become
infected within infinitesimal interval (t, t + dt), and
assume that it grows exponentially at the onset of epi-
demics I(t) = I0e

λt. The new infectees have appeared
from contacts with others that have been infected in
the past I(t − τ). We consider the same meaning of
the generation interval distribution g(τ) on which we

also impose finite support (0, T ). Now, the formula for
newly infected population will read

I(t) = R0S(t)
∫ T

0

I(t − τ)g(τ)dτ, t ≥ T, (11)

where again R0 is a parameter and S (t) is the fraction of
susceptibles at moment t . One should note that similar
relationship has appeared earlier in the works of Ross
and Hudson [44]. By plugging in the exponential form
of the newly infected individuals, one will obtain

I0e
λt = R0S(t)

∫ T

0

I0e
λ(t−τ)g(τ)dτ, (12)

which will reduce to similar relationship as that for the
discrete time

1 = R0S(t)
∫ T

0

e−λτg(τ)dτ. (13)

At the onset of an epidemic S(t) ≈ 1, and for the basic
reproduction number will be obtained the Lotka–Euler
equation [45, 46]

R0 =
1

∫ T

0
e−λτg(τ)dτ

. (14)

3 Shape of the generation interval
distribution

The function g(τ) should model the generation of new
infections by the fraction of the population that become
infected within the same unit interval, at some later
moment τ after contracting the spreading agent. Its
shape, in a direct approach, should be deduced from
epidemiological tracing of infector–infectee pairs. This
means that one has to determine the dates of infection
of all infectees for given infectors for which one also
knows the dates of contracting the pathogen, that is
far from trivial task for diseases like the COVID-19. If
one succeeds in such a task, the resulting histograms
would be conveniently fit with unimodal functions like
the log-normal or the Weibull distribution as ones with
support on the positive real numbers. To circumvent
the difficulties in obtaining such epidemiological data,
in our approach, we aim to deduce the shape of g(τ)
using other characteristics of the respective disease. To
get to its final form, we first note that its shape depends
on the fractions of the individuals that will not recover
within given time interval and thus is related to the
function that describes the healing process. However,
since the COVID-19 is a disease which has long period
of recovery, we consider that all detected individuals
have not recovered yet in the period under study. Fur-
thermore, the infectiousness ability of a subject, besides
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being delayed for certain incubation period, depends on
the age of infection through intensity of the viral load
and the contacts between individuals which depend on
the health status of the infector, and also on her, or his
awareness about being possibly positive on the virus.
Another important observation is that the infectious-
ness of COVID-19 starts even before onset of symptoms
[19]. We consider here that the period of the effective
infectiousness (when new infections result from given
subject) is short and thus for simplicity assume that it
is constant and equal for all individuals before onset of
symptoms. After appearance of symptoms, the more
severe cases would immediately reduce the contacts
with the others and thus would not be significant infec-
tors any more, while those with mild symptoms, that
constitute about 80% of the cases [47], would continue
with their normal daily life and would spread the virus
with equal intensity. Therefore, we consider an infec-
tivity window function w(t) which is non-zero only in
the period t ∈ [tinit; tend]. It means that the infectivity
starts at certain initial moment tinit before the onset
of symptoms, and ends at tend after they appear. Thus,
the shape of the infectivity window function w(t) is one
consisting of two steps

w(t) =
{

1, tinit ≤ t < 0
0.8, 0 ≤ t ≤ tend.

(15)

We further assume that the shape of the infectivity
window does not depend on the infection age τ when
the symptoms appear. Thus, the generation interval dis-
tribution will be convolution of the incubation period
distribution β(τ) and the infectivity window w(τ)

g(τ) = C(β ∗ w)(τ) = C
∑

ν

β(τ − ν)w(ν), (16)

where C is a constant determined from the normal-
ization condition

∑T
τ=1 g(τ) = 1. Therefore, the differ-

ences between the individuals related to the different
response to the virus and the related onset of infectivity
are encapsulated in the incubation period distribution,
while the differences in the severity of the symptoms
and the related infectiousness intensity in the infectiv-
ity window function.

4 Results and discussion

We have used the data from the Our World in Data
database for the numbers of daily cases of COVID-19 in
the first wave in the spring 2020 for six major European
countries. As data window for study, we have taken the
period that stars at the moment from which new cases
were reported every day, until the day when lockdown
measures were introduced. Two exceptions are France
and Spain, for which the period of study ends with the
day when no cases were reported. We have opted for
this choice for these two countries, since the number for

the next day accounts for the cases of the last 2 days
and does not represent a daily count. We note that
this approach for France and Spain does not shorten
significantly the considered period. Such choice for the
range of data was made under the assumption that in
the given period, the virus SARS-CoV-2 was spread-
ing almost freely in the population, with only positive
cases being isolated. From those numbers, we have fit
an exponential curve and estimated the growth rate fac-
tor λ. The description of the considered period and the
growth rate estimates are summarized in Table 1.

We have used the estimates of the growth factor λ
in the expression for the calculation of the basic repro-
duction number (7). The generation interval distribu-
tion function g(τ) was obtained from the convolution
(16) of windows with variable width, and incubation
period distributions obtained from two sources in the
literature [16, 17].

The onset of infectiousness was considered to be two
[19] or 1 day before the appearance of symptoms. We
have also assumed that after the onset of symptoms
only the mild cases, that are about 80% [47], can be
considered as further infectors. As the end of the infec-
tiousness period was considered either the same day or
2 days after the onset of the symptoms. We have thus
chosen three separate cases combined with the two incu-
bation period distributions, as described in more detail
in Table 2. The first case is very conservative and is
related to the assumption that all infectors, even those
with mildest symptoms, would become very cautious
in their contacts with the others and would not spread
the disease further. The other two cases are less conser-
vative and likely a more realistic scenario, where those
with mild symptoms do not change their daily routines
and spread the virus freely before receiving positive
test. Extending the infectivity window beyond the point
of 2 days, following the onset of symptoms, would relate
to sporadic cases only, if one considers the severe mea-
sures imposed by the governments in preventing the
spread of COVID-19. In that sense, we consider that
the analyzed six scenarios are sufficient to illustrate the
dynamics of spreading in reality.

The estimates of R0 for the different scenarios for all
six European countries are presented in Table 3. One
can easily note that the estimate is very sensitive on
the start of the infectiousness, in relation to the onset of
symptoms, as evidenced from the results for scenarios 3

Table 1 Countries under study and the estimated expo-
nential growth factor

Country Start date End date λ

Germany February 25 March 12 0.298

France February 25 March 11 0.322

Italy February 21 March 9 0.235

Russia March 12 March 30 0.171

Spain February 25 March 11 0.343

United Kingdom February 23 March 22 0.237
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Table 2 Description of different scenarios for calculation
of basic reproduction number, based on the non-Markovian
approach

No. Description Function Parameters

S1 Start 2 days
before
onset, stop
immediately

Log-normala [16] P1 =
1.62; P2 =
0.42

S2 Start 2 days
before
onset, stop
2 days after

Log-normal [16] P1 =
1.62; P2 =
0.42

S3 Start 1 day
before
onset, stop
2 days after

Log-normal [16] P1 =
1.62; P2 =
0.42

S4 Start 2 days
before
onset, stop
immediately

Weibullb [17] P1 =
2.04; P2 =
0.103

S5 Start 2 days
before
onset, stop
2 days after

Weibull [17] P1 =
2.04; P2 =
0.103

S6 Start 1 day
before
onset, stop
2 days after

Weibull [17] P1 =
2.04; P2 =
0.103

a For the log-normal distribution, P1 is the mean and P2 is
the standard deviation of the logarithm of the distribution
b For the Weibull distribution, P1 is the scale, while P2 is
the shape parameter

and 6 versus the other ones. Next, only scenarios 1 and
4, as the most conservative ones provide estimates that
are roughly comparable to those found in the literature
for the European countries [31, 36]. The more realis-
tic assumptions in the other cases produce even larger
values. In reality, there would have been cases for even
longer period of infectivity than 2 days after the onset
of symptoms, and this could be the true for significant
fraction of infected population. Although we have not
tried to model this, the logic suggests that the longer
the infectivity period, after the onset of symptoms, the

larger R0 is. This implies that better estimates of the
generation interval distribution are essential in provid-
ing better assessment of the basic reproduction number.
One such approach could be based on a better model of
the infectivity window function w(τ), that is the period
when an infected person is infectious, in relation to the
onset of symptoms. The situation can be even more
complicated if the infectivity window function is depen-
dent on the incubation period duration. It could be pos-
sible for those that develop symptoms earlier to corre-
spond one infectivity window function, while for those
that develop them after longer period—another one.
Thus, one has to be very cautious with using the esti-
mated R0, particularly when the incubation period of
the related disease has pronounced duration and when
the respective generation interval distribution is known
only vaguely.

As a comparison, we have also made an estimate
based on the Markovian approach with the classical SIR
model expressed with the well-known set of differential
equations [48]

Ṡ = − βS(t)I(t),

İ =βS(t)I(t) − γI(t),

Ṙ =γI(t), (17)

where S (t), I (t), and R(t) are the fractions of the sus-
ceptible, infectious, and recovered individuals at given
moment, while β and γ are parameters. The basic repro-
duction number is obtained from the parameters as
R0 = β/γ [48]. To find R0, we have numerically inte-
grated the SIR model (17) and calculated the new infec-
tions at day k with the integral

ISIRdaily(k) = β

∫ k

k−1

S(t)I(t)dt. (18)

The simulations were run with only one infected indi-
vidual at the initial moment t = 0. The values of the
parameters β and γ were obtained by least-squares error
function between the logarithms of daily cases from
observations and from simulations with

ε = argmin s,β,γ

{
1

N

N∑
k=1

[
ln(Idata(k)) − ln(ISIR

daily(k + s))
]}

.

(19)

Table 3 Estimated basic
reproduction number R0 for
six European countries for
the six non-Markovian
scenarios and the classical
SIR model

Country S1 S2 S3 S4 S5 S6 SIR

France 3.22 4.06 5.02 5.37 6.72 8.01 3.06

Germany 3.00 3.73 4.53 4.93 6.10 7.17 2.15

Italy 2.45 2.95 3.42 3.85 4.60 5.22 2.09

Russia 1.97 2.27 2.51 2.87 3.29 3.60 1.45

Spain 3.43 4.38 5.49 5.78 7.31 8.81 2.67

United Kingdom 2.47 2.97 3.45 3.89 4.65 5.28 1.70
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Table 4 Parameters of the
classical SIR model Country Population (2020 est.) β γ Initial day

France 67 million 0.49 0.16 7

Germany 83 million 0.56 0.26 7

Italy 60 million 0.46 0.22 19

Russia 144 million 0.55 0.38 18

Spain 47 million 0.56 0.21 5

United Kingdom 67 million 0.56 0.33 8

In the last equation, s is the first day from the simu-
lations which is assumed to coincide to the first day of
observed data for each country, while N is the number
of days for which the analysis is made. The estimated
values of β and γ were used to calculate R0 and the
results are given in the last column in the Table 4. It is
noticeable that the values of R0 based on the classical
Markovian SIR model for the COVID-19 seem to be
significant underestimates.

5 Conclusions

We have estimated the basic reproduction number R0

using the more general non-Markovian framework, that
besides being known from the emergence of mathemat-
ical epidemiology, has not been widely applied. The
approach was used to determine the value of R0 in
six major countries in Europe during the first wave of
the COVID-19 epidemic. The onset of infectiousness,
instead of starting immediately after contraction of the
pathogen, was taken to be related to the onset of symp-
toms, for which the empirical evidence suggests that is
not distributed exponentially as the Markovian assump-
tion implies. The incubation period distribution was
further combined with an infectiousness window func-
tion which was considered to have short period—1 or 2
days before and finish up to 2 days after the onset of
symptoms. From both functions, we have constructed
the generation interval distribution that uniquely deter-
mines R0. In all scenarios we have considered, the cal-
culated value for R0 was obtained to exceed the one
from the classical relationship Rc

0. This suggests that
the calculations with the classical, Markovian approach,
should be taken rather cautiously.

Better estimates of R0 would be obtained with empir-
ical function of the infectiousness window, or direct esti-
mation of the shape of the generation interval distribu-
tion. This needs more involving epidemiological tracing,
that is not an easy task. However, since the calcula-
tions are strongly dependent on the generation inter-
val distribution, we believe that it will lead to more
intensive work for gathering epidemiological data and
also increase the awareness that to this non-Markovian
setting in the epidemic models should be given more
attention.
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21. I.Z. Kiss, G. Röst, Z. Vizi, Phys. Rev. Lett. 115, 078701
(2015)

22. M. Feng, S.-M. Cai, M. Tang, Y.-C. Lai, Nat. Commun.
10(1), 3748 (2019)

23. I. Tomovski, L. Basnarkov, A. Abazi, IEEE Trans.
Netw. Sci. Eng. 9(2), 552–563 (2022)

24. L. Basnarkov, I. Tomovski, T. Sandev, L. Kocarev,
Chaos Solit. Fractals (2022). https://doi.org/10.1016/
j.chaos.2022.112286

25. A. Gowrisankar, T.M.C. Priyanka, S. Banerjee, Eur.
Phys. J. Plus 137, 100 (2022)

26. C. Kavitha, A. Gowrisankar, S. Banerjee, Eur. Phys. J.
Plus 136, 596 (2021)

27. A. Gowrisankar, L. Rondoni, S. Banerjee, Eur. Phys. J.
Plus 135, 526 (2020)

28. P. Fine, K. Eames, D.L. Heymann, Clin. Infect. Dis.
52(7), 911–916 (2011)

29. J. Wallinga, M. Lipsitch, Proc. R. Soc. B: Biol. Sci.
274(1609), 599–604 (2007)

30. Z. Du, X. Xu, Y. Wu, L. Wang, B.J. Cowling, L.A. Mey-
ers, Emerg. Infect. Dis. 26(6), 1341 (2020)

31. M. D’Arienzo, A. Coniglio, Biosaf. Health 2(2), 57–59
(2020)

32. G.G. Katul, A. Mrad, S. Bonetti, G. Manoli, A.J. Paro-
lari, PLoS One 15(9), 0239800 (2020)

33. A.G. Neves, G. Guerrero, Phys. D: Nonlinear Phenom.
413, 132693 (2020)

34. D. Otoo, E.K. Donkoh, J.A. Kessie, Eur. J. Appl. Math.
14(1), 135–148 (2021)

35. D. Ghosh, P. Santra, G. Mahapatra, A. Elsonbaty, A.
Elsadany, Eur. Phys. J. Spec. Top. (2022). https://doi.
org/10.1140/epjs/s11734-022-00537-2
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Mentré, C. Laouénan, B. Visseaux, J. Guedj, Proc.
Natl. Acad. Sci. 118(8), e2017962118 (2021). https://
doi.org/10.1073/pnas.2017962118.https://www.pnas.
org/doi/abs/10.1073/pnas.2017962118

Springer Nature or its licensor holds exclusive rights to this
article under a publishing agreement with the author(s) or
other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

123

https://doi.org/10.1016/j.chaos.2022.112286
https://doi.org/10.1140/epjs/s11734-022-00537-2
https://doi.org/10.1016/j.epidem.2021.100454.
https://www.sciencedirect.com/science/article/pii/S1755436521000153
https://doi.org/10.1073/pnas.2017962118.
https://www.pnas.org/doi/abs/10.1073/pnas.2017962118

	Estimation of the basic reproduction number of COVID-19 from the incubation period distribution
	1 Introduction
	2 Methods
	2.1 Self-consistency relationship for R0
	2.2 Continuous-time formula

	3 Shape of the generation interval distribution
	4 Results and discussion
	5 Conclusions
	References
	References




