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Abstract It is almost more than a year that earth has faced a severe worldwide problem called COVID-19.
In December 2019, the origin of the epidemic was found in China. After that, this contagious virus was
reported almost all over the world with different variants. Besides all the healthcare system attempts,
quarantine, and vaccination, it is needed to study the dynamical behavior of this disease specifically.
One of the practical tools that may help scientists analyze the dynamical behavior of epidemic disease is
mathematical models. Accordingly, here, a novel mathematical system is introduced. Also, the complex
behavior of this model is investigated considering different dynamical analyses. The results represent that
some range of parameters may lead the model to chaotic behavior. Moreover, comparing the two same
bifurcation diagrams with different initial conditions reveals that the model has multi-stability.

1 Introduction

It is almost more than a year that a widespread dis-
ease caused by COVID-19 has turned into an interna-
tional concern. COVID-19 is one of the newest Coro-
naviruses’ members, which can cause illness in both
mammals and birds [1]. This virus, covered by lipids, is
turned into a protein on the host cell with its messen-
ger RNA (mRNA). Therefore, it can be categorized as a
positive-sense single-stranded RNA virus [2]. In Decem-
ber 2019, the first suspected patient with an intense
respiratory sign has been reported in Wuhan, China.
Following that, it has been observed almost all over the
world with different variants, which has resulted in a
worldwide pandemic announcement. A wide range of
symptoms, from moderate symptoms to severe illness,
has been reported by infected people with COVID-19
[3]. After the incubation period, the most general symp-
toms are fever, tiredness, and dry cough [4]. However,
other patients may suffer from other severe symptoms
[5]. Although vaccination is started, the world still expe-
riences a high level of daily confirmed cases. There are
still vast unknown aspects of this contagious virus that
reveals the high importance of theoretical studies, such
as mathematical modeling [6,7]. Mathematical models
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not only need to be accurate but also should be fast
with low costs of simulation. A wide range of mathemat-
ical approaches can be utilized for computational mod-
eling [8,9]. A series of recent studies show that several
computational models have been investigated the differ-
ent dynamical aspects of the COVID-19 pandemic [10].
For instance, in February 2020, Wang et al. have used
eight-dimensional differential equations to estimate the
virus’s future developments [11]. After that, Yang et
al. have derived helpful information for forecasting the
future growth of COVID-19 from 2003 SARS data
using the artificial intelligence (AL) approach. Then,
to find an effective cure, they have utilized both a 4-
dimensional SEIR model and some updated epidemic
COVID-19 data [12]. In early March 2020, Chen and
Yu have used both a mathematical model and data of
the first two months spread of COVID-19 to character-
ize China’s coronavirus epidemic. They have claimed
that, according to the results, coronavirus’s dynamical
behavior may be chaotic from the nonlinear point of
view [13]. Corona Tracker Community Research Group
has also used the real-time data query of this disease to
predict coronavirus outbreak in the world [14]. In late
March, Cano et al. have used simple stochastic simu-
lations to emphasize the influence of prevention, such
as social distancing. They have modeled the COVID-19
epidemic with a simple Markov chain model [15]. Con-
trol theory can also play an important role in analyz-
ing and controlling the widespread disease [16]. Late in
August, Rowthorn and Maciejowski used a SIR model
and control theory as a new approach to control the
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Fig. 1 The response of the Eq. 3 with a different value of
the contact parameter when the other parameters are set to
a Time series corresponding to a = 0, c = 0.5, m = 1, q = 0.5

and (S0, I0) = (0.5, 0.5) a β = 0.1, b β = 0.2, c β = 0.3,
and d β = 0.4. The steady-state of the system experience a
shorter transit time with a lower contact rate (β)

disease by quantifying the benefits of early intervention
[17].

In this research, a two-dimensional modified ver-
sion of the SEIR model is proposed, which may help
scientists take one step closer to understanding the
coronavirus’s complexity. A comprehensive dynamical
analysis is done to investigate the different dynamical
aspects of this model from the viewpoint of nonlin-
ear dynamics. Furthermore, in line with previous stud-
ies, this model reveals interesting properties like chaos
and multi-stability [18]. Multi-stability is considered
one of the most important dynamical properties of the
chaotic system, including many sub-branches such as
bi-stability, extreme multi-stability, and mega-stability.
These systems turn into a potential choice in chaos-
based engineering applications.

In the rest of the paper, a brief description of the
model is given in Sect. 2. Then, the existence of com-
plex behavior is investigated in Sect. 3, which contains
bifurcation analysis. Finally, Sect. 4 is the conclusion.

2 Model description

The SEIR model is one of the members of the compu-
tational compartmental models in epidemiology [19]. In
1927, Kermack and McKendrick proposed the first com-
partmental infection model, which divided the popula-
tion into two susceptible and infected classes [20]. This
model is a simple two-dimensional ordinary differential
equation which is as follows:

Ṡ = −βSI

İ = (βS − α)I (1)

where β and α show the infection and death rate. Dur-
ing the time, scientists developed some higher dimen-
sional versions of the SI model to cover the new aspects
of the epidemic disease [21]. The SEIR model is known
as one of the modified SI models, which considers the
effect of the disease’s incubation period. In this model,
it has been assumed that the population is large enough
[22]. Therefore, each people in the community can be a
member of four dynamical classes, which are the Sus-
ceptible (S(t)), Exposed (E(t)), Infected (I(t)), and
Recovered (R(t)).

Ṡ = −βSI + a − aS

Ė = βSI − (α + a)E

İ = αE − (γ + a) I

Ṙ = γI − aR (2)

where the β, and a are the contact and birth rate,
respectively. The α−1 and γ−1 show the mean latent
and infection period. Also, the constant S+E+I+R= 1,
which reveals the normalized number of the total pop-
ulation, reduces the equation’s dimension to three. Fur-
thermore, theoretical and numerical results showed that
a general relationship could be considered between the
infected and exposed populations [23]. Therefore, the
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Fig. 2 a Time series corresponding to the S variable, b Time series corresponding to the I variable, and c Strange attractor
of the system (1) with a = 0.02, b0 = 1575, δ = 0.2, e = 0.1, m = 0.3584, q = 35.8623 and (S0, I0) = (0.5, 0.5)

SEIR model’s simplified version is reduced to two-
dimensional ordinary differential equations [24].

By considering the cure and death rate of the
patients, the new two-dimensional SEIR system is
reported here as follows:

Ṡ = −βSI + a − aS + cI

İ = mβSI − qI

m =
α

a + γ
, q = a+α+d−c (3)

where c and d are the cure and death rates. This model
is a simple two-dimensional ordinary differential equa-
tion with two equilibria, which are

(
s∗
I∗

)
=

(
1
0

)
and

(
s∗
I∗

)
=

(
q

mβ
amβ−da
β(q−mc) )

)
. Figure 1 shows the impact of the

contact rate on the response time of the model.
To be more accurate, the seasonal fluctuation needs

to be included in the model [24]. Hence, the time-
varying contact rate is considered for the rest of the
paper. Moreover, the scale time of the system is changed
to per year. The final modified model is described as
follows:

Ṡ = −β(t)SI + a − aS + cI

İ = mβ(t)SI − qI

β (t) = b0(1 + δsin(2πt)) (4)

where b0 is the base contact rate, and 0 ≤ δ≤ 1 indi-
cates the weight of the seasonality. The time series and
strange attractor corresponding to the model’s chaotic
behavior after removing the transient part are plotted
in Fig. 2.

3 Existence of chaos

The existence of the strange attractor in the previ-
ous part claims that the system (4) potentially can be
chaotic. In order to investigate the nonlinear properties
of the system (4) accurately, bifurcation analysis has
been used. Some well-known patterns on the bifurcation
diagram, such as period-doubling root to chaos, can be
signs of chaos. Also, one positive Lyapunov exponents
are the sufficient condition of chaos. Figure 3a repre-
sents the bifurcation diagram of the system (4) when
the contact rate (δ) is smoothly changed as the bifur-
cation parameter. The corresponding Lyapunov expo-
nents’ diagram also has been plotted in Fig. 3b.
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Fig. 3 a Bifurcation diagram and b corresponding Lyapunov exponents of the system (4) according to smooth changes
of contact rate (δ) when the other parameters are set toa = 0.02, b0 = 1575, e = 0.1, m = 0.3584, q = 35.8623 and
(S0, I0) = (0.5, 0.5)

As shown in Fig. 3, the system (4) can be chaotic in
some range of the contact rate parameter, which con-
firms the system’s rich dynamical potential (4).

Another basic parameter affecting the disease’s spread
differently in a different region is the birth rate. The
bifurcation diagram of the system (4) has been explored
concerning changing the birth rate as the bifurcation

parameter in Fig. 4 in two different approaches. Fig-
ure 4a represent the bifurcation diagram of the system
(4) concerning the birth rate (a) with the fixed initial
condition (S0, I0) = (0.5, 0.5) while Fig. 5b has been
plotted with the help of the (upward/downward) con-
tinuation strategy. The different patterns between the
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Fig. 4 Bifurcation diagram of the system (4) concerning changing the birth rate a with fixed initial condition
(S0, I0) = (0.5, 0.5) b with (upward/downward) continuation strategy

two bifurcations show that the system (4) has different
attractors’ coexistence.

As illustrated in Fig. 4, the system (4) is multistable
and has coexisting different dynamical attractors. This
point increases the importance of the initial condition in
analyzing the dynamical behavior of the epidemic mod-
els. Figure 5 shows two different coexisting attractors in
one frame to shed more light on the multi-stability and
coexisting attractors.

4 Conclusion

COVID-19 is one of the biggest natural disasters in
world history, which has affected the lives of millions
of people all over the world during the last months.
It is time for all the scientists with different majors,
help each other to increase the public knowledge about
this new virus. Computational modeling is a useful tool
that can play an artificial safe lab to help scientists
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Fig. 5 Example of multistability and coexisting different
attractors in same parameters (a = 0.02, b0 = 1575, e =
0.1, m = 0.3584, q = 35.8623) with different initial condi-

tions a (S0, I0) = (0.5, 0.5), b random initial conditions,
c plotting both a and b simultaneously to emphasize the
difference between the attractors

investigate the different aspects of the epidemic. In this
regard, a new mathematical model has been proposed
in this paper by considering the effect of seasonality.
This new model can be categorized as the simplified
form of SEIR compartment models with the ability to
produce complex behavior. Bifurcation and Lyapunov
exponents analyses revealed that this model could be
chaotic in the parameter’s proper range. Also, multi-
stability was another important feature of the proposed
model.
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