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Abstract We consider the open two-site Bose–Hubbard dimer, a well-known quantum mechanical model
that has been realised recently for photons in two coupled photonic crystal nanocavities. The system is
described by a Lindblad master equation which, for large numbers of photons, gives rise to a limiting
semiclassical model in the form of a four-dimensional vector field. From the situation where both sites trap
the same amount of photons under symmetric pumping, one encounters a transition that involves symmetry
breaking, the creation of periodic oscillations and multistability as the pump strength is increased. We show
that the associated one-parameter bifurcation diagram of the semiclassical model captures the essence
of statistical properties of computed quantum trajectories as the pump strength is increased. Even for
small numbers of photons, the fingerprint of the semiclassical bifurcations can be recognised reliably in
observables of quantum trajectories.

1 Introduction

Phase transitions describe a fundamental change in the
behaviour of a system as its parameters are changed.
Understanding why these systems exhibit different
observable features in different physical scenarios and
how they transition between them is a fundamental
problem in many branches of physics. In quantum sys-
tems, the interest is in phase transitions, which occur
near zero temperature and are driven by quantum fluc-
tuations [20,26]. We are concerned here with an open
quantum system, where particles of an ensemble may be
lost to the environment. Open quantum systems consti-
tute a realistic scenario from an experimental perspec-
tive, where lost particles can be measured to monitor
the system as it evolves. The underlying non-unitary
evolution can produce dissipation and decoherence not
exhibited by their closed counterparts.

For both open and closed quantum systems, quan-
tum fluctuations can become negligible in the thermo-
dynamic limit of large particle numbers (e.g., atoms
and/or photons). Their time evolution can be described
by a so-called semiclassical model or mean-field approx-
imation [42], which takes the form of a closed set of
ordinary differential equations (ODEs) for associated
averaged quantities. Such an approach has long been
common in quantum optics to study systems with large
numbers of photons, such as lasers, and it is the starting
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point of our analysis here. The attractors of the semi-
classical ODE, that is, its stable solutions, therefore,
give insight into the observable behaviour of the under-
lying quantum system. In other words, phase transi-
tions exhibited by the quantum system can be identified
as changes in the stability of solutions of the limiting
semiclassical model, which are examples of bifurcations.
Thus, bifurcation analysis of the semiclassical ODE—
with a combination of analytical and advanced numer-
ical tools—allows one to systematically map out the
attractors and phase transitions in the thermodynami-
cal limit; see for example [21,32,33] as entry points to
bifurcation theory and associated numerical methods.
It has long been common in quantum optics to study
systems with large numbers of photons, such as lasers,
by means of their semiclassical descriptions.

We are interested here in the relationship between
dynamics and bifurcations of the semiclassical ODE
model and the observable behaviour of the quantum
system when the number of particles of the consid-
ered system is relatively small. In this case, the sys-
tem is far from the thermodynamic limit, and quan-
tum fluctuations may be significant and cannot simply
be neglected. Quantum simulations of the underlying
Hamiltonian, which are only feasible computationally
for small numbers of particles, can be used to inves-
tigate the predictive power of semiclassical models for
novel types of quantum systems that operate with very
few atoms and/or photons. It has been shown by means
of quantum simulations that fingerprints of semiclassi-
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cal predictions can still be found in probabilistic fea-
tures of quantum systems for surprisingly low num-
bers of particles [7,22,49,51]. As a recent example, the
semiclassical limit of the unbalanced Dicke model [48]
predicts parameter regimes of superradiant switching,
quantum hysteresis, and oscillations, which have been
observed in its quantum optical description [49].

This paper probes the connections between the semi-
classical and quantum regimes for the specific example
of the open two-site Bose–Hubbard dimer [14,27,31].
This well-known quantum mechanical model describes
the dynamics of bosonic particles in a lattice, where the
behaviour is determined by the interplay of the hop-
ping rate of particles between lattice sites and their
on-site interactions. Different experimental realisations
of this system have been achieved in the form of semi-
conductor microcavities [1,34,46] and superconducting
circuits [13,44]. Of particular interest to us is an opti-
cal realisation in the form of two lossy coupled photonic
crystal resonators [16,24]. In this setup, good agreement
between experimental measurements and the semiclas-
sical description has been obtained in a regime up to
moderate strength of the optical drive signal, in particu-
lar, concerning the observation of spontaneous symme-
try breaking [18]. Recent theoretical results over a much
wider range of parameters have uncovered a rich variety
of behaviour of the semiclassical open Bose–Hubbard
dimer, including chaotic behaviour with non-switching,
regular switching and chaotic switching between the
two sites; see [17] for more details. We focus here specif-
ically on the comparison between the quantum and
semiclassical descriptions of the two-site Bose–Hubbard
model. Such comparisons have been performed before
under the excitation of the anti-bonding mode [8], and
under excitation of the bonding mode for the case of
positive intermode coupling [5,37]. Here we consider
the situation, where the bonding mode is only excited,
while the intermode coupling of the cavities is negative.
In this way, we extend earlier comparisons to the spe-
cific parameter constellations that most resembles the
experimental setup in [16] and, to our knowledge, have
not been studied before.

Our approach is as follows: we choose parameter
values from [18] to obtain a bifurcation diagram of
the semiclassical ODE model with different qualita-
tive behaviour, specifically, symmetry breaking, peri-
odic motion and multi-stability of asymmetric states.
We then obtain temporal traces of the open Bose–
Hubbard dimer by means of quantum trajectory simula-
tions [6]. We then compare the two. By performing sim-
ulations of the quantum system for an increasing num-
ber of photons, we are able to observe the emergence of
semiclassical attractors in a fully quantum realisation
even with low photon numbers. Furthermore, we con-
sider signatures for the existence of anti-bunching [39]
and entanglement [40,43] in the quantum system as dif-
ferent bifurcations of the semiclassical approximation
are encountered. Overall, our results showcase the role
a semiclassical bifurcation analysis of a quantum system
may play in providing a roadmap of interesting funda-
mental behaviour of interest, both from a theoretical

and an experimental perspective. Specifically for the
open two-site Bose–Hubbard dimer, this demonstrates
that it might be feasible to investigate the quantum
footprint of even quite complex dynamical behaviour,
such as different types of chaotic switching [17].

The computations of equilibria and local bifurcations
presented here are implemented in and performed with
the pseudo-arclength continuation package Auto07p
[10,11] and its extension HomCont [9]. The quan-
tum trajectory simulations were carried out in the soft-
ware package QuTiP [28,29]. Visualisation and post-
processing of the data are performed with Matlab R©.

2 Quantum Hamiltonian and semiclassical
ODE model

The Hamiltonian of the Bose–Hubbard model for two
cavities takes the form [5]:

Ĥ = −J(â†
1â2 + â†

2â1) +
∑

j=1,2

(
ωcâ

†
j âj + Uâ†

j â
†
j âj âj

)

+
∑

j=1,2

(
Fe−iωptâj + F ∗eiωptâ†

j

)
, (1)

where â†
j is the creation operator for cavity j. The inter-

mode coupling is represented by J , the frequency inside
the cavities by ωc and the on-site energy by U . The last
term of (1) represents a driving field with frequency ωp

and amplitude F , which we consider equal for both cavi-
ties. In what follows, we work in a co-moving frame with
respect of ωp; in this way, the time dependency of the
Hamiltonian (1) is dropped. Since we are interested in
two lossy mutually coupled cavities, the Lindblad mas-
ter equation, which couples a thermal bath with the
dynamics induced by (1), takes the form:

i
dρ̂

dt
= [Ĥ, ρ̂] + i

γ

2

∑

j=1,2

[2âj ρ̂â†
j − â†

j âj ρ̂ − ρ̂â†
j âj ], (2)

where ρ̂ is the density matrix and γ is the loss rate.
System (2) can be evolved numerically by comput-

ing quantum trajectories [6], where the wavefunction is
evolved with a Monte Carlo algorithm. Such a computa-
tion is performed for a non-Hermitian effective Hamil-
tonian

Ĥeff = −J(â†
1â2+â†

2â1) +
∑

j=1,2

(
−Δâ†

j âj + Uâ†
j â

†
j âj âj

)

+
∑

j=1,2

F
(
âj + â†

j

)
− iγ

2

(
â†
1â1 + â†

2â2

)
, (3)

where the non-Hermitian terms account for null-
measurement back-action; moreover, Eq. (3) is expressed
in a co-moving frame with respect to the frequency ωp

of the driving field, and Δ = ωc − ωp is the detuning.
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The coherent evolution is interrupted by ‘jumps’, which
correspond to photon emission from the cavities imple-
mented by the action of â1 or â2 on the wavefunction.
The timing of these jumps is stochastic, and each tra-
jectory corresponds to a particular unravelling of the
master equation given by system (2). This approach is
quite powerful as one can obtain temporal information
regarding observables, which mimics the situation of
an observer taking measurements of the outputs of the
cavities; see [6] and Appendix A for more details. We
consider here the observables 〈a†

1a1〉 and 〈a†
2a2〉, the

photon number expectation values in each of the two
cavities.

In the co-moving frame with respect to the driving
frequency ωp, the mean-field approximation

i
dα1

dτ
=

(
−Δ − i

γ

2
+ 2U |α1|2

)
α1 − Jα2 + F,

i
dα2

dτ
=

(
−Δ − i

γ

2
+ 2U |α2|2

)
α2 − Jα1 + F, (4)

is derived from system (2) by considering the expecta-
tions (mean-values) α1 = 〈â1〉 and α2 = 〈â2〉 under the
assumption that their product factorises, meaning that,
for example, 〈â1â2〉 = 〈â1〉〈â2〉; see [31] for details. It
is mathematically convenient to rescale time and the
variables of system (4) by introducing

τ = 2t/γ and (A, B) = (−2iα1
√

|U |/γ, −2iα2
√

|U |/γ)

to obtain the system

dA

dt
= −A + i

(
δ + ξ(U)|A|2)A + iκB + f,

dB

dt
= −B + i

(
δ + ξ(U)|B|2) B + iκA + f, (5)

for the rescaled complex field electric amplitudes A and
B, where

ξ(U) = sign(U), δ = −2Δ

γ
, κ = −2J

γ
and

f = 4F

√|U |
γ3/2

. (6)

System (5) is the semiclassical ODE model of the open
Bose–Hubbard dimer, and we will investigate how its
bifurcations manifest themselves in the evolution as
described by the Lindblad master equation (2) for small
photon numbers in the two cavities. Note that we are
considering here the symmetric case, where both cav-
ities are pumped with the same intensity F ; hence,
system (2) is invariant under the exchange of the two
cavities given by (â1, â2) �→ (â2, â1). This reflectional
symmetry manifests itself as Z2-equivariance [19] of
the semiclassical system (5) with respect to the map
(A,B) �→ (B,A).

Mathematically, system (5) is a system of four real-
valued ODEs, which can be written out either in terms

of real and imaginary parts or amplitudes and phases
of both A and B; hence, it defines a vector field with a
four-dimensional phase space. Even though system (5)
looks deceptively simple, the fact that its phase space
is of dimension four implies that complex behaviour
must be expected. Already continuous-time systems
with three-dimensional phase spaces, such as the well-
known Lorenz [38] and Rössler systems [47], are known
to be able to support chaotic dynamics and associated
transitions and bifurcations; see, for example, the text-
books [21,33,50]. Specifically for system (5), a detailed
study in [17] has uncovered a complex bifurcation struc-
ture with different types of chaotic dynamics in well
characterized regions of phase space; these are organ-
ised by bifurcations involving homoclinic and hetero-
clinic connections of different kinds, some of which have
not been studied before.

The sign ξ(U) = sign(U) appears in (5) to allow
for convenient comparisons with different instances of
the Bose–Hubbard dimer in the literature; however, the
transformation

(A,B,U, δ, κ) �→ (A,B,−U,−δ,−κ)

implies that all results for ξ(U) = 1 directly trans-
late to those for ξ(U) = −1. From now on, we set
ξ(U) = sign(U) = 1 and consider positive κ as the
experimentally relevant case [16,23,24] whose bifurca-
tions have been studied in considerable detail in [17,18].
More specifically, we also set δ = −4.5 and consider
the one-parameter bifurcation diagram in the pump
strength f , for which one finds different types of phase
transitions, including symmetry breaking, multistabil-
ity and the onset of periodicity.

We compare the dynamics of the semiclassical ODE
model (5) with quantum trajectory computations,
requiring that we set (J,Δ,U, γ) = (−3.5, 4.5, 0.5, 2.0)
in system (2) so that the two sets of parameter values
agree. Regarding pump strength F , we note that any
scaling of the form

(U,F ) �→ (Uμ, Fμ) = (U/μ,
√

μF ) (7)

with μ > 0 does not change the value of f in sys-
tem (5) as given by (6); hence, the rescaling (7) leaves
the observed semiclassical behaviour unchanged. On
the other hand, the introduction of the scaling param-
eter μ in the quantum optical system (2) appears in its
effective Hamiltonian as

Ĥμ
eff = −J(â†

1â2 + â†
2â1) +

∑

j=1,2

(
−Δâ†

j âj +
U

μ
â†

j â†
j âj âj

)

+
∑

j=1,2

√
μF

(
âj + â†

j

)
− iγ

2

(
â†
1â1 + â†

2â2

)
. (8)

More precisely, by changing the scaling parameter μ,
one obtains a quantum system operating with on-site
energy Uμ = U/μ and pump amplitude Fμ =

√
μF . In

light of scaling (7), the μ-dependent effective Hamilto-
nian Ĥμ

eff has the exact same semiclassical approxima-
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tion for any μ, namely, the semiclassical ODE model
(5) derived from system (2). Nevertheless, in the quan-
tum regime the scaling factor μ plays a vital role: vary-
ing it allows one to simulate a situation of a quan-
tum system that supports different numbers of pho-
tons without changing the nature of its semiclassical
limit. More specifically, the expected number of pho-
tons trapped in the cavities scales with μ with respect
to the intensities predicted by the mean field model,
namely, as 〈a†

1a1〉 ≈ μ|A|2 and 〈a†
2a2〉 ≈ μ|B|2. In par-

ticular, increasing μ increases the number of photons
and reduces the importance of cavity field fluctuations,
meaning that the quantum system is closer to its semi-
classical limit. In what follows, we investigate the pre-
dictive power of the semiclassical ODE model (5) by
simulating Ĥμ

eff in (8) for increasing values of μ; this is
achieved by performing quantum trajectory simulations
with the method detailed in Appendix A. We remark
that this approach has been used in [37] to investigate
system (1) for the case J > 0.

3 Bifurcation diagram and tracked
quantum trajectory simulation

We first compare in Fig. 1 the one-parameter bifur-
cation diagram in the pump current f of system (5)
for (δ, κ) = (−4.5, 3.5) with quantum trajectories of
system (2) computed for slowly increasing pump cur-
rent with corresponding parameter values. Figure 1(a)
shows the branches and bifurcations of the equilibrium
and periodic solutions of system (5) in terms of their
intensities |A|2 and |B|2 over the relevant range of the
pump strength f . Here, one finds stable equilibria along
blue curves, while cyan and orange curves represent
unstable equilibria with different numbers of positive
eigenvalues. The green curves represent stable periodic
solutions; specifically, these curves trace out the max-
ima (only) in |A|2 and |B|2 of these periodic solutions.
Throughout, there exists a symmetric equilibrium with
|A|2 = |B|2 and arg (A) = arg (B), and one finds a
number of bifurcations that give rise to other branches
of solutions. The f -range is divided in this way into
intervals (i)–(vii) with different qualitative behaviour
as follows:

(i) f = 0 to the pitchfork bifurcation P1: there exists
only the symmetric equilibrium and it is stable.

(ii) P1 to the Andronov–Hopf bifurcation H1: the
symmetric equilibrium is now unstable and a pair
of stable asymmetric equilibria exist; these bifur-
cate at P1 with |A|2 > |B|2 and |A|2 < |B|2,
respectively.

(iii) between the Andronov–Hopf bifurcations H1 and
H2: the asymmetric equilibria are unstable, and
there is now a pair of stable periodic orbits that
emerge and disappear at H1 and H2—one near
each equilibrium with |A|2 > |B|2 and |A|2 < |B|2,
respectively.

(iv) H2 to the saddle-node bifurcation of asymmetric
states S∗

1: the asymmetric equilibria are again sta-
ble and the situation is as in interval (ii).

(v) between the saddle-node bifurcations of asymmet-
ric states S∗

1 and S∗
2: two additional pairs of asym-

metric equilibria exist, one stable and one unsta-
ble, so that there are now two pairs of stable asym-
metric equilibria. The pair of unstable equilibria
emerges or disappears with the respective pair of
stable periodic orbits at the points S∗

1 and S∗
2.

(vi) S∗
2 to the pitchfork bifurcation P2: there is again a

single pair of stable asymmetric equilibria as well
as the unstable symmetric equilibrium, as in inter-
vals (ii) and (iv).

(vii) beyond P2: the symmetric equilibrium is the only
solution and stable again, as in interval (i).

Figure 1(b) shows the realisation of one quantum tra-
jectory of system (2) as Fμ with μ = 3.0 is increased
linearly at a slow rate of approximately 0.216 per unit
of time t, where (J,Δ,U, γ) = (−3.5, 4.5, 0.5, 2.0). The
quantum trajectory is shown in terms of the two observ-
ables 〈a†

1a1〉 and 〈a†
2a2〉, and superimposed is the bifur-

cation diagram from panel (a) after the corresponding
scaling by μ of the intensities |A|2 and |B|2; here sta-
ble branches are dark grey and unstable branches light
grey. Notice in Fig. 1(b) how both observables follow the
branch of symmetric equilibria in interval (i) and then
split into an asymmetric situation when the semiclassi-
cal system exhibits the pitchfork bifurcation P1. Near
and beyond this transition, in intervals (i) and (iii),
there are increased fluctuations that include switching
between which of 〈a†

1a1〉 or 〈a†
2a2〉 is the larger observ-

able. Past the Andronov–Hopf bifurcation H2, in inter-
val (iv), the quantum trajectory is clearly localised at
one of the asymmetric stable equilibria; more precisely,
the one with 〈a†

2a2〉 > 〈a†
1a1〉. As Fμ increases, the

quantum trajectory jumps to a different asymmetric
equilibrium, namely, in between the asymmetric saddle-
node bifurcations S∗

1 and S∗
2, where two pairs of asym-

metric equilibria exist, which is interval (v). As Fμ

increases further, 〈a†
1a1〉 and 〈a†

2a2〉 remain localised
near this new asymmetric equilibrium in interval (vi).
The two observables then come together near the pitch-
fork bifurcation P2 and then remain localised at the
symmetric equilibrium that is stable again in parame-
ter interval (vii).

Overall, Fig. 1 illustrates that the slowly ramped
quantum trajectory effectively follows the stable
branches of the one-parameter bifurcation diagram,
meaning that it remains localised near one of the stable
equilibrium solutions, but with a considerable level of
fluctuations. Increased sensitivity and jumps induced
by these fluctuations are observed near bifurcation
points, in the Fμ-range between P1 and H2 as well as
that bounded by S∗

1 and S∗
2 with multistability between

different asymmetric equilibria.
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(b)

(a)

Fig. 1 Bifurcation diagram of system (5) in the pump
strength f compared with quantum trajectories of sys-
tem (2). Panel (a) shows branches of equilibria and peri-
odic solutions represented by the intensities |A|2 and |B|2,
namely: stable equilibria (blue), saddle equilibria with one
unstable eigenvalue (cyan) and with two unstable eigen-
values (orange), and stable periodic solutions (dark green);
these solutions bifurcate at points of pitchfork bifurcation
P, of saddle-node bifurcation of asymmetric equilibria S∗

1

and S∗
2, of saddle-node bifurcation of asymmetric equilib-

ria S∗, and of Andronov–Hopf bifurcation H. Panel (b)
shows quantum trajectory realisations of system (3) as
Fμ with μ = 3.0 is slowly ramped linearly as Fμ ≈
0.216 t; here the observables 〈â†

1â1〉 (red curve) and 〈â†
2â2〉

(blue curve) are superimposed on the branches of solu-
tions from panel a (dark and light grey curves). Through-
out, (δ, κ) = (−4.5, 3.5) for system (5) and (J, Δ, U, γ) =
(−3.5, 4.5, 0.5, 2.0) for system (3); the vertical grey-dashed
lines indicate the f -values considered in Sect. 4

4 Quantum trajectories at specific values
of f

We proceed by investigating how these observed prop-
erties of the quantum trajectory manifest themselves in
the parameter intervals with different limiting semiclas-
sical dynamics; specifically, at the values of f = Fμ/

√
μ

in intervals (i)–(vi), as indicated by the dashed verti-
cal lines in Fig. 1(a). Here, we consider two values of
the scaling factor μ, that is, two different photon num-
bers, namely, μ = 1.0 and μ = 3.0. More specifically,
we present for each case:

(1) temporal traces for a single realisation of a quantum
trajectory of system (2) represented by the observ-

ables 〈a†
1a1〉 and 〈a†

2a2〉, shown over the correspond-
ing range (that depends on μ) with the respective
equilibria of system (5).

(2) the associated temporal traces of the ratio

O =
〈a†

1a
†
2a1a2〉

〈a†
1a1〉〈a†

2a2〉
,

which is a measure of the validity of the factorisation
property of the quantum system used to derive the
semiclassical ODE; note that O = 1 means that the
factorisation is exact.

(3) two-dimensional histogram in the (〈a†
1a1〉, 〈a†

2a2〉)-
plane, where the bins are given by a 200 × 200
grid of the corresponding shown ranges and with
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Fig. 2 Quantum
trajectories of system (2)
in interval (i) for
Fμ/

√
μ = f = 2.0 with

μ = 1.0 (left column) and
with μ = 3.0 (right
column). Panels (a1)
and (b1) show the
temporal trace of the
observables 〈â†

1â1〉 (red

curve) and 〈â†
2â2〉 (blue

curve), and panels (a2)
and (b2) show the
associated evolution of the
ratio O =
〈a†

1a
†
2a1a2〉/〈a†

1a1〉〈a†
2a2〉.

Panels (a3) and (b3) show
histograms for a 200 × 200
grid in the
(|A|2, |B|2)-plane
constructed from three
different quantum
trajectories; the data is
symmetrised and the
diagonal symmetry line is
shown in grey. Also shown
are the equilibria of
system (5), as dashed lines
in the temporal traces and
as dots in the histograms,
where colour reflects their
stability as in Fig. 1

(a1) (b1)

(a2) (b2)

(a3) (b3)

the respective equilibria and periodic solutions of
system (5). The histograms are constructed from
three different realisations of quantum trajectories
by sampling 50,000 equidistant points in the time
interval (0, 104); moreover, the invariance of sys-
tem (2) under the permutation of the sites is used
to double the number of points and to correct asym-
metric bias introduced by the sampling.

4.1 Comparison in intervals (i) to (iii)

In interval (i), there exists only the single symmet-
ric stable equilibrium of the semiclassical ODE (5),
which is stable and attracts all initial conditions. As
Fig. 2 shows, the respective quantum trajectory stays
close to this equilibrium but is subject to clear fluc-
tuations. This localisation is illustrated in panels (a1)
and (b1) with the temporal traces of the two observ-
ables 〈â†

1â1〉 and 〈â†
2â2〉, which can be seen to fluctuate

around the corresponding equilibrium intensity-value.
Here the ranges have been chosen to agree with the scal-

ing by μ so that a direct comparison of the observables
can be made, including with their limiting semiclassi-
cal behaviour. Notice that the fluctuations are relatively
larger for μ = 1 in panel (a1) than those for μ = 3 in
panel (b1). Similarly, the observable O, while subject to
fluctuations in both cases, is on average further from its
limiting value of 1.0 for μ = 1 in panel (a2) compared to
μ = 3 in panel (b2). It is interesting to note that, despite
the factorisation assumption being relatively inaccurate
in this regime, the two-dimensional histograms are still
well centred around the stable equilibrium. The two-
dimensional histograms in the respective ranges of the
(〈â†

1â1〉, 〈â†
2â2〉)-plane in Fig. 2(a3) and (b3) show dis-

tributions that are well centered around the stable equi-
librium on the symmetry axis. Note that the colour map
is scaled to account for the dependence of the size of the
bins on μ; this also allow for a direct comparison of the
(relative) heights of the histograms for different values
of μ. There is considerable spread due to the fluctu-
ations in the quantum trajectories, which are indeed
comparable with the temporal traces in panels (a1)
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Fig. 3 Quantum
trajectories of system (2)
in interval (ii) for
Fμ/

√
μ = f = 4.0 as

represented in Fig. 2

(a1) (b1)

(a2) (b2)

(a3) (b3)

and (b1). The spread is smaller and more symmetrical
around the equilibrium for μ = 3 in panel (b3) com-
pared to that for μ = 1 in panel (a3). This illustrates
that the distribution becomes more Gaussian with a
smaller variance as μ is increased.

In interval (ii), past the pitchfork bifurcation P1, the
symmetric equilibrium of system (5) is now unstable,
and there is a pair of stable asymmetric equilibria, each
with their own basin of attraction. Figure 3 shows that
quantum trajectories of system (2) display switching
between the two asymmetric states in between (quite
short) epochs of localisation near one of them. The
switching appears to be dominant in the temporal trace
for μ = 1 in panel (a1), and epochs of localisation
(while still short) are visible more clearly for μ = 3
in panel (b1). Overall, the role of fluctuations seems
to be much more important here than in interval (i),
as they drive switching between the two stable solu-
tions. These observations are represented in the two-
dimensional histograms in panels (a3) and (b3) by the
fact that the distributions are now bimodal, quite broad

and not sharply focused around the two stable asym-
metric equilibria. Notice also the existence of a ‘bridge’
between the areas of localisation near the asymmetric
equilibria, which reflects the likely route for the switch-
ing driven by the quantum fluctuations. Again, the his-
togram is less broad, and its features are crisper for
μ = 3 in panel (b3) compared to μ = 1 in panel (a3).

Figure 4 illustrates the situation in interval (iii), in
between the two Hopf bifurcation points H1 and H2,
with the new feature of a pair of attracting periodic
solutions of system (5) near the now unstable asym-
metric equilibria. The quantum trajectories of system
(2) still display switching between these two asymmet-
ric periodic states with epochs near one of them, with
a considerable level of fluctuations. As before, the level
of fluctuations is relatively higher for μ = 1 in pan-
els (a1) and (a2) than for μ = 3 in panels (b1) and (b2).
Comparison with Fig. 3 shows that the fluctuations
are larger compared to the situation in interval (ii). In
particular, the fluctuations during epochs of localisa-
tion are now larger, since the quantum trajectories are
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Fig. 4 Quantum
trajectories of system (2)
in interval (iii) for
Fμ/

√
μ = f = 6.0 as

represented in Fig. 2; also
shown in the histograms is
the pair of stable
asymmetric periodic
solutions (green closed
curves)

(a1) (b1)

(a2) (b2)

(a3) (b3)

no longer attracted to a steady state. The histograms
in Fig. 4(a3) and (b3) show distributions that illus-
trate the properties of quantum trajectories differently.
While the maxima are near the stable periodic solu-
tions of the semiclassical ODE, there appears to be no
definite fingerprint of periodicity of the quantum tra-
jectories in the (〈â†

1â1〉, 〈â†
2â2〉)-plane. Notice that there

is again a clear ‘bridge’ of preferred switching, which is
considerably sharper for μ = 1 compared to μ = 3, but
the histograms do not appear to identify the pair of
periodic attractors.

The above discussion shows that the frequent switch-
ing between the two localised oscillations obscures
the possible periodicity of the observables 〈â†

1â1〉 and
〈â†

2â2〉. To identify the fingerprint of these semiclas-
sical periodic oscillations in the quantum realm, we
now show in Fig. 5 temporal traces of the observ-
able So = 〈â†

1â1〉 + 〈â†
2â2〉 of the quantum trajectories

as well as their spectra, for μ = 1, μ = 3 and also
for μ = 20. The observable So (subject to the same

scaling by μ) is the quantum analogue of the total
intensity S = |A|2 + |B|2 of the semiclassical ODE.
Due to the symmetry properties of the Bose–Hubbard
dimer, switching between symmetric states manifests
itself much less in So. More specifically, due to its invari-
ance under the permutation of the two sites, So min-
imises fluctuation transients driven by the quantum sys-
tem. This is why one can observe signs of periodicity
in the temporal traces in Fig. 5(a1)–(c1). The tempo-
ral trace of the semiclassical periodic orbit is shown in
Fig. 5(d) for comparison; note that it is close to being
sinusoidal, which is due to the periodic orbit still being
close to the Hopf bifurcation. As μ is increased, fluctu-
ations are reduced, and the periodicity in the temporal
trace of So becomes crisper. Indeed, the temporal trace
for μ = 20 in panel (c1) is recognised as a ‘noisy version’
of the periodic signal in panel (d) and, hence, clearly
contains fingerprints of the semiclassical periodic solu-
tion. This observation is quantified by power spectra
|F(So)| of the respective temporal traces. Already for
μ = 1 in panel (a2) the spectrum shows a recognis-
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Fig. 5 Comparison of
oscillatory behaviour in
interval (iii) for
Fμ/

√
μ = f = 6.0.

Panels (a1), (b1) and (c1)
show temporal traces of
the observable
So = 〈â†

1â1〉 + 〈â†
2â2〉 of

quantum trajectories of
system (2) with μ = 1,
μ = 3 and μ = 20,
respectively. Panels (a2),
(b2) and (c2) show the
corresponding power
spectra |F(So)| (green
data); here the vertical
purple line indicates the
frequency of the
corresponding periodic
solution of system (2),
which is shown in
panel (d) as a temporal
traces of S = |A|2 + |B|2

(a1) (a1)

(b1) (b2)

(c1) (c2)

(d)

able peak near the main frequency of the semiclassical
periodic temporal trace. For μ = 3 in panel (b2), the
spectrum is sharper and its frequency closer to that
of the semiclassical oscillation, and this is even more
the case for μ = 20 in panel (c2). We conclude that
Fig. 5 clearly shows the emergence of periodicity in the
quantum realm provided μ, that is, the photon num-
ber, is taken to be sufficiently large (but still moder-
ate). We remark that this phenomenon has also been
observed recently in quantum trajectory simulations of
the unbalanced Dicke model [49].

4.2 Comparison in intervals (iv) to (vi)

In interval (iv), past the second Hopf bifurcation H2,
the two asymmetric equilibria are again stable and the
only attractors of system (5). In other words, the situ-
ation is topologically the same as in interval (ii). How-
ever, as Fig. 6 shows, we find marked differences in
the observed behaviour of quantum trajectories of sys-
tem (2). The temporal trace for μ = 1 in panel (a1)
show long epochs, where the quantum trajectory is

localised near one of the stable steady states, with
much more occasional switchings between them. For
μ = 3 in panel (b1), the relative strength of quan-
tum fluctuations is now so low that not a single switch-
ing occurs in the time window presented. Comparison
with Fig. 3 shows that the overall level of fluctuation
is comparable in intervals (ii) and (iv). However, the
observable O is now seen to fluctuate around unity in
panels (a2) and (b2), meaning that the factorization
assumption is reasonable in interval (iv). Notice fur-
ther that switching events manifest themselves in the
observable O in panel (a2) as sudden larger spikes away
from its average. The clear observation that quantum
trajectories linger much longer near one of the two sta-
ble equilibria in interval (iv) is explained by the fact
that these equilibria are more attracting and also fur-
ther apart from each other and from the unstable sym-
metric equilibrium from which they bifurcated. More
specifically, the two stable equilibria represent a situa-
tion of extreme symmetry breaking, where one site has
practically all photons of the overall coupled system,
while the other has near-zero photons—this in spite of
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Fig. 6 Quantum
trajectories of system (2)
in interval (iv) for
Fμ/

√
μ = f = 10.0 as

represented in Fig. 2

(a1)

(b1)

(a2)

(b2)

(a3) (b3)

the fact that both sites are pumped symmetrically. This
distance between the two attractors and the increased
residence times of quantum trajectories are illustrated
very clearly by the histograms in panels (a3) and (b3).
Already for μ = 1 in panel (a3), the distribution is very
bimodal with pronounced peaks near the two attracting
equilibria system (5), which are very close to the coor-
dinate axes owing to the fact that one of the two inten-
sities is practically zero; the ‘bridge’ corresponding to
preferred switching is now much weakened. For μ = 3 in
panel (b3), there is no longer a discernible bridge due to
the occurrence of very few transitions between the two
attractors. The histogram is now quite sharply focused
on the pair of stable asymmetric equilibria, with very
well defined peaks. That notwithstanding, there are still
sufficiently many switchings due to quantum fluctua-
tions to ensure that the computed histogram captures
both attractors.

The behaviour in interval (v), in between the two
saddle-node bifurcations S∗

1 and S∗
2, is characterised by

the existence of an additional pair of stable asymmet-

ric equilibria of system (5), as well as a pair of unstable
asymmetric equilibria. This means that there are now
a total of four attractors with their respective basins
of attraction. The additional stable equilibria are char-
acterised by a relatively small imbalance between the
sites compared to the other pair, which still represent
the scenario where practically all photons are at one
of the two sites. Figure 7 shows that quantum trajec-
tories of system (2) remain localised near one of the
four stable equilibria for a certain amount of time and
then switch to being localised near another stable equi-
librium and so on. The temporal trace for μ = 1 in
panel (a1) shows quite a number of switchings. While
for μ = 3 in panel (b1), residence times are longer, and
the number of switchings per time interval is decreased.
Interestingly, the overall level of fluctuation is relatively
quite low compared to earlier cases. Note also that, as
seen in panels (a2) and (b2), localisation near the new
equilibria with smaller values of the intensity is asso-
ciated with especially low fluctuations, namely around
an average value of O = 1.0, implying the factorization
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Fig. 7 Quantum
trajectories of system (2)
in interval (v) for
Fμ/

√
μ = f = 13.0 as

represented in Fig. 2

(a1) (b1)

(a2) (b2)

(a3) (b3)

assumption is accurate in this regime. These attrac-
tors feature significant photon numbers in both cavities,
such that the role of quantum fluctuations is less impor-
tant. However, while the other attractors feature a large
population in one cavity, the other, almost empty, cav-
ity is strongly impacted by fluctuations. The four differ-
ent attractors are also clear features of the histograms
in panels (a3) and (b3). The distributions show clear
peaks near each of the stable equilibria, which are con-
siderably crisper for μ = 3 compared to μ = 1. More-
over, the histograms are considerably larger near the
pair of equilibria, where one of the intensities is prac-
tically zero. Note that switching events follow ‘weak
bridges’ between the attractors, meaning that switching
between neighbouring attractors in the (〈â†

1â1〉, 〈â†
2â2〉)-

plane are by far the ones that are most likely to occur.
Figure 8 shows the situation in interval (vi), where

there are again only two stable asymmetric equilibria
of system (5), namely, the ones near the symmetry line
with a relatively small imbalance between the sites.
As panels (a1) and (b1) show, the quantum trajecto-

ries of system (2) remain near both of these equilibria,
with negligible residence times near each attractor and
many switchings per time interval. Residence times are
notably larger for μ = 3 than for μ = 1, but remain
very small for either case compared to the (topologi-
cally equivalent) situation in interval (iv) in Fig. 6. The
level of fluctuations appears to be relatively small, and
the observable O in Fig. 8(a2) and (b2) remains very
close to 1.0 throughout; again, any noticeable fluctua-
tions of O appear to be due to switchings between the
two stable equilibria. However, the role of these fluc-
tuations is important, as the frequent switching means
that the associated histograms in panels (a3) and (b3)
are characterised by a single peak with a maximum at
a point in between the two stable asymmetric equilib-
ria. In other words, the two nearby attractors are not
resolved: while the histogram for μ = 3 in panel (b3)
appears to be more elongated around the two attract-
ing equilibria, it still has only a single peak. This is
a direct reflection of the very low residence times of
localisation as measured by the observables 〈â†

1â1〉 and
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Fig. 8 Quantum
trajectories of system (2)
in interval (vi) for
Fμ/

√
μ = f = 17.0 as

represented in Fig. 2

(a1) (b1)

(a2) (b2)

(a3) (b3)

〈â†
2â2〉. As we will see below, it is possible to detect the

(weak) localisation of the quantum trajectories already
for μ = 3, namely, by considering the difference between
these two observables; see already Fig. 9(b2).

5 Evolution of histograms with Fµ

Figure 9 provides an overview of how the statistical
properties of quantum trajectories of system (2) develop
with the pump strength Fμ, and how this compares with
the corresponding bifurcation diagram of the semiclas-
sical ODE (5). Here, we again consider the two cases
μ = 1 and μ = 3. In this representation, histograms
are shown for Fμ starting from 2.0μ in steps of 0.5μ
and up to 15.75μ, where the maximum of each his-
togram is scaled to the Fμ-size of 0.5μ. As for the
two-dimensional histograms shown in previous figures,
these histograms are constructed from three different
realisations of quantum trajectories by sampling 50,000

equidistant points in the time interval (0, 104), where
we now use 80 uniform bins over the shown range of
the respective observable. The invariance of system (2)
under the permutation of the sites is again used to dou-
ble the number of points and symmetrise the data; the
maxima are then scaled to 0.5μ.

Figure 9 shows histogram plots for two different
observables. Panels (a2) and (b2) show histograms
for 〈â†

i âi〉, which corresponds to the projection of the
respective two-dimensional histogram onto the 〈â†

1â1〉-
axis (or equivalently the 〈â†

2â2〉-axis). To obtain addi-
tional information regarding semiclassical fingerprints
in the distributions, Fig. 9(a2) and (b2) show his-
tograms for the difference Do = 〈â†

1â1〉 − 〈â†
2â2〉; note

that considering this observable corresponds to the
projection of the respective two-dimensional histogram
onto the antidiagonal and implies the symmetry of pan-
els (a2) and (b2) with respect to the Fμ-axis.

The evolution of the histograms for μ = 1 is shown
in Fig. 9(a1) and (a2). There are noticeable changes in
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(a1) (b1)

(a2) (b2)

Fig. 9 Scaled histograms of system (2) for μ = 1 (left
column) and for μ = 3 (right column) of the observables

〈â†
i âi〉 (top row) and of their difference Do = 〈â†

1â1〉−〈â†
2â2〉

(bottom row) at different values of Fμ superimposed on the

bifurcation diagram of system (5). Here Fμ is increased from
2.0 μ to 15.75 μ in steps of 0.5 μ, and the histograms are
scaled to have a maximum of 0.5 μ. The contrast in the
background shading of the panels highlights intervals (i)–
(vi)

the statistical properties of the two observables associ-
ated with the transitions through the different bifurca-
tions, while the distributions remain more or less the
same in the intervals (i) to (vi) that are covered by
the shown range of Fμ; compare with Fig. 1. Start-
ing at low Fμ in interval (i), one first observes that
the histogram widens as the first pitchfork bifurcation
is approached and subsequently becomes bimodal in
interval (ii), with a pair of peaks near the two stable
asymmetric equilibria. Notice the large component of
the distribution in between these two equilibria, which
corresponds to frequent switchings between them. This
‘bridge’ and, hence, the number of switchings in the
time interval clearly become much less pronounced past
interval (iii). The existence of stable periodic orbits, on
the other hand, is not evident in the histograms. When
the second Hopf bifurcation is reached, the distribu-
tion is strongly bimodal and remains clearly localised
near the re-stabilised asymmetric equilibria throughout
interval (iv). Notice that in Fig. 9(a1) for the observ-
able 〈â†

i âi〉, the solution is less well resolved near the
upper branch compared to the lower branch due to the
larger fluctuations for the site with more photons; this
issue clearly does not arise for the symmetric observ-
able Do in panel (a2). The strong localisation extends
well into interval (v) with the additional pair of stable
equilibria. There is a somewhat gradual change of the
histogram to localisation around the other pair of sta-
ble equilibria in this interval. Notice that the distinction
between these two equilibria is quite weak initially and
quickly becomes nonexistent, with a distribution with

a maximum in between the two attractors, even for the
observable Do.

The evolution of the histograms for μ = 3 in
Fig. 9(b1) and (b2) is quite similar, but the distribu-
tions are more clearly resolved, that is, more concen-
trated at the respective attractor. However, there are
noticeable differences in the upper range of Fμ. In inter-
val (v), the switching to a different pair of attractors
now manifests itself as a quite sudden change of the his-
togram; this reflects the scarcity of switchings in a finite
time series. Moreover, the two new asymmetric equilib-
ria are now distinguished by the histogram, especially
clearly for the observable Do in panel (b2). Overall, we
conclude that the histogram plots of Fig. 9, especially
those in panels (a2) and (b2) for the symmetric observ-
able Do, provide a good summary of how the statistical
properties of quantum trajectories change both with the
pump strength Fμ as well as with increasing numbers
of photons as represented by the scaling parameter μ.
Indeed, this representation agrees with the results in
Sect. 4 regarding the behaviour for representative val-
ues of Fμ in the intervals (i) to (vi)—but it also provides
insight into how the distributions of quantum trajecto-
ries change from interval to interval, as semiclassical
bifurcations are encountered.
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(a)

(b)

Fig. 10 Minimum min{g
(2)
11 (0), g

(2)
22 (0)} of the averaged

g(2)-functions of the two sites, panel (a), and the averaged
von Neumann entropy E, panel (b), as a function of pump
strength Fμ as functions of the pump strength Fμ. Each
curve was computed at different values of Fμ from quan-
tum single trajectories of system (2), where μ = 0.5 (cyan),
μ = 1.0 (blue), μ = 2.0 (purple), and μ = 3.0 (lilac). Red-
dashed vertical lines are at the bifurcations of system (5),
and the corresponding intervals (i) to (vii) are highlighted
by contrasting background shading

6 Antibunching and entanglement

We now investigate whether there is evidence of quan-
tum phenomena in system (2) for low photon numbers
as the pump strength Fμ is varied. To this end, Fig. 10
shows the two indicator functions min{g

(2)
11 (0), g(2)

22 (0)}
and E over the relevant range of Fμ, where the semiclas-
sical bifurcations are shown and the associated inter-
vals (i) to (vii) of different behaviour are highlighted.

Antibunching of photons refers to the emission of a
photon reducing the probability of a subsequent emis-
sion, and is a strictly quantum phenomena. In the
present context, it can be detected by the condition that
min{g

(2)
11 (0), g(2)

22 (0)} < 1, where the function g
(2)
ii (0) is

the second-order correlation function for the light in
cavity i

g
(2)
ii (0) =

〈â†
i â

†
i âiâi〉(

〈â†
i âi〉

)2 .

Plotting the smaller of the time averaged second-
order correlation functions of the two sites, g

(2)
11 (0) and

g
(2)
22 (0), for a single quantum trajectory allows us to

identify antibunching [39]. Figure 10(a) shows time-
averaged values of min{g

(2)
11 (0), g(2)

22 (0)} for μ = 0.5,
μ = 1.0, μ = 2.0, and μ = 3.0 at different values of
Fμ for single trajectories of length t = 500. In inter-
val (i), both sites display slight bunching, less so for
larger μ, implying a thermal photon number distribu-
tion. Past the pitchfork bifurcation P1 and the appear-
ance of asymmetric attracting states of system (5), we
find min{g

(2)
11 (0), g(2)

22 (0)} < 1: consistently in inter-
vals (iii) to (vii) for all shown values of μ, and including
interval (ii) for μ = 0.5 and μ = 1.0. Hence, the site
with more photons is always anti-bunched from about
Fμ = 5.0 and higher. As one would expect, antibunch-
ing is reduced as μ increases and the closer the system
is to its semiclassical limit, and min{g

(2)
11 (0), g(2)

22 (0)}
appears to approach the value 1.0 as μ is increased.

To investigate the existence of entanglement between
the sites, we consider the time-averaged von Neumann
entropy of one of the cavities, given by [40,43]

E = −trace(ρ1(t) ln ρ1(t)),

where ρ1(t) is the density matrix for site 1 at time t
(or equivalently site 2) and the overline represents time
averaging. Figure 10(b) shows E as a function of Fμ for
μ = 0.5, μ = 1.0, μ = 2.0, and μ = 3.0, as computed
from the same quantum trajectories described above.
Entanglement is identified by the condition that E > 0,
which means that the states are not ‘pure’, and we con-
clude that there is entanglement throughout the entire
range of Fμ. Notice that the level of entanglement as
measured by E increases in interval (i) and then, past
the first pitchfork bifurcation P1, reaches and stays on
a plateau throughout interval (ii) to (v). The indica-
tor E then increases quite steeply in interval (vi) with
maximal multistability between asymmetric attractors,
reaches a maximum near the second pitchfork bifur-
cation P2 and then decreases equally steeply in inter-
val (vii) where the symmetric equilibrium is again the
only attractor of the limiting system (5). The von Neu-
mann entropy in the plateau appears to show slowly
reducing entanglement as μ increases, suggesting that
entanglement goes away in the thermodynamic limit.
However, the maximum of E appears to become larger
and more narrow with increasing μ. It is a known
phenomenon that, near certain types of phase tran-
sitions, there is a divergence in entanglement at the
critical point in the thermodynamic limit [35,36,41,45].
Whether this is the explanation for the sharpening of
the von Neumann energy near P2 remains an interest-
ing question for future research.

7 Conclusions and outlook

The case study of the open two-site Bose–Hubbard
dimer presented here shows that it is possible to identify
recognisable fingerprints of phase transitions—that is,
bifurcations—of the limiting semiclassical (mean-field)
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model in the quantum realm. More specifically, we con-
sidered the case of negative intermode coupling when
the semiclassical model features a transition, as the
pump strength is increased, from symmetric dynam-
ics via symmetry breaking at a pitchfork bifurcation to
oscillatory dynamics and then to multistability between
different types of asymmetric states. These features
were recognised reliably in the statistical properties
of different observables of quantum trajectories, even
quite far from the semiclassical limit, that is, for low
numbers of photons at each site.

These theoretical results are fundamental in nature
and suggest that it may be possible to find quantum
signatures of such rather complex nonlinear phenom-
ena of the Bose–Hubbard dimer in different experi-
mental systems, including condensates in semiconduc-
tor microcavities [1,34,46], superconducting circuits
[13,44] and photonic crystal nanocavities [16,18,23,24].
In semiconductor microcavity condensates, oscillatory
behaviour [1,34] and multi-stability under asymmet-
ric driving [46] have been observed. Moreover, super-
conducting circuits have been built that act as tune-
able degenerate and non-degenerate amplifiers under
asymmetric drive [13]. Finally, for two coupled pho-
tonic crystal nanocavities [23,24], symmetric pumping
has recently been achieved reliably up to a moder-
ate level of the pump strength, enabling the exper-
imental verification of spontaneous symmetry break-
ing [16] in good agreement with a bifurcation study
of the semiclassical model [18]. We, therefore, believe
that more complicated dynamics with additional levels
of multistability—including different types of localised
and non-localised chaotic dynamics [17]—may well be
identifiable experimentally in these systems; especially,
in photonic crystal structures due to their small size
and low-photon operation. Such experiments for the
Bose–Hubbard dimer, or other quantum systems such
as the Dicke model [2,3,25,30,48,49,53], are challeng-
ing but provide opportunities for studying how semi-
classical chaos arises in quantum systems [4,15].

Finally, we remark that system (5) is part of a big-
ger class of Z2-equivariant equations that describes two
identical optical systems that are being run and coupled
symmetrically. This class contains ODE models, such
as system (5) studied here, but also models in the form
of partial differential equations (PDEs). As an exam-
ple of the latter, we mention the system of two cou-
pled Lugiato–Lefever equations (LLEs) that describe
two counter-propagating modes in a micro-ring res-
onator. Recent results in [52] have shown good agree-
ment between experiments and the predictions of the
coupled LLEs for the case when the spatial component
can be neglected; the PDE model then reduces to an
ordinary differential equation for the complex electric
fields of the two counter-propagating modes, which, at
a first glance, looks very similar to system (5). How-
ever, the coupling between these two modes arises from
the Kerr nonlinearity of the micro-ring resonator and
is, therefore, nonlinear [52]—unlike the coupling in the
Bose–Hubbard dimer which is linear [23,24]. This dif-
ference in the nature of the coupling is responsible for

substantial differences in the organisation of observable
behaviour. The study of emerging phenomena that are
exclusive to the case of nonlinear coupling, including
their quantum optical description, is a promising direc-
tion of ongoing work. A related interesting challenge for
future research is the study of the general case of Bose–
Hubbard systems with multiple sites [12] and different
types of coupling.
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Appendix: The quantum trajectory method

Quantum trajectories offer a method for calculating the evo-
lution of a dissipative quantum system [6]. The main idea
is that stochastically generated trajectories mimic single
experimental runs, where energy dissipated into the envi-
ronment is measured and recorded rather than lost. Each
trajectory thus constitutes a particular unravelling of the
master equation, such that an ensemble average over many
trajectories reproduces the master equation result.

Quantum trajectories recast each time step in a master
equation

i
dρ̂

dt
= [Ĥ, ρ̂] + i

∑

j

γj

2
[2Ôj ρ̂Ô†

j − Ô†
j Ôj ρ̂ − ρ̂Ô†

j Ôj ],

as one of two options: discrete quantum jumps and coherent
non-unitary evolution. The former corresponds to the mea-
surement of a dissipated photon in the environment and
the latter to a null measurement. Non-unitary evolution is
performed with an effective Hamiltonian

Ĥeff = Ĥ − i
∑

j

γj

2
Ô†

j Ôj , (9)

where the additional term arises from the backaction of
measuring zero dissipated photons. Discrete jumps are per-
formed by the action of the jump operators {Ôj}.

Evolution from an initial pure state |ψ(0)〉 is calculated
in time steps δt, where at each time step, |ψ(t+δt)〉 is deter-
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mined from |ψ(t)〉 by the following Monte-Carlo algorithm
with three MCsteps:

MCstep 1: Calculate the probability

pn = 〈ψ(t)|
∑

j

γj

2
Ô†

j Ôj |ψ(t)〉δt

of the system emitting a photon in the timestep δt.

MCstep 2: Generate a random number, rn, uniformly dis-
tributed in [0, 1].

MCstep 3A: If rn < pn then the time step is designated
as a quantum jump. Which operator is used to perform the
jump is decided stochastically, with the action of Ôj hap-
pening with probability:

pj =
〈ψ(t)| γ

2
Ô†

j Ôj |ψ(t)〉
〈ψ(t)| ∑

j

γj

2
Ô†

j Ôj |ψ(t)〉 .

The state is updated as

|ψ(t + δt)〉 =
Ôj |ψ(t)〉

√
〈ψ(t)|Ô†

j Ôj |ψ(t)〉
.

MCstep 3B: If rn > pn then the time step is designated
as coherent evolution. The state is updated as

|ψ(t + δt)〉 =
e−iĤeffδt|ψ(t)〉

√

〈ψ(t)|e
− ∑

j
γjÔ†

j Ôjδt

|ψ(t)〉
.

We employ this method to produce long quantum sim-
ulations of the effective μ-dependent Hamiltonian Ĥμ

eff of
the open Bose–Hubbard dimer, as given by Eq. (8). The
resulting statistical properties can then be compared with
the prediction from the bifurcation analysis of the semiclas-
sical ODE model (5). For these quantum simulations, the
Hamiltonian, with scaling parameter μ, is, therefore, given
by

Ĥμ = −J
(
â†
1â2 + â†

2â1

)
+

∑

j=1,2

−Δâ†
j âj

+
U

μ
â†

j â
†
j âj âj +

√
μF

(
âj + â†

j

)

and the jump operators are â1 and â2, with rates γ1 = γ2 =
γ, such that coherent evolution is performed with the non-
Hermitian effective Hamiltonian

Ĥμ
eff = Ĥμ − i

γ

2

(
â†
1â1 + â†

2â2

)
,

where Ô1 = â†
1 and Ô2 = â†

2 are our jump operators; com-
pare with (9).
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