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Abstract Wild chaotic attractors exhibit chaotic dynamics with a robustness property that cannot be
destroyed with small perturbations. We consider a discrete-time system with the smallest possible dimen-
sion, namely, defined by a non-invertible map on the complex plane. For this map, wild chaos has been
proven to exist in a small parameter region. Recently, it was conjectured to exist in a much larger region of
parameter space, past a so-called backward critical tangency, at which a sequence of pre-images of a critical
point converges to a saddle fixed point. Geometrically, a backward critical tangency leads to an abundance
of homoclinic and heteroclinic tangencies between invariant manifolds of different dimensions, generating
precisely what are believed to be the necessary ingredients for wild chaos. In this paper, we present cor-
roborating evidence for this conjecture by computing Lyapunov exponents associated with the attractor.
When the sum of the two (largest) Lyapunov exponents is positive, the dynamics is wild chaotic for this
non-invertible map. We find that the zero-sum locus matches the locus of backward critical tangency,
confirming its role as a boundary of existence of wild chaos.

1 Introduction

The definition of chaos that is commonly used in
dynamical systems theory is that a system is chaotic
if there exists a compact invariant set that satisfies the
following three properties [5]:

(i) trajectories in the invariant set exhibit sensitive
dependence on initial conditions;
(ii) the invariant set contains a non-periodic trajec-
tory (the system is topologically transitive);
(iii) periodic orbits are dense in the invariant set.

The invariant set need not be an attractor, but for the
purpose of this paper, we are only interested in the case
of a chaotic attractor. Attracting chaotic dynamics can
also be defined in terms of the Lyapunov exponents
associated with the (attracting) invariant set [25,32].
Lyapunov exponents are the expansion or contraction
rates of the linearised system along an arbitrary non-
periodic trajectory on the attractor. In many cases,
the attractor will be chaotic in the sense as defined
above, if it has a positive Lyapunov exponent. Comput-
ing Lyapunov exponents is a practical way of demon-
strating the presence of a chaotic attractor in experi-
ments, or from numerical simulation. In dynamical sys-
tems theory, chaotic attractors are studied with a com-
bination of geometrical and numerical tools. It is well
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known that typical trajectories on a chaotic attractor
exhibit an expanding direction, which is measured by
a positive Lyapunov exponent [25,32]. Geometrically,
one is interested in the so-called backbone or skele-
ton of the dynamical system, which comprises fixed
points, periodic orbits, and other compact invariant
manifolds, along with their stable and unstable mani-
folds defined by families of trajectories that converge to
these compact invariant manifolds in forward or back-
ward time, respectively. A chaotic attractor contains
infinitely many periodic orbits that are all of saddle
type; their stable and unstable manifolds intersect in
homoclinic and heteroclinic trajectories. The precise
topological nature of the attractor is controlled via
tangencies between such manifolds, which give rise to
an accumulation of tangencies in one-parameter inter-
vals [31,36]. The number of Lyapunov exponents for a
dynamical system is the same as the dimension of its
phase space. Hence, if chaos exists already when a single
Lyapunov exponent is positive, what can one say about
the other Lyapunov exponents? Or perhaps phrased dif-
ferently, are there different kinds of chaos that can be
classified by properties of the Lyapunov exponents?
The idea of a chaotic attractor with two or more
positive Lyapunov exponents goes back to Rossler [33]
who calls this type of chaotic behaviour hyperchaos.
In this paper, we focus on the weaker property that
only the sum, and not both, of the largest two Lya-
punov exponents is positive. This property is associ-
ated with a different form of higher-dimensional chaos
that is called wild chaos in the more theoretical litera-
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ture [26]; wild chaos is defined by the robust existence
of homoclinic and heteroclinic tangencies, that is, sta-
ble and unstable manifolds of a hyperbolic set remain
tangent to each other over an entire parameter inter-
val. Hence, wild chaos persists under Cl-perturbation
(in particular, there are no so-called periodic windows)
[3,37]. As yet, it is an open question which geometric
ingredients, or in other words, which structure of the
backbone of the dynamical system are necessary and
sufficient for it to exhibit wild chaos. In previous work
by one of the authors, the geometric ingredients neces-
sary for generating wild chaos were investigated for a
smooth non-invertible map on the complex plane [17],
which we call the Lorenz-like double-cover map. This
example was chosen because the Lorenz-like double-
cover map has the lowest dimension possible and wild
chaos was proven to exist in a small neighbourhood of
a specific point in parameter space [2]. The theory of
wild chaos tends to consider only saddle-type hyper-
bolic sets, rather than attractors with this property.
More recently, wild chaotic attractors have been a focus
of study, which are called pseudo-hyperbolic attractors
in [14,15].

In this paper, we focus specifically on the parameter
region for which the Lorenz-like double-cover map has
an attractor and we compute the two Lyapunov expo-
nents along representative trajectories over a range of
two parameters. From [15], we know that wild attrac-
tors not only have a positive Lyapunov exponent, but
the sum of the two largest Lyapunov exponents is also
positive; in general, this is not a sufficient condition
for wild chaos, but due to the non-invertibility of the
Lorenz-like double-cover map, a positive Lyapunov sum
is both necessary and sufficient for our study.

The Lorenz-like double-cover map from [2] is defined
on the complex plane as the non-invertible map

F() = (1= A+ AJsl?) () TR

k1

with real parameters ¢ > 0 and A € (0,1). In [2],
wild chaos was proven to exist for system (1) provided
(a,\) =~ (1,1). However, wild chaos is conjectured to
exist for a much larger region in the (a, A)-plane [17,29].
Note that f is not defined for z = 0. This point is
called the critical locus. The conjecture made in [17] is
that wild chaos arises from a specific global bifurcation,
called the (first) backward critical tangency, defined as
the moment when the critical locus is contained in the
unstable set of a saddle periodic orbit, namely, a fixed
point of f. We wish to test this hypothesis more globally
by comparison between the zero-sum locus of the two
Lyapunov exponents associated with the chaotic attrac-
tors of system (1) and the conjectured locus of onset of
wild chaos given by the curve of backward critical tan-
gency in the (a, A)-plane.

In the next section, we provide basic definitions rel-
evant for a non-invertible system like system (1). In
Sect. 3, we discuss a well-known route to chaos, which is
representative of the parameter-dependent transforma-
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tions of the dynamics for system (1). We explain how
we compute Lyapunov exponents in Sect.4 and com-
pare the sign of the maximal Lyapunov exponent in
the (a, A)-plane with the existence of a classical chaotic
attractor. In Sect.5, we consider the sum of the two
Lyapunov exponents and overlay the curve of first back-
ward critical tangency in the (a, A)-plane. Our findings
suggest that the zero-sum locus of the Lyapunov expo-
nents agrees well with the locus of first backward crit-
ical tangency. We end with conclusions in Sect.6 and
discuss future directions of research.

2 Background and definitions

Let us first explain some properties of dynamical sys-
tems described by a non-invertible map that are dif-
ferent from the more standard invertible case. Recall
that system (1) is not well defined on all of C, because
f is not defined for z = 0. The image of f covers the
complex plane twice, except for a (closed) disk with
radius 1 — A centred at 1, which is not in its range. Con-
sequently, points inside this disk have no pre-images,
while points outside it have two; hence, trajectories
are not, or not uniquely defined in backward time. We
remark that f(Z) and f(z) are complex conjugate, so
the system has the symmetry z — Zz, and the real axis is
invariant. Following the theory for non-invertible maps
[22,27], we refer to 0 as the critical point, also denoted
Jo, and the boundary of the closed disk is the critical
set, denoted Jq, that separates the points in the com-
plex plane that have two pre-images of f from those
that have none; note that J; can be thought of as the
muli-valued image of the critical point 0. The sequences
of pre-images (backward iterates) of 0 and images (for-
ward iterates) of Jy form the backward critical set and
the forward critical set, respectively.

Observe that f is continuous and its derivative is also
continuous. Hence, locally and away from z = 0, we can
define a unique inverse for f. This means that locally
we can apply the theory for real invertible systems. To
this end, we identify C with R? and write f in terms
of coordinates (z,y) € R? with z = 2 + iy. For a suffi-
ciently small, the map f has a saddle fixed point p on
the positive real axis; hence, f(p) = p and the Jaco-
bian matrix of f evaluated at p has one eigenvalue with
modulus less than 1 and the other with modulus larger
than 1. Since, locally near p, say, in a neighbourhood
U, C R? of p, we can identify a unique local inverse
of f that maps p to itself, the Stable Manifold The-
orem [30] guarantees the existence of local stable and
unstable manifolds of p, denoted W} _(p) and W% (p),
respectively. They are defined as

Wike(p) = {(z.y) € Up | lim f")(x +iy)=p} and

Wite(p) = {(z,9) € Up | lim f"(z +iy) =p},
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Fig. 1 Backbone of system (1) for a = 0.6 and A = 0.8.
Shown are the backward critical set (green dots), contain-
ing 0 and its pre-images, and the forward critical set (green
closed curves), containing the circle J; and its forward
images, together with the fixed point p (bright-green cross),
its stable set W?°(p) (blue curves) and unstable set W*(p)
(red curve), and the two attracting fixed points ¢ and q
(light-blue triangles)

and are tangent at p to the corresponding stable and
unstable eigenvectors of p; here, the local inverse is
assumed for f(=) in the definition of W (p). These
local manifolds can be extended to global stable and
unstable sets, denoted W#(p) and W*(p), respectively.
The stable set W*(p) contains all points in the complex
plane that converge to p under forward iteration, which
means that W?*(p) comprises W} (p) and all possible
pre-images of W _(p) [11,27]. Similarly, W™ (p) contains
all points in the complex plane for which there exists a
sequence of pre-images that converge to p; this means
that W*(p) may have self-intersections at points for
which both pre-images lie on sequences of pre-images
converging to p [12,22]. For this reason, W#(p) and
W(p) are typically not manifolds, which is why we
refer to them as stable and unstable sets.

Figure 1 shows the backbone of system (1) gener-
ated by the map f with ¢« = 0.6 and A = 0.8. The
origin 0 and the other points in the backward criti-
cal set are shown as green dots, and J; with the other
curves in the forward critical set are the green closed
curves. The stable set W?(p) (blue curves) of the fixed
point p is composed of disjoint manifolds that are pre-
images of the positive real axis (which contains p and
W .). The closure of W#(p) forms a regular tree of
degree four with the points in the backward critical
set as vertices. Observe that W*(p) includes points
inside the disk bounded by J;, because such points
do have forward iterates and some converge to p; simi-
larly, W*#(p) contains points in the interior of all (green)
closed curves in the forward critical set. The unsta-
ble set W*(p) of p consist of two complex-conjugate
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branches and is a manifold for this choice of parame-
ters; indeed, each branch is associated with a uniquely
defined inverse of f. The unstable set W"(p) cannot
intersect J; (or images of Jy), because such points do
not have (a sequence of) pre-images that could con-
verge to p. Rather than intersect, the forward critical
set accumulates on W*(p). Each branch of W*(p) spi-
rals in and accumulates onto an attracting fixed point
q or g (light-blue triangles); the complex-conjugate pair
q and ¢ is given by ¢ = exp (in/3) = % + % 317 and,
hence, does not depend on a or A. The fixed points g and
q are stable (attractors) when a and X are small enough;
they become repelling in a Neimark—Sacker bifurcation
[23] when a = 35, that is, when the eigenvalues of the
associated Jacobian matrix lie on the unit circle in the
complex plane.

Variation of a or A may induce an interaction between
the stable and unstable sets of system (1). A homoclinic
tangency occurs when W#(p) and W"(p) have a non-
transverse intersection, which forms a trajectory that
converges to p in both forward and backward time. As
soon as the intersection is transverse, we speak of W*#(p)
and W*(p) forming a homoclinic tangle [31]. Intersec-
tions between stable and unstable sets of two different
fixed points or periodic points also occur and this is
called a heteroclinic tangency or tangle. (A periodic
point is a fixed point of the k-th iterate of f for some
k € N with £ > 1, and its stable and unstable sets
are defined similarly by using the k-th iterate of f.)
The presence of a bounded homoclinic orbit forces the
stable and unstable sets to accumulate on themselves,
leading to the existence of an accumulating sequence
of parameter values of further homoclinic tangencies
between the same stable and unstable sets [31].

The geometric study of wild chaos in [17] focused
on the interactions of W#(p) and W*(p) with each
other and with the forward and backward critical sets.
Indeed, the proof of existence of wild chaotic dynam-
ics for (a, \) sufficiently close to (1, 1) assumes that the
chaotic invariant set contains p and W*(p) [2]. A clas-
sical chaotic attractor in this situation is given by the
closure of W*"(p). Hence, a bifurcation that changes the
chaotic attractor to a wild chaotic attractor is expected
to involve W¥(p).

3 Route to chaos

As mentioned in the previous section, the complex-
conjugate pair of fixed points ¢ and ¢ destabilise in
a Neimark—Sacker bifurcation. Such a bifurcation gives
rise to an invariant circle on which the dynamics of the
map f is quasi-periodic or phase locked. In fact, the
bifurcation is supercritical for @ < 1, which means that
the invariant circle is attracting. As is well known, a
small perturbation of such quasi-periodic dynamics is
expected to lead to the existence of strange attractors,
that is, chaotic behaviour [34]. We present this route to
chaos (and subsequent bifurcations to wild chaos) for a
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Fig. 2 Phase portraits of system (1) with A = 0.8. Here,
panels (a) to (d) are for a = 0.63, a = 0.65, a = 0.67,
and a = 0.7, respectively. Panel (a) shows the complex-
conjugate pair of invariant circles (light-blue curves) that
are created in a Neimark—Sacker bifurcation of the fixed
points ¢ and § (dark-red squares). Panel (b) also shows
two coexisting complex-conjugate pairs of period-8 orbits,

representative set of parameter values on the horizontal
line with A = 0.8 in the (a, A)-plane.

Figure 2 shows phase portraits of this transition for
A = 0.8, with panels (a-d) showing phase portraits
for a = 0.63, a = 0.65, a = 0.67, and a = 0.7,
respectively. As in Fig.1, we plot the fixed point p
(bright-green cross) with its stable and unstable sets
W#(p) (blue curves) and W"(p) (red curve), respec-
tively, together with the forward critical set (green
closed curves), the backward critical set (green dots),
and the complex-conjugate fixed points ¢ and ¢ (dark-
red squares). Indeed, a > % = 0.625 for all four cases,
so that ¢ and g are unstable (sources). Furthermore, we
also plot the different attractors that exist for the spec-
ified parameter values. Figure2a illustrates that the
Neimark—Sacker bifurcation initially gives rise to two
complex-conjugate attracting invariant circles (light-
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one attracting (light-blue triangles) and one of saddle type
(green crosses). Panel (c) shows a complex-conjugate pair
of chaotic attractors, each represented by a single trajectory
(orange dots), and panel (d) shows a single chaotic attrac-
tor after a homoclinic tangency between the sets W (p) and
W?(p). See Fig. 1 for more details on what is shown

blue curves) that surround ¢ or ¢. The two complex-
conjugate branches of W*(p) (red curves) each accu-
mulate on the respective invariant circles; the dynamics
on the two attractors is quasi-periodic and there is no
chaos. Here, the basins of attraction of the two invari-
ant circles are separated by the closure of W#(p). From
the theory, we know that such quasi-periodic invari-
ant circles are not likely to persist over a large range
of parameters [34]. Indeed, as a increases to a = 0.65,
we appear to be close to their break-down: surround-
ing each invariant circle is a (complex-conjugate) pair
of period-8 orbits, one of saddle type (green crosses)
and the other attracting (light-blue triangles). Fig-
ure 2b shows that the invariant circle comes close to
the period-8 saddle; there are now a total of four coex-
isting attractors and each branch of W*(p) appears to
accumulate onto both an invariant circle and a period-8
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attractor, suggesting the existence of a heteroclinic con-
nection between W*(p) and the stable set of the saddle
period-8 orbit (not shown).

When a = 0.67, shown in Fig. 2¢, both the invariant
circles and the period-8 attractors have disappeared;
the sequence of bifurcations that transforms or destroys
the non-chaotic attractors occurs in an extremely small
parameter interval and we consider the precise details
beyond the scope of this paper. For a = 0.67, each
branch of W*(p) accumulates on a chaotic attractor,
which we represent by 10* points of a single orbit
(orange), obtained from iterating the (arbitrary) initial
condition 1 + 4 and discarding the first 1000 iterates.
Note that the complex-conjugate pair of chaotic attrac-
tors lies close, in places, to the stable set W*(p), which
forms their shared basin boundary. As a increases fur-
ther, a homoclinic tangency between W*(p) and W*(p)
occurs where the two attractors merge into one large
chaotic attractor that is itself complex conjugate; this
transition is a form of interior crisis [16]. An example
is shown in Fig.2d for a = 0.7. We remark here that
the homoclinic tangle between W*(p) and W*(p) nec-
essarily implies that the unstable set W*(p) has self-
intersections and is no longer a manifold; the homo-
clinic orbits arising from the intersection of W#*(p) and
W*(p) include points on the real axis that will, by def-
inition, lie on both branches of W*(p).

The route to chaos described above for fixed A = 0.8
is representative for the dynamics exhibited by sys-
tem (1). (However, the periods of the periodic orbits
near the invariant circle will vary.) We remark that
the perhaps more common route of period-doubling to
chaos [5] also occurs in this system, but only leads to a
chaotic attractor if the system is embedded in a larger
three-parameter class of non-invertible maps. For exam-
ple, consider the map f such that a parameter ¢ € C
defines the location of the centre of the circle Ji; the
map (1) is then given by ¢ = 1. In this generalised set-
ting, if @ = 2 and A = 1, the map is equal to the com-
plex quadratic map and has associated period-doubling
sequences organised by the Mandelbrot set; see [18] for
a more detailed study of the dependence on A € [0,1]
and ¢ € C for this more generally defined map f with
a = 2 fixed.

4 Lyapunov exponents as a measure to
detect wild chaos

Lyapunov exponents represent the average contraction
or expansion rates on an attractor that admits an
invariant measure [25,28]. An m-dimensional discrete-
time system will associate m Lyapunov exponents to
each trajectory. Hence, an attractor of system (1) has
two Lyapunov exponents, A; > As. For a fixed-point
attractor, we have A; := In(0;) for i = 1,2, where o;
are the singular values of the Jacobian matrix asso-
ciated with the fixed point. (The singular values of
a matrix A are the square-roots of the eigenvalues of
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the positive semi-definite matrix product given by A
and its transpose.) Similarly, for an attracting periodic
orbit of period k, the Lyapunov exponents A; and A,
are derived from the singular values, say, p; and uo
of the Jacobian matrix of the kth iterate. The Jaco-
bian matrix of the kth iterate is, in fact, a chain of k
Jacobian matrices for the map evaluated at successive
iterates of the initial point. Hence, on average in each
of the k iterations, the contraction or expansion rates
will be A4; = %ln (u;) for i = 1,2. Considering now
an arbitrary non-periodic trajectory on the attractor,
one obtains the Lyapunov exponents from the time-
varying linear system given by the linearisation along
this trajectory [19]; effectively, we have an infinite chain
of Jacobian matrices, and the average contraction or
expansion rates must be calculated as a limit where the
number of iterates goes to infinity.

The calculation of Lyapunov exponents can numeri-
cally be rather delicate, particularly when both expan-
sion and contraction are involved; see [13] for an
overview of different approaches. We follow the descrip-
tion in [4] of the method from [10,38], which is essen-
tially a (time-varying) power method with orthonor-
malisation to avoid alignment of vectors along the direc-
tion associated with the largest Lyapunov exponent; see
also [7-9]. More precisely, assuming zo € C is an initial
condition on the attractor, we generate the linearised
System

M1 = Df(zn) My, (2)

where 2z, = f(”)(zo) is the nth iterate of zy and
My € SO(2) is a 2 x 2 orthogonal matrix with deter-
minant 1. Instead of calculating singular values of the
matrix chain My My_1 -+ My My for large N, we
apply Gramm-Schmidt orthogonalisation before each
successive multiplication and keep track of the change
in magnitude of the first column vector, as well as
the determinant of the matrix. Hence, we generate a

sequence Agn) associated with the maximal Lyapunov
exponent /A;, defined recursively as

AP = A1 4 log (| Myer ),

(here, e; is the vector with 1 as its first component and 0
otherwise), and another sequence D™ associated with
the determinant of the matrix product (in logarithmic
form), given by

DD = D) 4 1o (det (My,)).

Hence, in theory, both the maximal Lyapunov exponent
and the sum of the two Lyapunov exponents is obtained
as a limit:

Ay = limy o =40,
A+ Ay = limy oo %D(N)

@ Springer
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In practice, we use the values of %AgN) and %D(N)
for large, finite IV to estimate these limits. When com-
puting Lyapunov exponents, it is implicitly assumed
that the trajectory generated from the initial condition
zp € C lies on the attractor.

Recall that we must also take into account that sys-
tem (1) exhibits multi-stability, and each attractor will
be associated with different Lyapunov exponents. For
the computations that follow, we generate a uniform
grid of 25 points (x,y) € (0,10) x (0,10) and iterate
each pair of points £z + iy a total of 10° times to
obtain 50 initial conditions zg € C that are assumed to
lie on an attractor. We then use the above algorithm,
starting from randomly selected matrices My € SO(2),
and determine the Lyapunov exponents as the com-
puted values at iteration N = 10% We checked the
accuracy of our computations against known Lyapunov
exponents for the case when the attractor is a fixed or
periodic point. In such cases, we find that our approxi-
mations for A; and A; + Ay are correct to two or three
decimal places. The approximation error is larger for a
chaotic attractor, especially when the attractor covers
a large portion of phase space and may not be suffi-
ciently represented by a trajectory of N = 10* iterates.
Nevertheless, based on the significant variation of the
50 approximations of A; and Ay at parameter points for
which we know that a single chaotic attractor exists, we
estimate that we can determine the zero-locus of either
Ay or Ay + As in the (a, A)-plane up to an error of 0.05
in the parameters.

4.1 Maximal Lyapunov exponent and classical chaos

Figure 3 shows approximations of the maximal Lya-
punov exponent A; computed on a square grid of

(a)
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100x 100 parameter pairs (a, A); here, both a and A take
the values 0.5 + k£0.005 with & = 0,1,...,99. Panel (a)
shows the largest and panel (b) the smallest values
found for A; at each parameter point, where we used
shades of magenta and yellow for negative and posi-
tive values, respectively, as indicated by the colour bar.
Overlayed are the curve NS (dark green) of Neimark—
Sacker bifurcation (given by a = 5%) and the curve
HC (dark blue) of (first) homoclinic tangency between
W#(p) and W*(p) (computed with the software MAT-
ConNTM [24]). The parameter points on the line A = 0.8
for the phase portraits in Figs. 1 and 2 are indicated by
crosses (red). Figure3 confirms our expectation that
Ay changes sign in between the curves NS, to the left of
which the complex-conjugate fixed points ¢ and ¢ are
the only attractors, and HC, which is a limit of accu-
mulating homoclinic tangencies in the (a, \)-plane that
guarantees the onset of classical chaos [31,36].

For a more quantitative discussion of the computed
values for Ay, we consider again the specific transition
to chaos along the line A = 0.8. As expected, the param-
eter point for a = 0.6, associated with Fig. la, lies in
the region where A; < 0. Indeed, the two attractors
q and ¢ both have the same pair of stable complex-
conjugate eigenvalues, with associated Lyapunov expo-
nents A; = A ~ log(0.9798) ~ —0.0204. For each
of the 50 initial conditions zp, our numerical approxi-
mations give A7 = —0.02 when rounded to two deci-
mal places. When a = 0.63, (almost) all initial condi-
tions converge to one of the two invariant circles, which
means that A; = 0. Our computations consistently give
0 < A; < 0.0005. As a increases to a = 0.65, two
different complex-conjugate pairs of attractors exists,
which means that A; depends on the chosen initial con-
dition: for points £x + iy inside an invariant circle,

0.6 0.7 0.8 a 09

Fig. 3 Maximum Lyapunov exponent A; of system (1)
computed for (a, ) € [0.5,0.995]x[0.5,0.995] with mesh size
0.005. Panel (a) shows the largest and panel (b) the small-
est computed estimates of A;, using the colour shading from
magenta to yellow as given by the colour bar. Overlayed
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are the curve NS (dark green) of Neimark-Sacker bifurca-
tion and the curve HC (dark blue) of (first) homoclinic tan-
gency. The five (red) crosses indicate the parameter points
at a = 0.6, a = 0.63, a = 0.65, a = 0.67, and a = 0.7 with
A = 0.8, for which phase portraits are shown in Figs. 1 and 2
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or just outside of it, iterates end up at initial condi-
tions zo (almost) on the invariant cirlce and A; = 0,
and the same happens for any preimage of such points;
for (almost) all other points, the iterates end up at
initial conditions zy (almost) on one of the complex-
conjugate period-8 orbits and A; ~ —0.0342 is deter-
mined by their (equal) eigenvalues. When approximat-
ing A; by simulation, we get A; € [—0.0342,0.0004].
Hence, the pale magenta colour in Fig. 3a at this param-
eter point is determined by the invariant circles, while
it has a darker shade in panel (b), corresponding to
the period-8 attractors. When a = 0.67, the approx-
imations give A; € [0.1272,0.1399], even though the
two complex-conjugate chaotic attractors have identi-
cal maximal Lyapunov exponents. However, all values
are positive, which confirms that classical chaos appears
before the first homoclinic tangency between the stable
and unstable sets W?*(p) and W"(p) of the real sad-
dle p. Finally, when a = 0.7, our computed values for
Aj range from about 0.2323 to about 0.2442, suggest-
ing that this parameter point lies firmly in the chaotic
regime.

For the five parameter points discussed above, we
found that A; changes sign as a increases, but the sum
A1 + As remains negative. More precisely, A; + Ao is
about —0.04 when a = 0.6 and about —0.03 when
a = 0.63, and it varies in the ranges [— 0.0694, —0.0475],
[—0.1457,—0.1361], and [—0.2327,—0.2162] when a =
0.65, 0.67 and 0.7, respectively. Hence, the chaotic
dynamics exhibited by system (1) for the parameter
points (a,A) = (0.67,0.8) and (a,\) = (0.7,0.8), at
which A; > 0, are examples of classical chaotic attrac-
tors.

5 Wild chaos and associated Lyapunov
exponents

Classical chaos is associated with accumulations of
homoclinic tangencies [31,36] and can occur for any
two-dimensional systems given by a continuously dif-
ferentiable map. On the other hand, wild chaos is asso-
ciated with robust homoclinic and heteroclinic tangen-
cies and can only be found for planar maps that are
non-invertible, such as the map f given in (1). As dis-
cussed in [2], wild chaos arises from interactions of the
chaotic invariant set with the critical point at 0; here,
the chaotic attractor is given by the closure of the
unstable set W*(p). Indeed, the existence of forward
and backward critical sets are the specific features that
distinguish f from an invertible map.

The conjecture in [17] states that wild chaos in sys-
tem (1) arises as soon as W¥(p) contains the criti-
cal point 0, which occurs at a bifurcation that the
authors refer to as a backward critical tangency. Simi-
lar to the homoclinic tangency, the accumulating nature
of W*(p) implies that the backward critical tangency
is immediately followed by an accumulation of back-
ward critical tangencies; the first backward critical tan-
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gency is the limit of this sequence. We remark that
the backward critical tangency can only occur for non-
invertible maps. The equivalent bifurcation for a three-
dimensional invertible map is more complicated, involv-
ing a heteroclinic tangency between a one-dimensional
unstable manifold and a one-dimensional stable man-
ifold of a different fixed or periodic point; we refer to
[3,6] for details.

A numerical characteristic for the existence of a wild
chaotic attractor is that the sum of its two largest
Lyapunov exponents is positive [14,37]. In general,
this is not sufficient, because the linearised dynamics
transverse to the attractor must also be sufficiently
(dominating) contracting; we refer to [15] for precise
details. For the planar example presented in this paper,
this additional condition is trivially satisfied and the
requirement that A; + Ay > 0 is both necessary and
sufficient for the existence of wild chaos.

Figure 4a shows the phase portrait of system (1) with
a = 0.8 and A again fixed at 0.8. While similar to the
phase portrait in Fig.2d (with a = 0.7), the chaotic
attractor (orange dots) for this case is believed to lie
in the wild chaotic regime. In both Figs.2d and 4a,
the chaotic attractor is formed by the closure of the
unstable set W¥(p) (red curves) of the fixed point p
(bright-green cross). Note that W*(p) has ‘thickened’
considerably in Fig.4(a) such that many more self-
intersections are seen; moreover, the stable set W*(p)
(blue curves) is more prominently filling the complex
plane. The essential difference, however, is that the
“first’ self-intersection of W"(p), the point with the
shortest arclength distance to p along W*(p), now lies
to the left of 0, on the negative real axis. Indeed,
several computed points of the backward critical set
(green dots) now lie inside the cardioid formed by p
and the two local branches of W"(p) up to the first
self-intersection.

Figure 4b shows the (maximal) sum A; + Ay of the
Lyapunov exponents computed on the same square grid
of parameter pairs (a,\) as in Fig. 3; the magenta and
yellow colour shades correspond to negative and pos-
itive values, respectively, as given by the colour bar
in Fig.3. The (red) cross corresponds to the parame-
ter point (a,A) = (0.8,0.8) associated with the phase
portrait in panel (a); note that it lies in the yellow-
shaded region. Ineed, for this point we find A; + Ay €
[0.0647,0.0811], which confirms the wild chaotic nature
of this attractor. With an adaptation of the contin-
uation toolbox in MATCONTM [24] for heteroclinic
tangencies, we can numerically verify that the (first)
backward critical tangency for A = 0.8 occurs when
a =~ 0.7366, in between a = 0.7 and a = 0.8. We
can subsequently compute a curve of first backward
tangency in the (a, A)-plane by continuation of a (not
necessarily unique) sequence of backward iterates in
the backward critical set that converges to p; we label
this curve BWT and it is overlayed (brown curve) in
Fig.4b, together with the curve NS (dark green) of
Neimark—Sacker bifurcation and the curve HC (dark
blue) of homoclinic tangency. Observe that the param-
eter points on the line A = 0.8 for the phase portraits in
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Fig. 4 Wild chaos in system (1). Panel (a) shows the
phase portrait for a = 0.8 and A = 0.8; see Figs.1 and 2
for details on what is shown. Panel (b) shows the sum
A1 4+ As of the two Lyapunov exponents, computed for
(a,A) € [0.5,0.995] x [0.5,0.995] with mesh size 0.005. Here,
we plot the largest value of A1+ A5 for each parameter point,
using the colour shading from magenta to yellow as given by

Figs. 1 and 2 all lie to the left of BWT, in the magenta-
shaded region. Of course, if A; < 0 then A; + A5 < 0 as
well. The points for ¢ = 0.67 and a = 0.7, with A = 0.8
fixed, correspond to cases with A; > 0; see Figs.2
and 3. As mentioned in the previous section, we find
that A; + Ay varies for these two parameter points in
the ranges [—0.1457,—0.1361] and [—0.2327,—0.2162],
respectively. Hence, the sum A; + A5 appears to be
decreasing as a increases towards the curve BWT; this
counter-intuitive behaviour continues until the homo-
clinic tangency HC at a =~ 0.6841, after which A; + A5
appears to increase monotonically. All computed values
for Ay 4+ A, lie above —0.005 as soon as a > 0.735, just
as a crosses the curve BWT.

In [2], a complete proof of existence of wild chaos in
system (1) is given for (a, A) close to the top-right cor-
ner (1,1). This proof does not consider W*(p) directly,
because such a global invariant set can only be found
numerically. Instead, the authors impose strong condi-
tions on the eigenvalues of p to show that wild chaos
certainly exists for parameters in the (a, A)-plane close
to the point (1,1). The numerical results in [17] give a
geometric perspective and show that the first backward
critical tangency bounds a region in the (a, A)-plane
that contains (1,1) and has topologically the same
backbone structure of the dynamical system. Hence,
the authors conjectured that the region of wild chaos is
bounded by the curve BWT of (first) backward crit-
ical tangency [17,29]. Our computations of the sum
A1 4+ As of the two Lyapunov exponents corroborates
this hypothesis; see Fig.4b. The match is particularly
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(b)

0.7 08 4 09

the colour bar in Fig. 3. Overlayed in panel (b) are the curves
NS (dark green) of Neimark—Sacker bifurcation, HC (dark
blue) of (first) homoclinic tangency, and BWT (brown) of
(first) backward critical tangency. The (red) cross indicates
the point (a, \) = (0.8, 0.8) associated with panel (a); com-
pare also with Figs. 2 and 3

good along the lower segment, although roughly for
A > 0.7, the zero-locus of A; + A; deviates away
from the curve BWT in the direction of increasing a.
Upon closer inspection, we find that the computed val-
ues for the sum A; + A; are almost all larger than
—0.05 when (a, A) lies to the right of the curve BWT,;
the different approximations obtained for each (a, A)-
pair immediately to the right of BWT always lie in
the range [—0.0652,0.0033]. For the 100 data points
immediately to the right of BWT, there are 17 with
a minimum of A; + A5 below —0.05, but only the data
point (a,A) = (0.625,0.995) also records a maximum
sum below —0.05; the first positive Lyapunov sum is
detected when (a, ) = (0.665,0.995). We conclude that
our computations confirm the hypothesis that the curve
BWT bounds the region of existence for wild chaos, to
within an accuracy of O(107!). On the other hand, we
note that the numerical evidence becomes slightly less
convincing for A-values very close to the (limiting) case
of A=1.

6 Conclusions

We presented a quantitative investigation of the exis-
tence of both classical and wild chaotic dynamics for
the non-invertible discrete-time system from [2] that is
defined on the punctured complex plane by the Lorenz-
like double-cover map (1) with parameters a > 0 and
A € (0,1). This system is well studied and a proof was
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provided in [2] that wild chaos exists for (a, ) =~ (1,1).
The geometric characteristics of wild chaos were inves-
tigated in detail in [17,29] and a conjecture was made
that the first backward critical tangency is the bound-
ary of wild chaos. We complemented the evidence for
this conjecture with the computation of the maximum
and sum of the Lyapunov exponents for a broad range of
parameters. We found that there is a very good match
between the conjectured onset of wild chaos and the
moment when the sum A; 4+ A5 of the Lyapunov expo-
nents becomes positive: the curve BWT of first back-
ward critical tangency in the (a, A)-plane lies very close
to and always slightly to the left of the zero-locus for
Aj + As, confirming that wild chaos only arises for suf-
ficiently large values of @ and X\ as given by the locus
BWT.

Geometrically, the map (1) is an example of a sys-
tem with hetero-chaotic attractors [35]; these are char-
acterised by the existence of (saddle) periodic points on
the attractor with different stability indices (different
numbers of stable and unstable eigenvalues). In future
work, we plan to investigate parameter-dependent ver-
sions of the paradigm models from [35] as other pos-
sible wild chaotic maps with the conjectured bifurca-
tion structure. This larger class of hetero-chaotic sys-
tems also includes systems with so-called hyperchaotic
attractors [1,20,21], which exhibit two positive Lya-
punov exponents; such systems cannot be planar and
are, therefore, computationally more challenging. It
would be of interest to study the transition from chaotic
to hyperchaotic attractors via a wild chaotic attractor,
which may well both be organised by (different) forms
of backward critical tangencies; however, this is also left
for future research.

In general, very few explicit examples of wild chaotic
systems exist and there are no further studies of a
possible backward critical tangency causing the onset
of wild chaos. The authors of [15,37] present a four-
dimensional Lorenz-like vector field for which the com-
putation of Lyapunov exponents has provided insight
in the existence of wild chaos. For a four-dimensional
continuous-time system, it is not sufficient to check the
sign of the sum of the Lyapunov exponents; the expan-
sion characteristic becomes more elaborate and involves
the computation of invariant subspaces [15]. The back-
ward critical tangency for non-invertible maps corre-
sponds, in vector fields, to a particular form of hetero-
clinic tangency between periodic orbits that have asso-
ciated unstable eigenspaces with different dimensions
[17]. From a computational point of view, such a het-
eroclinic tangency can be found in a similar way, and
we still expect that the bifurcation structure is similar,
although it will be challenging to identify the periodic
orbits involved in this bifurcation. We plan to investi-
gate the geometric organisation of this four-dimensional
Lorenz-like system in future work to obtain further evi-
dence of matching geometric and expansion character-
istics of wild chaos.
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