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Abstract This special issue presents 32 contributions on bifurcation, chaos, and bursting oscillations. Some
of them are devoted to dynamical behaviors, some to modeling and stability analysis. Bifurcation and chaos
are important in the research of nonlinear dynamical behaviors, and bursting oscillations at multiple time
scales also have a significant influence on these systems. This leads to many conclusions that can be
used to guide practical engineering. A large number of new methods have been proposed for practical
model-building and analysis, including scaling, adaptive control, and deep learning methods.

1 Introduction

Many phenomena in engineering and neuroscience can
be described by differential dynamical equations. These
equations cannot bey directly solved analytically, but
we can study the relevant properties by approximate
analytical and numerical methods. The bifurcations
that occur in the systems (fold bifurcations, Hopf bifur-
cations, pitchfork bifurcations, etc.)are of great impor-
tance and can cause changes in the stability of the sys-
tems. The phenomenon and control of chaos are also
vital topics in the field of nonlinear dynamics. In recent
years, with the development of science and technology,
the study of multi-time-scale systems has become a hot
issue. Some scholars have proposed different classifi-
cations for the oscillation modes and the mechanisms
behind them.

We divide these contributions into two main areas:
bifurcation, chaos, and bursting oscillation; modeling
and analysis. This classification is not necessarily accu-
rate, but is given as a reference for the reader. On bifur-
cation phenomena, scholars use normal forms and cen-
tral manifold theory to reduce systems and study the
dynamical behavior near complex bifurcation points.
In terms of chaotic phenomena, scholars use chaotic
attractors, Lyapunov exponents, attractor basins, Mel-
nikov method, and other analytical methods to explore
the stability of equilibrium points, bifurcation phenom-
ena, chaotic phenomena, and so on. Regarding the
bursting oscillation phenomenon, scholars use the fast–
slow analysis method to study the mechanism behind
the bursting oscillation phenomenon of the system, and
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follow the naming protocol proposed by Izhikevich to
characterize different types of bursting oscillation phe-
nomena. Some scholars also seek to combine bursting
oscillations with practical applications.

In the modeling process, scholars combine actual
models, including neural networks, lesion models, and
new material models, and analyze them through bifur-
cation and stability to guide the actual situation. Mod-
els can be analyzed and optimized using time history or
phase diagrams, Poincare maps, bifurcation diagrams,
and spectrograms.

2 Bifurcation, chaos, and bursting
oscillation

This section focuses on the study of bifurcation, chaos,
and bursting oscillation phenomena and the mecha-
nisms behind them.

Liu et al. [1] analyze the double-Hopf bifurcation of
the aerosol–cloud–precipitation system using the nor-
mal and central manifold forms, and then obtain the
stable equilibrium, stable periodic, and quasi-periodic
solutions. These solutions can reveal cloud and rain
phenomena. For example, stable equilibrium corre-
sponds to the actual system and indicates the formation
and depletion of clouds (drizzle), and the stable periodic
solution indicates that thicker clouds are consumed by
stronger rain (moderate drizzle). The authors suggest
that a double-Hopf bifurcation analysis will mitigate
the effects of natural hazards.

Zhou et al. [2] discuss the stability and Hopf bifur-
cation of the system using stability theory, central
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manifold theory, and normal form theory, and per-
form numerical simulations. A robust controller is then
added to fine-tune the control parameters, whereby the
Hopf bifurcation is achieved or delayed at a certain
point.

Zhang et al. [3] study the bifurcation characteris-
tics of cubic discrete chaotic systems, investigate the
cause of symmetry-breaking bifurcation by solving the
periodic bifurcation solution of the system, and obtain
the critical value for the recovery of symmetry-breaking
bifurcation. The authors add a nonlinear controller to
control the bifurcation of the system and change the
position of the bifurcation point. The delay or advance
of the period-doubling bifurcation and the emergence
of symmetric fracture bifurcation are then achieved.

Lai et al. [4] study the Jacobi stability of a resonant
nonlinear Schrödinger (RNS) system using Kosambi–
Cartan–Chern (KCC) theory, discussing the Jacobi sta-
bility of three equilibrium points and the focusing trend
of the trajectory around the equilibrium point. The
numerical results also show that the system is quasi-
periodic and chaotic under periodic perturbations.

Ramakrishnan et al. [5] propose a megastable oscil-
lator with a vast number of coexisting limit cycles that
spread on a surface. The dynamical characteristics of
this oscillator are studied by analytical methods includ-
ing bifurcation, attractor basin, and Lyapunov expo-
nents.

Wang et al. [6] propose a symmetric oscillator with
multiple stability and study the dynamical properties
of the oscillator, including chaotic attractors, Lyapunov
exponents, bifurcation, and attractor basin. Crucially,
the authors build the circuit to prove its feasibility.

Chen et al. [7] investigate chimeric states in a net-
work of identical oscillators with symmetric coexisting
attractors in ring and multiplex topologies. Chimerism,
cluster synchronization, and complete synchronization
states are examined by choosing different initial condi-
tions from the basin of attraction.

Zhang et al. [8] report a rare class of two-dimensional
rational memristive maps in which all attractors are
hidden. Taking a quadratic memristor as an exam-
ple, and using numerical tools such as phase diagrams,
basins of attraction, bifurcation diagrams, and Lya-
punov exponents, they find that these maps can gener-
ate periodic, chaotic, quasi-periodic, and hyperchaotic
solutions, among others.

Wen et al. [9] study the bifurcation and chaos
threshold of the Duffing oscillator with fractional-order
delayed feedback control, which demonstrates func-
tions of displacement and velocity feedback. Exploit-
ing the Melnikov method, the necessary conditions for
the chaotic analytical solution are obtained and verified
numerically. Finally, the authors find that the increase
in fractional-order delayed feedback gain will suppress
chaos generation.

Dong et al. [10] analyze plates with a fixed support in
the center and four free edges. Partial differential con-
trol equations for the bistable plate motion are estab-
lished using Hamilton’s principle. By solving the nonlin-
ear static equations, two stable configurations and one

unstable configuration can be determined. This is called
supercritical pitchfork bifurcation. The two potential
energy wells are determined by the stable configura-
tions so that the effect of threshold can be studied. This
dynamic snap-through phenomenon found experimen-
tally in Ref. [10] is associated with bursting oscillations.

Chen et al. [11] study bistable asymmetric laminated
square plates with time delay. The system exhibits
pitchfork and fold/fold bursting oscillation. The mech-
anism behind it and the effect of time delay are illus-
trated.

Chen et al. [12] discuss the phenomenon of bursting
oscillations in a multi-stable nonlinear energy harvester
and numerically simulate multiparameter bifurcation
and transformed phase diagrams to explain them. It
is hoped that the bursting oscillations can be used to
improve energy harvesting.

Lin et al. [13] explain the bursting oscillations of a
piezoelectric energy harvester with magnets (PEHM)
and its mechanism using the fast–slow analysis method.
The authors evaluate the effect of bursting oscillations
on energy harvesting efficiency using the average out-
put voltage value as a measurement index. The results
show that the excitation frequency close to the burst-
ing frequency can lead to larger instantaneous output
power.

Ma et al. [14] investigate new bursting patterns
caused by different types of hysteresis loops in paramet-
ric and externally driven nonlinear oscillators. The rup-
ture behavior in the form of “fold/turning point-turning
point/fold” generated by the “fold/turning point” hys-
teresis loop is studied in detail using the fast–slow anal-
ysis method. A large number of types of bursting oscil-
lations are obtained, and the underlying mechanisms
are explained.

Wei et al. [15] use fast–slow analysis to study a
parametrically and externally excited jerk circuit sys-
tem and find correlated bursting oscillations generated
by a supercritical Hopf bifurcation. As the parametric
excitation amplitude increases, a large number of phe-
nomena including period-doubling and inverse period-
doubling cascades can be observed in orbits of periods
2, 4, and 8, leading to complex bursting patterns with
multi-period active states.

Zhang et al. [16] consider a four-dimensional Chay–
Cook model with multiple time scales and change the
time scale of a variable in the model from fast to
medium-slow to slow to control it directly. The new def-
inition of the topological type of bursting proposed in
the work is an extension and improvement of the exist-
ing classification and provides a dynamical basis for fur-
ther study of the complexity of information encoding in
neuronal systems.

3 Modeling and analysis

In this section, the actual modeling and related dynam-
ical analysis articles are summarized. These works aim
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to guide practical engineering by applying dynamical
analysis approaches.

Zhou et al. [17] analyze the nonlinear dynamics
of two first-order 2:3 external and 3:2 internal mean
motion resonances (MMRs) of a three-body system.
The Poincaré diagram of the planar circular confine-
ment three-body model is calculated to find the semi-
long axis and phase, which has a significant effect on the
steady state of the resonant orbit. Stable and chaotic
domains are also obtained through the resonance space.

Sun et al. [18] study the nonlinear dynamics of circu-
lar mesh antennas. They first equate it to a cylindrical
shell structure, and then carry out a discrete analysis
using the third-order Galerkin method. Based on the
energy-phase method of Haller and Wiggins, the geom-
etry of three jump pulses in six-dimensional phase space
is described by the extended energy-phase method.

Wang et al. [19] propose a new noncircular cross-
section elastic rod model, and explain these inherent
conformational principles by analytical methods using
the concept of effective bending stiffness. The bifurca-
tion and stability analysis also reveals the plain and
flexural conformations of the rod.

Wang et al. [20] consider the Bass model based on
the classic durable consumer goods marketing network
model, deriving degree-based mean-field theory. For the
annealing network setting, they establish its balance,
stability, and aggressiveness. Numerical results show
that the method can optimize costs.

Xu et al. [21] study the space–time fractional equa-
tion. Multiple solitary and periodic solutions are
obtained by new fractional scaling transformations of
fractional nonlinear systems which transform different
time and space orders into integer orders. The authors
expect that the exact solutions of fractional nonlinear
wave systems can be treated in a similar way.

Tian et al. [22] construct a nonlinear dynamic vibra-
tion absorber (DVA) with variable frequency and damp-
ing, and evaluate its performance using a novel force
transferability. A two-step optimization method for
nonlinear DVA parameters over a wide frequency range
is also designed to overcome the limitations of the
traditional single optimization method for broadband
damping. Finally, time history, phase, Poncaré, and fre-
quency spectrum diagrams are analyzed to prove the
effectiveness and superiority of the two-step optimiza-
tion method.

Doubla et al. [23] investigate the Hopfield neural net-
work (HNN) model with a hyperbolic-type memristor.
Equilibrium point analysis shows that the instability
line of the system is associated with external stimuli.
The coexisting attractors are then analyzed using bifur-
cation diagrams, Lyapunov exponents, and phase dia-
grams. Finally, the authors design a new electronic cir-
cuit of a hyperbolic memristor, which enables the com-
puter simulation of the whole system to be designed for
future engineering applications.

Parkavi et al. [24] propose a method to gener-
ate a class of nonlinear ordinary differential equa-
tions (ODEs) which comprise simple harmonic oscil-
lator equations with either amplitude-independent or

integral-dependent oscillation frequency characteristics.
They then use an example to illustrate the theory.

Shi et al. [25] study adaptive consistent tracking con-
trol of perturbed multi-intelligent systems (MASs) by a
discontinuous protocol approach. Using algebraic graph
theory, differential inclusion theory, and matrix theory,
sufficient consistency conditions are obtained for the
mathematical model under consideration. Finally, the
usability of the theoretical analysis is demonstrated by
an example.

Reddy et al. [26] show the application of entropy
generation for gold-blood pseudoplastic nanofluid flow
in electrodynamically and electro-conductively heated
microchannels. The dimensional form of the momen-
tum and heat equations are transformed into dimen-
sionless form using long-wavelength and small Reynolds
number approximations. The effects of parameters
including radiation, Weissenberg number, Helmholtz–
Smoluchowski velocity, and Joule heating are analyzed
through homotopy perturbation method (HPM) calcu-
lations.

Sivasaravanababu et al. [27] study seizure features
expressed in EEG data using a deep convolutional vari-
ational autoencoder (DCVAE) based on deep learning
and preprocessed data using a tunable Q-factor wavelet
transform (TQWT). Subsequently, these violent EEG
features associated with seizures are applied as input
to a stacked bidirectional long- and short-term mem-
ory (SB-LSTM) model for automatic seizure detection.
The method demonstrates high accuracy and sensitiv-
ity.

Ramakrishnan et al. [28] consider an exponential
flux memristor-based Morris–Lecar neuron model for
one-, two-, and three-layer neural networks subjected
to the effects of low-frequency electromagnetic fields
(MLELFs) and noise variance on helical wave suppres-
sion. The multilayer neural network is found to have
a substantial influence on low noise variance in helical
wave suppression.

Karami et al. [29] propose a two-dimensional
megastable oscillator with a square-wave function,
which has an unstable equilibrium point. Based on
this equilibrium, the innermost attractor is self-excited,
while the others are hidden. The authors also study the
basin of attraction of the limit cycles number function
and its chaotic dynamics under sinusoidal forces. Vari-
ous dynamics of the forced oscillator generated by vary-
ing the amplitude and frequency of the forcing term are
discussed.

Tian et al. [30] analyze the fundamental dynamics of
chaotic systems with a hidden attractor and a line equi-
librium. Moreover, the infinity dynamics of the system
are studied based on Poincaré compactification theory,
and the type of equilibria at infinity are also analyzed
and proved. A fixed-time synchronization observer is
proposed, and the master system synchronizes with the
slave system at settling time.

Wang et al. [31] investigate the fractional-order Col-
pitts oscillator on the basis of the multi-step fractional
differential transform method (MFDTM) algorithm
and consider bifurcation diagrams of the fractional-
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order system with the corresponding integer-order sys-
tem. A field-programmable gate array (FPGA) imple-
mentation scheme is proposed for the fractional-order
Colpitts oscillator based on the MFDTM algorithm.

Yuan et al. [32] study the first and second comparison
theorems of tempering fractional differential equations,
and analyze the continuous dependence of the equa-
tion solution on the parameters. Two examples are then
given to support the theoretical analysis.

4 Discussion and outlook

We hope that the content of this volume will further
advance the study of bifurcations, chaos, and bursting
oscillations. This volume provides an in-depth study
of these phenomena, and combined with actual engi-
neering, medical, aerospace, and other models, it pro-
vides new ideas and schemes for optimizing parameter
design at the same time. In addition to classical ana-
lytical methods, scholars have combined cutting-edge
methods from different disciplines, including nanotech-
nology, adaptive control, and deep learning methods.
On this basis, we propose several suggestions for future
research directions. Firstly, although the phenomenon
of bursting oscillations is very extensive, it has not yet
been supported by a profound theory, and it also has
not yet received widespread deep theoretical support. It
is important to establish a mathematical definition of
bursting oscillations and the theory behind them. Sec-
ond, although bifurcation, chaos, and bursting phenom-
ena can be used to guide practical engineering, they are
not closely integrated with actual models. The use of
theoretical analysis for precise control is an important
step in the application direction.

We wish to thank all the authors for their enthusi-
astic response and hard work, and for supporting our
idea to present their recent achievements and progress
in this area of scientific research. We hope that this vol-
ume will contribute to constructive discussions on theo-
retical advances and potential applications for bifurca-
tion, chaos, and bursting oscillation in engineering and
mechanics.
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