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Abstract Traffic jams are a significant problem in urban cities that cause pollution and waste fuel, money,
and time. Therefore, there is an urgent need to build tools that enable authorities to monitor and under-
stand traffic dynamics and their causes. However, exploring these large complex data presents a challenge
to domain experts. This paper proposes JamVis, a web-based visual analytics framework that leverages
Waze’s multi-modal spatio-temporal data to this end. JamVis comprises two main components designed
based on requirements elicited from domain experts. The first one supports the exploration of Waze’s
traffic jam information through multiple linked views. The second component allows identifying events
through alerts reported by Waze users about different problems (e.g., potholes, floods, or heavy traffic). A
new algorithm called TST-clustering is introduced to perform event detection, which is an adaptation of
the DB-Scan algorithm that allows clustering alerts by space, time, and type. Furthermore, to provide an
overview of this algorithm’s spatio-temporal results, we introduce a novel visualization called ST-Heatmap.
JamVis is validated through three usage scenarios analyzing different events in Rio de Janeiro.

1 Introduction

Traffic jams are a severe problem in urban cities that
cause pollution and waste fuel, money, and time and,
therefore, severely impact the population’s quality of
living. This problem is significant in major urban cen-
ters where traffic jams cause billions of dollars in losses
every year. For this reason, it is essential for traffic plan-
ning and urban mobility experts to monitor and under-
stand the leading causes of traffic congestions to plan
policies and, therefore, identify solutions [1–4]. Due to
the importance of this problem, many cities1,2 acquire
and publish traffic data from different sources such as
road sensors. While this approach is widely used, these
data often cover a small fraction of the roads and are
not uniform among cities. Also, this type of data lacks
semantics (i.e., we do not know what type of events are
associated with the recorded data). Therefore, under-
standing the cause of many traffic patterns is difficult
or impossible.

Popular GPS navigation applications, such as Waze
have revolutionized the way humans relate to traffic
and mobility, engaging hundreds of millions of users
worldwide. Like other popular vehicle-based traffic data
such as taxi data, these applications transform their

a e-mail: elio.rodriguez@ucsp.edu.pe (corresponding
author)
1 NYC Open Data—http://nycopendata.socrata.com.
2 City of Chicago Data Portal—https://data.cityofchicago.
org.

users’ vehicles into moving city sensors. However, what
sets Waze’s data apart from ordinary taxi data is that
they provide real-time route information and allow
social interaction via crowdsourced information and
alert functionalities [5]. As a result, such applications
produce an enormous amount of multi-modal data (e.g.,
spatio-temporal and textual) covering many cities in
high resolutions, which has generated much interest
from academic and governmental researchers [6,7]. All
these data can allow traffic managers to understand
traffic jams’ behavior and know the cause that produces
them. For example, jams contain multiple geometries
(e.g., points, poly-lines) that do not fit into a city’s
street network; also, alerts have a position with a com-
ment that needs to be structured.

Working alongside domain experts, we developed
JamVis, a visual analytics system targeted to explore
and analyze congestions using Waze data. This system
enables multi-modal traffic jam data exploration at dif-
ferent levels (segments, roads, and regions) interactively
through multiple linked views (MLV) [8]. JamVis com-
prises two main modes; each comprises multiple linked
views and targets Waze’s specific type of data. The first
one supports the exploration of Waze’s traffic jam infor-
mation and has the primary goal of understanding the
spatiotemporal nature of jam patterns. The second one
explores the Waze alerts, which consist of information
volunteered by Waze’s users. Alerts allow knowing the
causes of traffic jams through both their reported type
(e.g., potholes, floods, or heavy traffic) and free textual
information provided by the users.
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Fig. 1 Jams and Alerts
reported by Waze users.
Here, there are two types
of alerts (crash and road
closed) displaying users’
comments. Also, colored
road segments indicate the
traffic level. Figure
magnification illustrates
how we map the traffic
information to the road
network (black lines) to
enable temporal traffic
analysis

In addition, this work proposes TST-clustering (i.e.,
type-spatial-temporal clustering), an adaptation of the
ST-DBScan algorithm (spatial-temporal DBScan) [9]
that clusters alerts by space, time, and type to orga-
nize and effectively explore alert patterns. Results pro-
duced by this algorithm are represented in a novel
visualization called ST-Heatmap that is introduced in
this work. This technique leverages a linear sorting of
the alerts’ geographical coordinates using a space-filling
curve to construct representations of the alerts like a
Gantt chart. Moreover, this manuscript describes three
usage scenarios to demonstrate the usefulness of the
system. These usage scenarios show that our approach
enables novel traffic congestion data exploration and
their causes to uncover problems. Our domain expert
collaborators validated these usage scenarios and also
reported positive feedback on our system.

In summary, our work contributions are (i) an
algorithm to discover hidden events related to traf-
fic jams, based on comments reported by Waze users.
(ii) JamVis, a visual analytical system that allows the
exploration and analysis of multi-modal traffic jam data
alongside a novel visualization called ST-Heatmap. (iii)
Three usage scenarios showing an analysis of congestion
in Rio de Janeiro.

2 Related work

Our work draws on prior research in the areas of mobil-
ity and traffic data analysis and visualization. We point
the reader to the surveys by Chen et al. [10] and
Mehdizadeh et al. [11] for a broader reading in these
areas.

2.1 Visual analysis of mobility data

Proposing techniques and systems to support mobility
data visual analysis has been a trending research topic
recently. Such works’ general goals can be classified as
visual monitoring, pattern discovery, route planning,
and situation-aware exploration; this last category is

the one where our work lies. In this class, many works
focus on developing tools for the analysis of mobility
and traffic data.

For instance, Ferreira et al. [12], Kruger et al. [13],
and Wang et al. [14] propose visual querying capabili-
ties that enable analysts to specify complex queries eas-
ily and filter the data interactively. Buchmüller et al.
[15] propose a visualization technique called Motion-
Rugs that consists of a temporal heatmap that encodes
multiple objects’ spatial distribution over time. Traf-
fic flow is another important aspect of mobility; that
is why Sun et al. [16] propose a technique to integrate
spatio-temporal information in a selected road to visu-
alize flow patterns. Also, Guo et al. [17] show a visual
analytics system for finding traffic flow patterns at a
road intersection. While the previous systems serve as
inspiration for our work’s development, they concen-
trate on general mobility and not analyze traffic jams
and their causes, which is our goal.

Many works have used pattern extraction techniques
to extract traffic data patterns and better support
interactive visual analysis. For instance, the studies of
Huang et al. [18] support pattern discovery via graph
modeling approaches. Furthermore, Chu et al. [19], Liu
et al. [20] use different methods to encode trajecto-
ries as documents and apply the latent Dirichlet alloca-
tion (LDA) method to extract hidden topics. Another
common strategy is the use of clustering algorithms to
extract mobility patterns. For example, some works use
some variant of the DBScan algorithm, a widely used
algorithm for clustering data with spatial attributes
based on density. In this category, we have the work pro-
posed by Wang et al. [21], which proposes a C-DBSCAN
algorithm, that uses a spherical distance and calcu-
lates a cluster center by averaging all the data points
in a cluster. In the same line, Bargar et al. [22] use
a variation of DBScan called ST-DBScan [9]. In addi-
tion to spatial information, this technique uses tem-
poral information to create the clusters; they apply
this approach to group trips and detect patterns in
bike-sharing data. In our work, we use the clustering
strategy by proposing an adaptation of the ST-DBScan
algorithm to detect hidden events in the alerts posted
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(a) Traffic Jams mode

(b) Traffic alerts mode

Fig. 2 An overview of JamVis. Our system has two modes.
The traffic jams mode (a) allows us to explore and ana-
lyze the traffic jams registered by Waze. In contrast, traffic
alerts mode (b) will enable us to explore and identify events
detected through alerts reported by Waze users. JamVis is
composed of a control panel and five linked views: map view,
time view, HeatMap view, ST-Heatmap view, and alert type
view

by Waze users. Our algorithm detects spatio-temporal
evolving patterns and therefore allows us to identify
causes in traffic jam data.

2.2 Traffic jams detection analysis

A common approach to the analysis of traffic jams is
to derive traffic jam occurrence from mobility data.
Andrienko et al. [23] detect traffic jams using a thresh-

old in vehicle speed and clustering it by space and
time. Wang et al. [24] use a similar approach to detect
traffic congestions, but they go deeper into the anal-
ysis by considering traffic jam propagation phenom-
ena. Lee et al. [25] detect congestions and propaga-
tions and use this information to predict and, there-
fore, monitor congestions. They use a long short-term
memory (LSTM) neural network to predict bottlenecks
and propose a visualization system to explore vehicle
flow and jams through the road network. These works
have orthogonal goals to ours because we do not focus
on traffic jam detection or propagation. As described
later, the data used in our scenario already contain
traffic jams detected by Waze. Our work aims to per-
form an analysis of the traffic jams at multi-level (i.e.,
road, segment, and region) and explore the causes of
traffic congestions via social textual data provided by
Waze alerts.

Knowing the cause of traffic jams is very important
for domain experts because it provides an efficient way
to monitor traffic, infrastructure, and events that affect
traffic conditions and city life. In recent work, Pi et al.
[1] propose a method to find the cause of traffic jams
based on deep learning. More clearly, they use traffic
flow data from taxis to classify patterns in four classes:
accidents, traffic lights, large traffic jams, and free flow.
The main drawback of this approach is that the reasons
for traffic patterns are limited to only certain types of
problems. To deal with this constraint, many works per-
form a semantic analysis by considering textual data,
e.g., geo-located social media data (e.g., Twitter and
Facebook), to infer the causes of traffic jams. For exam-
ple, Kosala and Adi [2] present a system that shows
tweets related to traffic according to the user’s region
selection. Sakaki et al. [4] present a system that shows
essential information related to traffic events from social
networks.

Our work uses a more flexible approach because we
have multi-modal data. Waze provides us with a more
significant number of types and subtypes of problems
(e.g., potholes, weather), as well as user’s comments,
which supply us with more details about the causes of
traffic jams. As described later, our system allows easy
and interactive exploration of these comments via pow-
erful visual summaries created using both the spatio-
temporal and textual data.

3 Data and preprocessing

This section describes the Waze dataset used in this
work and the pre-processing steps. In the rest of the
paper, Rio de Janeiro (one of the largest and more
crowded cities in Brazil) is used as a running example
since this is one of the main towns our domain collab-
orators are interested in. However, it is important to
mention that our system can be generalized to explore
Waze’s data from different cities.
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Fig. 3 Example of the
construction or design
process of the ST-Heatmap
View. Each subfigure
corresponds to a step of
this process sequentially. a
Event detection; we have
detected five different
events (groups) in this
case. b We index group’
centroids to corners of the
Hilbert curve. c Sort
groups in heatmap
according to the Hilbert
position. d Scale the
vertical axis of the
heatmap to the size
(number of points) of the
Hilbert curve. e Eliminate
vertical gaps. f Scale the
height of each rectangle to
be proportional to the
convex hull area of each
event

Fig. 4 Comparative analysis of different clustering algorithms (LDA, LDAgrid, LDAroads, DBScan, ST-DBScan, and our
proposed TST-clustering) used on the alerts in Rio de Janeiro on March 2, 2019
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Fig. 5 Sensitivity analysis for the parameters of time and distance of TST-clustering. Each column corresponds to a
different time value: 2, 3, 4, 5, and 6 h. Each row corresponds to a different distance value: 200, 300, 400, 500, and 600 m

Fig. 6 Analysis of the traffic jams during the week of the
Carnival of Rio de Janeiro in 2019. a Map View with the
level of traffic jams during Carnival Week. b We can see
two anomalies in Time View. c Tag clouds with the most
frequent words in the users’ comments in different regions.

d Detail of the selected area; note the word “alagamento”
(flood). e Blue segments correspond to segments where users
reported flooding. f We can see the date and the comment
of one of the segments reporting flooding
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3.1 Waze traffic data

Waze data are composed of two parts: traffic jams and
alerts. We describe these data attributes in the follow-
ing.

3.1.1 Traffic jams

Each traffic jam is represented by a poly-line geometry
(i.e., sets of connected points) containing a timestamp,
a delay time, a speed, and a traffic level (jams’ sever-
ity ranging from 0 for free flow to 5 for road-closed.).
In Fig. 1, we can see multiple jams reported by Waze.
A color scale encodes the jam’s level where the light
red line represents a jam with level 4 (20% of free-flow
speed), while the light orange line represents a jam with
level 1 (80% of free-flow speed). It is worth mentioning
that Waze defines a traffic congestion level as a jam
level (0 = free flow, 1 = Low, 2 = Medium, 3 = High,
4 = Very High, 5 = closed), so we decided to keep it.

3.1.2 Alerts

Alerts are notifications related to traffic reported by
Waze users. Each alert contains its geographical coor-
dinates, a timestamp, a short textual comment posted
by the users, and two categorical entries called type
and subtype. The types are jam, accident, road closed,
hazard on the road, and weather hazard. Each type
has multiple subtypes; for instance, an accident has
two subtypes: major and minor accidents. We provide
a complete list of types and subtypes in Appendix A
Table 1. The comment field is often a short text, and
in most cases, it is empty. For example, in Fig. 1, we
can see two alerts: the first one is a crash, which has
comments ”moto:-(” and ”accident”; the second one is
a road closed with a comment ”maintenance”.

Note that Waze data can be abstracted as a set of
points (alerts) and a set of polylines (jams). Thus, our
system could support analysis with datasets format-
ted in this manner. Concerning our example of Rio de
Janeiro, Waze provided us access to a real-time stream
containing traffic and alert data, which we collected
from March 1 to May 30, 2019 (three months). The
stream’s temporal resolution is one minute, so Rio de
Janeiro generates around 136 million jams and 40 mil-
lion alerts in total for the three months. Jams cover
around 60% of the roads in Rio de Janeiro. Further-
more, considering alerts, only 12% of the total contain
non-empty textual comments (95% of the comments
have between 5 and 40 characters).

3.2 Pre-processing

In JamVis, we use the city’s road network as the base of
our visualization. In general, each node of this network
represents a city intersection characterized by its geo-
graphical coordinates. Besides, each network edge rep-
resents a road segment (from now on segment, for short)
that connects two intersections. We obtain the road

network data from OpenStreetMap (OSM) using the
OSMnx library [26]. For our analysis in Rio de Janeiro,
the road network contains 15,447 nodes and 34,814 seg-
ments. Both the Waze data and the road network are
the input of the following pre-processing steps:

1. We perform a map-matching process. Map-matching
is the process of associating a sequence of GPS posi-
tions observed to its nearest road segment in a road
network. For example, in Fig. 1 we can see that the
red jam corresponds to the blue segment. To this
end, we used a similar process to the ST-matching
(Spatial-Temporal matching) algorithm described
by Lou et al. [27].

2. Once the map-matching is complete, we group jams
by segment and hour and, for each group, we com-
pute and store the mean jam level and the number of
jam records. For segments where there are no traffic
jams, we assumed that there was no congestion, and
we completed them with null values. Furthermore,
in the case of the alerts, we group them by segment,
hour, type, subtype, and comment. For each group,
we store the number of alert records.

3. To accelerate queries for average values for the dif-
ferent attributes of traffic jams, we pre-compute and
store accumulated sums over time. This is a com-
mon strategy used for speeding-up spatiotemporal
aggregations [28]. In more detail, for each time step
and segment, we store the sum of the values of
each attribute from timestamp 0 to timestamp t.
To calculate the mean value of an attribute (e.g.,
level) of a segment s in a continuous-time interval
[ti, tj〉 we use the following equation: level(s,[ti,tj〉) =
(
∑tj

t=0 level(s, t) − ∑ti
t=0 level(s, t))/(tj − ti), where

the sums in this formula are the pre-computed
terms.

4 Methodology

Based on the needs of the domain experts, we defined
a set of solutions: (i) a clustering algorithm to help us
describe events in the traffic data and (ii) an interactive
visual tool to help analysts explore the data. Through-
out this section, we will look at each of these compo-
nents in detail.

4.1 Identifying system requirements

During the last 2 years, we have been part of a larger
research project on urban mobility. As part of this col-
laboration, we had a series of meetings with two traf-
fic engineers interested in using Waze’s data to moni-
tor and explore traffic patterns in different cities. One
of them is the general operations coordinator at the
Municipality of Rio de Janeiro, and the other is a traf-
fic engineer at the Traffic Engineering Company of Rio
de Janeiro. Based on these meetings and the needs of
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Fig. 7 Analysis of Av. Epitácio Pessoa from April 8 to April 15. a Selection of the two directions of Av. Epitácio Pessoa
in Map View, from A to C and from C to A. b HeatMap View of Av. Epitácio Pessoa from A to C. c HeatMap View of
Av. Epitácio Pessoa from C to A

Fig. 8 Example of the automatic event pattern identifica-
tion and exploration of patterns identified between March
1 and 15, 2019. a Pot-holes events: maintain similar spa-
tial distribution over time. b Local events: three different
events in the same place but at different times. c Road works
events: maintain the same spatial distribution throughout
the whole period. d Traffic jams events: spatial displace-
ment over time. The ST-Heatmap (left) depicts the spatio-

temporal distribution of the different patterns identified.
Notice that the highlighted regions represent far-away geo-
graphical locations (y-axis). The purple, orange, and blue
events have spatial intersections but happen in different
periods. Finally, the blue event (4) presents left to right dis-
placement on the temporal axis, suggesting the geographical
movement (d)
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the domain experts, we defined a set of requirements
that will be described below.

R1—global analysis: Domain experts want to know
what areas in the city have more congestions in a spe-
cific time interval. In this way, this tool should inform
the user where they should focus their analysis.

R2—multi-level: Domain experts want to visualize
and analyze traffic jams at different levels: region, road
(e.g., Av. Main Street), or segment. In the case of a
road, they want to visualize the information of each
segment.

R3—jams analysis: They want to know traffic jams’
behavior (i.e., propagation, causes). The experts empha-
sized the need to know why congestion occurs.

R4—events exploration: Experts want to explore the
different traffic-related problems (i.e., accidents, rains,
works) in the city. For example, the location of the event
and how long it lasted.

R5—interactive exploration of big data: Experts
often use different analytical systems that do not sup-
port large amounts of data. Therefore, they require a
tool to refine their queries by showing a global vision of
the city and interactivity.

4.2 TST clustering algorithm for events discovery

One of the main challenges in visual analytics of spatio-
temporal data is to support pattern discovery. It is
especially true in our case since we are dealing with
complex multi-modal data. Previous works have shown
that putting together interactive visualization capabil-
ities with automated methods is an excellent strategy
to support efficient pattern discovery [29,30]. In this
work, we use this strategy to guide users towards pat-
terns that explain traffic jams and point to important
events in the city. More clearly, we devise a method that
identifies semantically meaningful spatio-temporal traf-
fic events. We propose a modification of the ST-DBScan
algorithm [9] that considers Waze’s alert type as part
of the clustering process, as described in the rest of this
section.

We start our discussion by presenting the original
density-based spatial clustering of applications with
noise (DBScan) [31] algorithm (we provide pseudo-code
snippets for this algorithm and its variants in Appendix
B). It allows automatic detection of arbitrary-shaped
clusters in any dataset with spatial attributes using a
distance metric chosen by the user (usually Euclidean
distance). DBScan has two input parameters: a search-
ing radius (εs) and the minimum number of points
required to form a cluster (MinPts). The algorithm
starts with a first point p in a dataset D and retrieves all
neighbors of point p using the RetrieveNeighbors pro-
cedure. This corresponds to all points within a distance
of at most εs from p. If p has not a sufficient num-
ber of neighborhoods (i.e., larger than MinPts), then
p is classified as a noise point and is not further con-
sidered. On the other hand, if the neighborhood of p is
large enough, then the clustering process starts, using
the ExpandCluster procedure. This procedure consists

of iteratively collecting the neighbors within εs distance
from each neighborhood point. We repeat this process
until all of the points have been processed.

One of the disadvantages of the DBScan algorithm is
that it only takes into account spatial attributes. How-
ever, when studying spatio-temporal phenomena, one
is also interested in understanding the patterns’ tem-
poral aspect. To solve this, Birant and Kut [9] propose
a modification of the DBScan algorithm called spatial-
temporal DBScan (ST-DBScan). This algorithm takes
three parameters: εs, MinPts (which are analogous to
the ones in the original DBScan), and εt, which repre-
sents the threshold for the temporal distance. The ST-
DBScan procedure is essentially the same as the origi-
nal DBScan, with the only change being a new version
of the RetrieveNeighbors function. In more detail, this
modified version first retrieves the set X of all points
within a temporal interval of amplitude εt centered at
the timestamp of p and, among the points in X, returns
all points within (spatial) distance εs from p.

One important fact to notice is that different events
that affect traffic can happen nearby in space and time.
The ST-DBScan algorithm is oblivious to this fact and
might cluster together these events. To solve this issue,
we modify the RetriveNeighbors function once again to
include the semantics given by the type field in Waze
alerts. This final version of the function retrieves all
neighbors of a point p within εs and εt distance and
with the same alert type of point p. We call this algo-
rithm TST-clustering, because it group object based on
type, space and time attributes.

4.3 JamVis

We now discuss the design and implementation of the
JamVis system. The main interface (shown in Fig. 2)
comprises a control panel and five linked views: map
view, time view, HeatMap view, ST-heatmap view, and
alert type view. The control panel allows to select the
city to be analyzed, toggle selection mode, and use the
text query capability. In the following, we describe the
visual components.

4.3.1 Map view

This view consists of an interactive map that depicts
the geographical context (allowing zooming and pan-
ning) and traffic/alert information for the entire city
(T1). In Fig. 2(left), we can see the average traffic level
color-coded on the road network (from light yellow—
free flow to dark red—blocked). Traffic jams can be
analyzed using three types of selection (chosen in the
control panel): segment, road, and region selection. To
select a segment, we need to click on the desired road
segment. To select a road, the user can search the road
name in the Control Panel or click a road segment; the
system automatically detects all the segments associ-
ated with that road (Fig. 2a shows the Av. Epitacio Pes-
soa selected). To select a region, we can draw a rectangle
on top of the map. This selection allows us to inspect
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the content of the comments registered by Waze users
by rendering a tag cloud that shows the most frequent
words present in these comments (see the tag clouds
on the map in Fig. 2a). This was inspired by the Tag
Cloud Lenses technique proposed by Ferreira et al. [32].
In Fig. 2(right), we can see the location of traffic alerts,
where the colors represent the different spatio-temporal
events (groups) identified with the algorithm described
in Sect. 4.2. Here we can also use the region selection
to analyze the user comments.

4.3.2 Time view

This view allows us to visualize the traffic level, aggre-
gated by hour, throughout the entire period (T1). As we
can see in Fig. 2a, this view follows the concept of focus-
plus-context-visualizations.3 The bottom plot shows
the average traffic for the entire city (blue line) to help
users keep a temporal overview. The selection period
on this plot creates on the top a detailed (zoomed) rep-
resentation of the corresponding time interval on the
top. Furthermore, the selected interval is used to fil-
ter the overall period considered, and the other views
changes accordingly (T2). The plot at the top also
shows the average traffic level of a segment, road, or
region selected on Map View (using multiple lines with
different colors). In the case of roads or regions (multi-
ple segments), the plot shows the aggregated informa-
tion. For instance, In Fig. 2a, we visualize the average
traffic level for Rio de Janeiro (blue line) at the bottom
line chart. The top line chart shows the traffic level
of Av. Epitacio Pessoa road (green line) and the traffic
level for Rio de Janeiro (blue line) for the visible spatial
area and the whole period.

4.3.3 HeatMap view

The HeatMap view aims to visualize and compare the
congestion level in a road (set of segments) in a given
period. For that, we use a matrix format where each row
corresponds to a segment (with height proportional to
the segment length). Each column represents one hour
of the selected period (the column width is set to one
pixel to display possibly long periods compactly). The
value of each cell’s traffic level is encoded using the same
color scale used in Map View. Figure 2 shows an exam-
ple of this view analyzing the Av. Epitacio Pessoa in
three days (a gray line limits each day). To make it eas-
ier to see the correspondence between the segments in
this view and the Map View, we place indicators at the
beginning, middle, and end segments (see red, orange,
and blue pins with letters A, B, and C, respectively) In
addition, when the user selects a cell in this view (e.g.,
segment S1 at time T1 in Fig. 2), a tooltip appears with
detailed information about the chosen segment.

3 https://infovis-wiki.net/wiki/Focus-plus-Context.

4.3.4 Alert type view

This view is displayed when using the traffic alert mode
of JamVis. It consists of a Theme River plot that shows
the temporal distribution of each type of alert as we
can see in Fig. 2e. Similar to the time view, this view
also allows us to filter a continuous period, and the
information in the other views changes according to the
selected period (T2).

4.3.5 Spatio-temporal HeatMap view

This view aims to provide an overview of the result
(groups) obtained using our proposed algorithm TST-
clustering. It consists of a heatmap that shows the tem-
poral distribution of alert clusters and tries to depict
spatial information using a linear ordering obtained
via a space-filling curve. We inspire our design on the
MotionRugs technique proposed by Buchmüller et al.
[15] in the sense that we use a space-filling curve to
sort the geographical space linearly. Buchmüller et al.
use the Hilbert Curve as a space-filling curve since this
technique allows to represent 2D spaces in 1D trying to
maintain neighborhoods. That is, if two points are close
in 2D, likely, they are also close in the 1D ordering.

However, different from MotionRugs, our applica-
tion requires representing the position of a time-varying
number of alerts. To solve this, we used a heatmap-like
metaphor described in the following.

In Fig. 3a, we can see the spatial distribution of five
different events (groups) (E1, E2, E3, E4, E5) obtained
using TST-clustering. We then use a Hilbert curve to
sort the locations corresponding to the centroid of each
event. In more detail, Fig. 3b shows that the group’
centroids (C1, C2, C3, C4, C5) are indexed to points
(P1, P2, P3, P4, P5) of the Hilbert Curve (P3 and P4 are
the same points). The obtained order is used to ver-
tically sort the rectangles representing each group on
the heatmap (the height of each rectangle represents
the number of alerts in the group), as shown in Fig. 3c.
To represent in the heatmap the fact that two or more
events occur in the same location (e.g., E3, and E4),
we first scale the vertical axis of the heatmap to the
size (number of points) of the Hilbert curve. Using this
approach, we can uniquely identify points in the Hilbert
curve in the y-axis (in Fig. 3d). As a result, events that
occur in nearby spaces (E1 and E2) are in a close (verti-
cal) position (P3 and P4); and events in the same space
(E3 and E4) are in the same (vertical) position (P3

and P4) in the heatmap. One harmful side product of
this scaling is that it generates blank spaces that cor-
respond to extents in the Hilbert curve, where no close
event occurs. As shown in Fig. 3e, we eliminate these
gaps by vertically translating the events as long as they
don’t overlap. We can quickly implement it by elimi-
nating the indices corresponding to intervals of empty
points in the Hilbert curve. To indicate a spatial gap
before removing the blank spaces, we place a dotted
horizontal line and an icon consisting of two wavy lines
in the vertical axis. We encode the separation between
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the wavy lines with the size of the blank space removed.
Finally, to have a better perception of the area covered
by each event, we scale the height of each rectangle to
be proportional to the area of the convex hull of each
event. Additionally, we apply the Hilbert curve order-
ing within the alerts of each event. We do this because,
in events that occupy large areas, it is good to keep
the spatial information of the internal alerts. Figure 3f
shows an illustration of the final design. Note that E5

and E1 have the same number of alerts but different
areas.

Depending on the parameters used in TST-clustering,
the number of groups can be large. Initially, we show
all the groups, but at the same time, we have sliders
that allow us to filter the groups based on the number
of alerts, duration, and area of the groups (see the top
of Fig. 2d). It is also important to mention that to facil-
itate the explanation, in Fig. 3, we represent each group
as a rectangle (based on the number of alerts and the
maximum and minimum time of the alerts). However,
in usage scenario 3 and the video, we draw a line for
each alert in the group (based on the duration).

5 Evaluation

This section describes two experiments we performed
to evaluate the results of TST-clustering. The first one
compares our proposal with variations of DBScan and
LDA algorithms. The second one shows a sensitivity
analysis of the distance and time parameters required
by our algorithm.

5.1 Comparison with LDA, DBScan and
ST-DBScan

To demonstrate the effectiveness of TST-clustering, we
compare it against other methods previously used to
find patterns in mobility/traffic data: DBScan, ST-
DBScan, and three variants of LDA described in the
following. LDA is a method initially proposed to unveil
hidden topics in text corpora. Since Waze alerts contain
users’ comments, it is natural to use LDA to uncover
patterns in these comments. The first and more basic
variant consists of processing the comments, removing
symbols and numbers, dividing them into tokens, and
performing the stemming process. After that, this vari-
ant uses LDA as a clustering algorithm by grouping
alerts with their most prominent topic (topic with the
highest weight). The other variants are based on two
recent approaches that used LDA to cluster taxi tra-
jectories by representing each trajectory as a document.
First, Tang et al. [33] divide the spatial region with a
rectangular grid naming each grid cell with a unique
id. Hence, they represent each trajectory as a docu-
ment by collecting the cells’ ids where the trajectory
goes through. In our experiment, we divide the city of
Rio de Janeiro with a regular grid where each cell is
a square of side 800 ms. The second method, proposed

by Liu et al. [34], represents the trajectory as a doc-
ument by including the roads’ names that the trajec-
tory goes through. For further reference, we name these
approaches LDAgrid and LDAroad, respectively.

In this comparison, we use alerts registered in Rio de
Janeiro on March 2, 2019. In the case of the DBScan,
ST-DBScan, and our proposed method, we use the
parameters MinPts = 1 and εs = 400 m, and εt = 4 h.
In the case of the LDA method, we use different num-
bers of topics (5, 10, 15, 20), but we select 20 because
it shows better results. In Fig. 4, we can see the results
by clustering the alerts with these methods; we encode
each group using the color. In the highlighted area of
(a), we see several blue points, which implies that they
belong to the same topic (found by LDA). However,
looking at the comments, we notice that the blue points
on the right side refer to Rio de Janeiro’s main event,
”carnaval rio 2019”, and the dots on the left side refer
to a local parade away from the central area of the
festivities ”cordao alegria tijuca”. It occurs because the
LDA only considers the comments and found a similar-
ity between them, but it does not consider the spatial
or temporal attributes. In (b), we see the results for
LDAgrid. Notice that the big group is divided into two
smaller groups (green and blue) because they belong
to two regions. However, these two clusters refer to the
same event as we discuss later. We can explain this
result, noting that most of the comments are very short
(95% of them have between 5 and 40 characters). Hence,
the words corresponding to the grid cell ID have higher
importance, in general, than the original words from
the comment. Similar behavior is seen in the results of
LDAroad (c). We observe that this method divides alerts
into many clusters because, in several cases, the roads’
name is longer than the comment. Therefore, the street
names have a high weight in the model, and the clusters
are created based on this information. For example, the
highlighted area in (c) shows that each street makes a
different group. We also replaced the street names with
an IDs and obtained similar results.

In (d), we can see the results of the DBScan algo-
rithm. In the highlighted area, all points have the same
color, which indicates that they belong to the same
group. It happens because the algorithm only used spa-
tial information to create groups. However, these alerts
should be on different groups since they are in other
times (as you can see in (e)) and have different types
(as you can see in (f)). We present the results for ST-
DBScan in (e). The highlighted area shows a 3D plot
where each sphere represents an alert, and the height
is proportional to the time. Here we see that the red
and blue points are separated in time. Also, we can
see that some red dots should not belong to the red
group. If we look at their comments or types, we notice
that they are related to different events, such as bus
crashes or carnival festivities. Finally, in (f), we can see
the results using the TST-clustering algorithm. Notice
that our algorithm creates three clusters. The red clus-
ter refers to the event ”bloco amigos de wilson alicate”
(type: road closed), the blue cluster refers to the event
”carnaval rio 2019” (type: road closed), and the purple
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cluster refers to an accident ”onibus quebrado” (type:
accident). As shown in this example, using this simple
adaptation of the ST-DBScan algorithm, we obtained
semantically enriched clusters that were not possible
with other methods. Our domain experts validated our
results by saying that each group was well defined and
explained.

5.2 Parameter sensitivity

For this experiment, it is used the same alerts as the
previous comparison. TST-Clustering is an extension of
DBScan; so, it inherits the parameters from DBScan,
i.e., MinPts, εs, and εt. In this experiment, we are only
going to vary the values of the εs and εt parameters
because they are the ones that could have the most
significant impact. In addition, MinPts was set to 1,
since in our case, there are isolated alerts that would
be classified as outliers if we increase this parameter.
As we saw in the comparison of the previous section,
the parameters used were εs = 400 and εt = 4, so we
decided to apply our algorithm by varying the param-
eters with two higher and two lower values. We used 2,
3, 4, 5, and 6 h, and for the distance, we used 200, 300,
400, 500, and 600 ms.

In Fig. 5, we can see the results for these combina-
tions. In general, we can see that the groups are main-
tained in all cases. However, we can appreciate some
differences. For example, for all cases where the dis-
tance is 200 ms (D = 200, first row), the dark blue
group is small, but when varying the distance to 300 ms
(D = 300), it grows, and the pink group disappears, this
is because both groups are of the same type and occur
at the same time. We can conclude that the parameters
time and distance are not so sensitive for the results of
our algorithm. Suppose the user selects an initial value
of both. He will observe a general pattern of the distri-
bution of events in the city, which will be maintained
by varying these parameters.

6 Usage scenarios

We validated our system’s usability through three usage
scenarios (shown in the accompanying video), where we
analyzed the traffic jams in the city of Rio de Janeiro. In
the first one, we explored the causes of traffic jams. The
second usage scenario examines the behavior of traffic
jams on two different roads. Finally, the third use case
describes the use of Spatio-Temporal HeatMap View
to explore the automatically identified clusters of Waze
alerts.

6.1 Exploring events

The Carnival period is one of the main festivities in Rio
de Janeiro and attracts around 2 million people world-
wide. The celebration happens every year and lasts one
week. The famous street carnival parties, called blo-
cos, are parades organized by local groups that can last

several hours and produce traffic jams in different city
regions. We used our system to explore this scenario for
the Carnival of 2019.

Looking at Fig. 6b, we can notice two intervals where
the value of the traffic level was irregular (1 and 2).
The first period was from March 2 to March 9 and
corresponded to the Carnival period. The second was
from April 18 to April 25 and corresponded to the Holy
Week period. These two periods were holidays in Rio,
so fewer cars in the city compared to working days.
Using the Time View to selected the first period (Car-
nival period), we can see in Fig. 6a the corresponding
geographical distribution of traffic jams. We notice that
the highest level of traffic jams (red segments) was in
the city center (blue circle) and the Southern (red cir-
cle) regions of the city. Therefore, although the average
level was lower than usual, there are regions where the
traffic was still heavy. To explore the cause of these traf-
fic jams, we use MapView’s tag cloud component. As
shown in Fig. 6c, most of them contain the word bloco
as expected. However, two tag clouds prominently con-
tain the word ”alagamento” (flood in English), which
indicates the presence of registered comments related
to flooding in these two regions. To explore this in more
detail, we zoom in on the South region and, again, used
the tag cloud component to select four different sub-
regions (see Fig. 6d). We can see that only two of them
contain the word ”alagamento”. To get an even more
detailed understanding, we decided to search all the seg-
ments where it was reported a comment with the word
”alagamento” using the Control Panel’s search capa-
bility. Figure 6e depicts the resulting (blue) segments.
Finally, Fig. 6e shows that the original comments reg-
istered in these segments are related to floods. In addi-
tion, we can see that three of them occurred on March
3 between 8 pm and 9 pm. The fourth comment was
recorded on March 2 at midnight. This comment cor-
responds to the floods that occurred in the city due to
heavy rains.4

6.2 Traffic jam and road analysis

On April 8 of 2019, the city of Rio de Janeiro experi-
enced heavy rainfall. It began at approximately 6 pm
and continued until 3 am on April 9, causing floods, tree
falls, landslides, and heavy traffic in different city areas.
Due to the magnitude of the damages, the municipality
of Rio de Janeiro declared April 9 a holiday. Due to
this, many roads showed unusual traffic behavior. One
of the most affected road was the avenue Epitacio Pes-
soa. We used our system to understand the impact of
this heavy rain on both roads by focusing on the one
week between April 8 and April 15.

First, we focus on Epitacio Pessoa avenue and select
both directions of the road (from A to C and from C to
A) in our Map View (Fig. 7a). The HeatMap View in

4 Globo G1—https://g1.globo.com/rj/rio-de-janeiro/noticia/
2019/03/03/chuva-forte-deixa-rio-em-estagio-de-atencao-no-
domingo-de-carnaval.ghtml.
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Fig. 7b depicts the traffic level in the direction from A to
C. We can see that, usually, there is heavy traffic during
morning and afternoon rush hours. However, as shown
in the highlighted periods, T1 and T2 (part of April 8
and April 9), there were unusual traffic patterns due to
the rainfall. During T1, which starts at 3 pm on April
8 and ends at 3 am on April 9, we notice that traffic
jams began in the last Segment (C in the South) before
the rainfall. After that, the jam propagated through
the other segments until 6 pm when the rain started,
and by then, the avenue was completely congested. The
unusual congestion remained until 3 am on April 9,
when the second period (T2) starts (and ends at 3 pm
on the same day). During T2, we can notice that the
last four segments were empty, but the other remained
congested. Notice that starting from 3 pm (on April 9)
till the end of the day, the road had no traffic jams.
Finally, we highlight that traffic was still unusual on
April 10 and went back to normal on April 11.

We now focus on the opposite direction (from C to
A). As shown in Fig. 7c, we notice that the traffic behav-
ior is different from the first case. We again focus on
two-time intervals. In T3, (from 9 am on April 8 to
9 am on the following day), the traffic jams were more
intense in the last segments (close to the A point) until
6 pm, when rains started, and all the segments became
congested. On the other hand, looking at the period T4
(from 9 am on April 9 to 1 am on April 10), we see that
only the middle segments (close to the B point) were
continuously closed due to repair work which lasted
until 1 am on April 10, according to comments of Waze
users. The main reason for the different traffic behav-
iors in the two directions of the Epitacio Pessoa Ave. is
that they follow different lanes which are located in a
non-flat terrain. The segments close to point B on the
purple lane are located at a lower elevation than the
other lane; therefore, it is more affected by the floods.

6.3 Automatic event identification

In a large and complex city such as Rio of Janeiro, a
large diversity of events take place daily. Looking at
Fig. 2e, we can see during the first 2 weeks of March
2019, we had a significant increase in the number of
alerts typed as road closed. To obtain an overview of
this situation, we apply the proposed TST-clustering
algorithm to the alerts that happened during this
period using as parameters (see Sect. 4.2): εs = 200m,
MinPts = 5, and εt = 1h (we chose this values through
experimentation). We use the ST-HeatMap view to
visualize the resulting clusters. First, to eliminate noisy
clusters, we selected the 100 largest (in terms of the
number of alerts) clusters. Using the interactive filter-
ing capabilities of the ST-HeatMap view, we set the
sliders to filter the clusters with at least five alerts,
that lasted more than four hours and cover a spatial
region of at least 2 km2. The resulting ST-HeatMap is
shown at the center of Fig. 8. We finally selected four
different patterns on the ST-Heatmap for further anal-
ysis (numbered 1, 2, 3, and 4). Clusters not involved in

the discussion are shown in light blue. We select these
patterns to highlight a diverse set of features present on
the heatmap. As the first example, we mention the red
cluster (1) on the ST-Heatmap: a long-duration event
covering a small spatial region (small height). This pat-
tern is related to the reports of pot-holes in the roads.
Figure 8a shows a zoomed-in view of the cluster on the
heatmap (top), as well as the spatial distribution of this
cluster corresponding to two different times, where we
can see that the alerts have other spatial distribution
but stay within the same small area. This is because
Waze users do not always report alerts from the same
location. Furthermore, these events have a long dura-
tion since they are infrastructure problems not immedi-
ately solved by the local authorities. The second exam-
ple highlighted on the ST-heatmap (2) shows occur-
rences of events in the same space but at different times.
These clusters are related to samba parades in the cen-
ter of the city during Carnival. Figure 8b shows the spa-
tial region covered by the three highlighted clusters,
which is one of the most popular places for gatherings
during the Carnival period. Notice how using the ST-
Heatmap can instantly identify the presence of this spa-
tial intersection. Still, it is also possible to distinguish
between longer (light orange) and shorter events (pur-
ple and dark orange). The third pattern on our heatmap
(3) is similar to the one described in Fig. 8a since it also
has a small height but long duration. However, the num-
ber of alerts is constant throughout time, and we can
see that they are registered in the same positions. This
pattern is related to construction work carried out on
certain roads which are reported to Waze by the local
authorities on specific locations (Fig. 8c) during a pro-
longed period. Finally, the last pattern (4) is related
to traffic jams. On the ST-Heatmap, we can see that
this cluster has a considerable height and move over
time (Fig. 8d top-left). By selecting different portions
of this cluster (S1, S2, and S3 on Fig. 8d), we observe
on the map that the alerts move spatially, which indi-
cates propagation of the traffic jam over time.

7 Discussion and limitations

As we saw earlier, the usage scenarios show the use-
fulness of the system for analyzing traffic congestion.
Among the functionalities, we have the detection of
events and the identification of the cause of these
events. In addition, it allows us to explore and visualize
the behavior of congestion at the street level. Neverthe-
less, there is still space for improvement.

7.1 Real time

One important scenario usage for our system is mon-
itoring the traffic state and detecting traffic events in
real-time, as suggested by the domain experts. Our sys-
tem currently relies on a pre-processing stage to pre-
pare the data. The need for pre-processing prevents our
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JamVis from being readily available for real-time anal-
ysis.

Initially, this was not an objective of our work, as
we focused on a historical analysis of the stored data.
However, given suggestions from our domain experts,
we are currently working on strategies to remove this
limitation. For example, some work has recently been
done to speed up and efficiently execute map-matching
using Apache Spark [35]. Nevertheless, it is not a simple
job as it requires more computational power and high-
performance computing specialists to perform a proper
implementation.

7.2 Useless comments

Another critical point is that our system needs a pre-
processing to remove useless comments (e.g., insults,
emoticons, and out-of-context comments). In fact, in
our experience, the vast majority of alerts contain text
related to traffic jams and a few useless comments.
Although this problem did not affect our analysis, we
plan to use supervised learning algorithms that will
allow us to distinguish this type of comment. This work
would be equivalent to a spam classifier; however, it
requires having a labeled dataset that we currently do
not have.

7.3 Geometric computations

Another critical problem is that TST-Clustering involves
expensive geometric computations and needs to be
adapted to work in real time. An immediate future
work would be to adapt our algorithm to process data
streams and capture evolving spatio-temporal patterns
of Waze alerts. On the other hand, it would also be pos-
sible to accelerate this algorithm using parallelism, but
this is orthogonal work to our current proposal.

8 Conclusion

This paper proposes JamVis, a visual analytics frame-
work that leverages Waze’s multi-modal traffic data.
We have two main contributions in this work: First, the
TST-clustering algorithm is an adaptation of the ST-
DBScan algorithm to identify events clustering alerts by
space, time, and type. Second, the ST-HeatMap View
is a novel visualization strategy to display spatial infor-
mation on a temporal heatmap that allows us to depict
both the duration of the events and an approximation
of their spatial distribution. Our evaluations and usage
scenarios demonstrate the usefulness of our approach,
as well as being positively validated by domain experts.
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Appendix A: Types and subtypes of alerts

Waze classifies alerts reported by users into five main cate-
gories (i.e., jams, accidents, road closed, hazard on road and
hazard on weather). Each category has a different number of
sub-categories as we can see in Table 1. In addition, we can
note that each of these categories describes a general prob-
lem related to traffic. We use these categories in our TST-
clustering algorithm to better classify the alerts according
to space and time.

Table 1 Waze alerts type and subtype

Type Subtype

Jam Moderate traffic
Heavy traffic
Stand still traffic
Light traffic

Accident Major accident
Minor accident

Road closed Road closed hazard
Road closed construction
Road closed event

Hazard on road On shoulder
On road object
On road pot hole
On road road kill
On shoulder car stopped
On shoulder animals
On shoulder missing sign

Weather hazard Weather fog
Weather hail
Weather heavy rain
Weather heavy snow
Weather flood
Weather monsoon
Weather tornado
Weather heat wave
Weather hurricane
Weather freezing rain
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Appendix B: TST-clustering algorithm

We can see in Algorithm 1 the original density-based spa-
tial clustering of applications with noise (DBScan) algo-
rithm. Algorithm 2 shows the retrieveNeighbors procedure
of the ST-DBScan algorithm, which is an adaptation of the
DBScan algorithm; ST-DBScan incorporates the attributes
of time and space. Finally, in Algorithm 3 we can see our
proposed algorithm. Our algorithm modifies retrieveNeigh-
bors procedure of the ST-DBScan and incorporates the type
attribute.

Algorithm 1 DBScan algorithm
1: procedure retrieveNeighbors(p, εs)
2: return All points whitin p’s εs-neighborhood.
3: end procedure
4:
5: procedure DBScan(εs, MinPts)
6: C = 0
7: for each univsited p in database D do
8: mark p as visited
9: neigboors = retrieveNeighbors(p, εs)

10: if sizeof(neighbors) < MinPts then
11: mark p as noise
12: else
13: C += 1
14: expandCluster(p, neighbors, C, εs,

MinPts)
15: end if
16: end for
17: end procedure
18: procedure expandCluster(ε1, MinPts)
19: add p to cluster c
20: for each p’ in neighbors do
21: if p’ is not visited then
22: mark p’ as visited
23: neighbors′ = retrieveNeighbors(p′, e)
24: if sizeOf(neighbors′) >= MinPts then
25: join neighbors and neighbors’
26: end if
27: if p’ is not yet member of any cluster then
28: add p’ to cluster c
29: end if
30: end if
31: end for
32: end procedure

Algorithm 2 retrieveNeighbors procedure of ST-
DBScan
1: procedure retrieveNeighbors(p, εs, εt)
2: X = points in D whitin p’s εt-neighborhood.
3: X = points in X whitin p’s εs-neighborhood.
4: return X
5: end procedure

Algorithm 3 Proposed retrieveNeighbors procedure
1: procedure retrieveNeighbors(p, εs, εt, εc)
2: X = points in D whitin p’s εt-neighborhood.
3: X = points in X whitin p’s εs-neighborhood.
4: X = points in X which have same type of point p.
5: return X
6: end procedure
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