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Abstract I review the structure of the leading infrared renormalon divergence of the relation between the
pole mass and the MS mass of a heavy quark, with applications to the top, bottom and charm quark. That
the pole quark mass definition must be abandoned in precision computations is a well-known consequence
of the rapidly diverging series. The definitions and physics motivations of several leading renormalon-
free, short-distance mass definitions suitable for processes involving nearly on-shell heavy quarks are
discussed.

1 Introduction

The existence of a short-distance scale Q � ΛQCD and
infrared (IR) finiteness are important requirements for
the application of perturbation expansions to strong
interaction (QCD) processes, but they are not always
enough in practice. The perturbative series is diver-
gent, most likely asymptotic. One of the sources of
divergent behaviour, called IR renormalon [1–5], arises
from the sensitivity of the process to the inevitable
long-distance scale ΛQCD. The degree of IR sensitiv-
ity limits the ultimate accuracy of the perturbative
approximation. For the pole mass of a heavy quark, this
observation has been exceptionally important for par-
ticle physics phenomenology, leading to a better under-
standing of quark mass renormalization at scales of
order and below the mass of the quark, and to much
improved precision in heavy quark and quarkonium
physics.

The quark two-point function
∫

d4x eipx 〈Ω|T (qa(x)q̄b(0))|Ω 〉 p2→m2

→

δab Z
i(�p + m)
p2 − m2

+ less singular (1)

has a pole1 to any order in the perturbative expansion.
The location of the pole in the complex p2 plane defines
the pole mass of the quark, m. The pole is shifted off the
real axis by a small amount due to the weak decay of the
quark, but for the discussion in this article the imag-
inary part is not relevant and hence will be ignored.

1 Due to the masslessness of the gluon, there is no gap
between the single-particle pole and the multiparticle cut
starting at p2 = m2, and the residue Z is IR divergent.

The pole mass of a quark is IR-finite [6,7]. It can be
related to other renormalized quark mass definitions
order by order in perturbation theory. It is nevertheless
not physical, as quarks do not exist as free, asymptotic
particle states and the scattering matrix of QCD does
not exhibit a pole at m2.

It is intuitively obvious that the strong IR physics
of QCD, which is not captured by perturbation theory,
should contribute an amount ΛQCD to hadron masses.
For a meson state M composed of q̄iqj ,

M = mi + mj + const × ΛQCD + · · · , (2)

which renders the notion of the pole mass useless for
light quarks with masses mi � ΛQCD. However, for
mesons containing heavy quarks with mQ � ΛQCD,
the pole mass provides a first approximation to the
meson mass up to power corrections of relative order
ΛQCD/mQ. Starting from, say, the MS mass of the
heavy quark, the pole mass represents the perturba-
tively calculable leading-power approximation to the
meson mass, just as the perturbative calculation in
terms of quarks and gluons of the total e+e− → hadrons
cross section at high energy does to the physical
hadroproduction cross section.

There is a deep connection between power correc-
tions and IR renormalon divergence of the QCD per-
turbative expansion. The existence of a linear power
correction is related to the strong IR renormalon diver-
gence of the pole mass series that was discovered in
[8,9] and is the subject of this article. In consequence,
while the pole mass of a quark appeared as the natu-
ral choice for processes involving nearly on-shell heavy
quarks, the concept has since largely been abandoned in
precision calculations in favour of alternative (leading)
renormalon-free mass definitions.
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2 Pole mass series

2.1 Basic definitions

The pole mass m is related to the MS mass by

m=m(μm)
(

1+
∞∑

n=1

cn(μ, μm,m(μm))αn
s (μ)

)
. (3)

Here αs(μ) is the MS coupling at scale μ in QCD with
nl light quarks, and m(μm) stands for the heavy quark
MS mass evaluated at the scale μm. In the following
I will often set μm = m, where m refers to the MS
mass, evaluated self-consistently at the scale equal to
the mass itself, i.e.

m = m(m) . (4)

We shall see below that the series (3) diverges for any
value of αs �= 0. Although a proof does not exist for
QCD, it is reasonable to assume that it is asymptotic,
and approximates the heavy-meson mass up to expo-
nentially small terms in αs, equivalent to power cor-
rections in ΛQCD/m. Asymptotic expansions can some-
times be summed using the Borel transform. Given a
power series

f(αs) =
∞∑

n=1

cnαn
s , (5)

the corresponding Borel transform is defined by

B[f ](t) =
∞∑

n=0

cn+1
tn

n!
. (6)

By convention, the tree-level term “1” in (3) is excluded
from the definition. A factorially divergent series of the
form

rn = KanΓ (n + 1 + b) (7)

has the Borel transform

B[f ](t) =
KΓ (1 + b)
(1 − at)1+b

(8)

with a singularity at t = 1/a. The Borel integral

I[f ] ≡
∫ ∞

0

dt e−t/αs B[f ](t) (9)

has the same series expansion as f(αs) and provides the
exact result under suitable conditions. However, for our
case of interest, there will be a singularity on the inte-
gration contour, rendering the Borel integral as given
ill-defined. Deformations of the contour around the pole
or branch cut, or the principal-value prescription, result
in the ambiguity

δf ≡ |Im I[f ]| =
π|K|

a
e−1/(aαs) (aαs)b (if a > 0)

(10)

of the Borel integral, which has the form of a power cor-
rection proportional to Λ

−2β0/a
QCD . The QCD β-function is

defined as β(αs) ≡ μ2∂αs(μ)/∂μ2 = β0α
2
s + β1α

3
s + · · ·

with β0 = −(11−2nf/3)/(4π). This ambiguity provides
a quantitative measure of the limit to the accuracy of
a purely perturbative calculation.

The linear power correction to the pole mass there-
fore corresponds to a = −2β0. More generally, the pole
mass can be regarded as the first term of an asymp-
totic expansion of the meson mass in powers of αs and
ΛQCD/m, which in modern language has a trans-series
structure (again, no proof).2

2.2 Linear IR sensitivity and the large-nf

approximation

To gain intuition, we start from the leading IR renor-
malon divergence of the one-loop correction to the pole
mass with fermion-loop insertions into the gluon line,
often referred to as the large-nf approximation. The
relevant expression is

Δm ≡ m − m(μ) = (−i)g2
sCF μ2ε

×
∫

ddk

(2π)d

γμ(�p+ �k+m) γν

k2 ((p−k)2 − m2)

∣∣
p2=m2

×
(

gμν − kμkν

k2

) ∞∑
n=0

[
β0αs ln

(−k2e−5/3

μ2

)]n

+counterterms. (11)

The all-order MS counterterms can be found in [8].
They do not diverge factorially, and can therefore be
ignored when discussing the large-n behaviour. Strictly
speaking, the fermion-loop insertions provide only the
nf -dependent part of β0 in (11). In full QCD, consis-
tency of the trans-series interpretation of short-distance
expansions requires the full expression for β0, as will be
seen below. The diagrammatic recovery of the full β0

is discussed in [10]. The substitution of the full β0 in
fermion bubble-chain diagrams is often referred to as
“naive non-abelianization” [12,13].

For p2 = m2 the integral scales as d4k/k3 for small
k. It is thus IR finite, but the contributions from k
smaller than ΛQCD, where perturbation theory is not
valid, is of order ΛQCD. That this should imply that
the pole mass cannot be defined to better accuracy than
O(ΛQCD) was noted in [14]. The connection to the IR
renormalon divergence of the perturbative expansion
was established shortly after [8,9]. Indeed, the increas-
ing power of logarithms in (11) enhance the IR region

2 See the reviews [10,11] for the interpretation of IR renor-
malons in the context of short-distance and operator prod-
uct expansions and more formalism.
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and yield (after Wick rotation)

∫ λ

0

dk lnn

(
k2

μ2

)
n�1= (−2)nn! (12)

with typical k ∼ μ e−n. One can also take the Borel
transform of (11), sum the series, which yields an effec-
tive gluon propagator. The exact expression for the
Borel transform of m − m(μ) can be found in [8].
Approximating the integrand to its leading term in the
small-k behaviour is sufficient to obtain the dominant
IR renormalon singularity at t = −1/(2β0) (closest to
the origin of the Borel plane), resulting in

B[Δm] =
CF e5/6

π
μ

1
1 + 2β0t

. (13)

The corresponding asymptotic behaviour of the series
expansion in αs = αs(μ) is

mpole − mMS(μ) =
CF e5/6

π
μ

∑
n

(−2β0)n n!αn+1
s .

(14)

As expected, with a = −2β0 > 0 the ambiguity of the
Borel integral and hence of the pole mass3 is propor-
tional to ΛQCD, independent of the arbitrary renormal-
ization scale μ.

2.3 Exact characterization of the divergence

The relation of IR and ultraviolet (UV) renormalon
divergence with the small- and large-momentum behav-
iour of Feynman diagrams, respectively, allows for a
precise characterization of the corresponding singular-
ities in the Borel transform in terms of the factoriza-
tion properties of observables and correlation functions
in these limits. In asymptotically free, renormalizable
field theories the UV renormalon singularities occur at
t = n/β0 < 0 and can be related to local operators of
dimension 4+2n in the regularized theory expanded for
large values of a dimensionful cut-off [15] (see [16] for
the case of QCD). If the theory has power UV diver-
gences, as is usually the case for effective field theo-
ries, the UV renormalon singularities extend into the
positive real axis of the Borel plane. Likewise, the IR
behaviour of correlation functions is often amenable to
expansions in the ratio of ΛQCD and a hard scale, in
which case the IR renormalons at t = −n/β0 > 0
are related to higher dimensional terms in the oper-
ator product expansion (OPE). For example, for the
two-point function of two vector currents,

Π(Q) = C0(αs, Q/μ) +
1

Q4
CGG(αs, Q/μ) 〈αs

π
G2〉(μ)

3 Implicitly, it is assumed that the MS mass has no IR sen-
sitivity, since it is essentially the bare mass up to pure UV
poles.

+O(1/Q6), (15)

the position t = −2/β0 of the leading IR renor-
malon divergence of its perturbative series C0(αs, Q/μ)
is determined by the dimension (four) of the gluon
condensate correction [2–5]. For both, UV and IR
renormalons, the parameter b in (8) is determined by
the anomalous dimension(s) of the relevant operators.
Through renormalization-group equations (RGEs), one
can determine the αs dependence of the ambiguity of
the Borel integral and thus determine 1/n corrections
to the leading large-order behaviour in terms of OPE
coefficient functions, the anomalous dimensions of all
operators of a given dimension, and the beta function
coefficients [17].4 This leads to the remarkable conclu-
sion that the singular points of the Borel transform due
to IR and UV renormalons can be completely specified,
except for a set of normalization constants K in (8),
whose number matches (at most) the number of opera-
tors. They appear as initial conditions of the RGE and
should be viewed as non-perturbative [17,18].

The application of these ideas to the large-order
behaviour of the pole mass series exhibits some unique
features a) due to the linear IR sensitivity, the IR renor-
malon divergence is particularly strong and dominates
over the sign-alternating UV renormalon series; b) the
leading IR renormalon singularity at t = −1/(2β0)
involves only a single operator and therefore a sin-
gle unknown normalization constant; c) the operator
has vanishing anomalous dimension; hence, the sub-
asymptotic 1/nk corrections are determined only from
the QCD beta-function, which is known to high order
in perturbation theory.

The derivation of these statements in [19] builds on
the observation [8] that the leading IR renormalon in
the pole mass is related to an UV renormalon pole
at the same position t = −1/(2β0) of the self-energy
Σstatic of the static quark field in heavy quark effective
theory (HQET) with Lagrangian

Leff = h̄viv · Dhv + Llight . (16)

This UV renormalon pole exists, because in contrast to
full QCD, the static self-energy is linearly UV divergent.
The only operator with the required mass dimension
three is h̄vhv. It follows that the imaginary part of the
Borel integral of Σstatic is given by

Im I[Σstatic](αs, p, μ) = E(αs, μ)Σstatic
h̄h (αs, p, μ),

(17)

where Σstatic
h̄h

is the static self-energy with a zero-
momentum insertion of h̄vhv. The coefficient E(αs, μ)
satisfies the RGE(

μ2 ∂

∂μ2
+ β(αs)

∂

∂αs
− γh̄vhv

(αs)
)

E(αs, μ) = 0 .

(18)

4 Explicit formulae can be found in [10,11].
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However, γh̄vhv
vanishes to all orders in perturbation

theory, since h̄vhv is the conserved heavy quark number
current of HQET. This justifies statements b) and c).
One then shows that [19]

Im I[Δm] = −E(αs, μ) = const

×μ exp
(∫

αs

dx
1

2β(x)

)
= const × ΛQCD. (19)

The αs-dependence of the imaginary part of the Borel
integral determines the large-order behaviour of the
perturbative expansion of Δm according to (7, 9) up
to a single normalization constant, N . Defining

cn(μ, μm,m(μm)) −→
n→∞ Nc(as)

n (μ,m(μm))

≡ N
μ

m(μm)
c̃(as)
n , (20)

the result is

c̃
(as)
n+1 = (−2β0)n Γ (n + 1 + b)

Γ (1 + b)

[
1 +

s1

n + b

+
s2

(n + b) (n + b − 1)

+
s3

(n + b) (n + b − 1) (n + b − 2)
+ · · ·

]
,

(21)

where [19,20] b = −β1/(2β2
0) and

s1 =
(

− 1
2β0

)(
− β2

1

2β3
0

+
β2

2β2
0

)
, (22)

s2 =
(

− 1
2β0

)2 (
β4

1

8β6
0

+
β3

1

4β4
0

− β2
1β2

4β5
0

− β1β2

2β3
0

+
β2

2

8β4
0

+
β3

4β2
0

)
, (23)

s3 =
(

− 1
2β0

)3 (
− β6

1

48β9
0

− β5
1

8β7
0

− β4
1

6β5
0

+
β4

1β2

16β8
0

+
3β3

1β2

8β6
0

+
β2

1β2

2β4
0

− β2
1β2

2

16β7
0

− β2
1β3

8β5
0

− β1β
2
2

4β5
0

−β1β3

3β3
0

+
β3

2

48β6
0

− β2
2

6β3
0

+
β2β3

8β4
0

+
β4

6β2
0

)
. (24)

The pole mass series is particularly simple, because
the large-order behaviour is completely determined in
terms of the β-function coefficients. Since the five-loop
beta-function coefficient β4 is now known [21–23], the
sub-asymptotic behaviour including 1/n3 corrections is
known. Numerically, for the interesting cases discussed
below, the corrections to the leading large-n behaviour
do not exceed 3% for c4.

2.4 The top, bottom and charm mass series

The normalization constant N in (20) cannot be deter-
mined exactly by purely perturbative methods. How-
ever, given that the pole-MS mass relation (3) is
known to the four-loop order [24,25] and the asymp-
totic behaviour is known including 1/n3 corrections,
one may attempt to match the two at n = 4. In other
words, while

N = lim
n→∞

cn(μ, μm,m(μm))

c
(as)
n (μ,m(μm))

, (25)

we evaluate the ratio for n = 4 and check the stability
of the result by comparison with n = 3 [20]. In the
following, all nl quarks other than the heavy quark will
be assumed to be massless. The effect of internal quark
mass effects will be discussed below. The coupling αs

in (3) is the MS coupling in the nl-flavour theory. Since
the IR theories are different, N is expected to depend
on nl.

It is interesting to apply this method to the large-nl

limit (more precisely, nl → −∞). In this limit, b = si =
0, and N can be calculated exactly from (14) to be

lim
|nl|→∞

N =
CF

π
× e

5
6 , (26)

which equals 0.97656 (CF = 4/3 for Nc = 3). This
can be compared to evaluating (25) for n = 4 at
μ = μm = m, which gives 0.971 in very good agreement
with the exact result. According to (20), the depen-
dence of the asymptotic behaviour on μ and μm is very
simple since the logarithms of μ in perturbation the-
ory must exponentiate to powers asymptotically. The
approximate determination of N is most accurate when
choosing μ ≈ m and exhibits a plateau around this
value [20].

With this validation of the method, we consider the
pole to MS mass series for the top, bottom and charm
quark, corresponding to nl = 5, 4, 3, respectively. For a
detailed analysis of the top-quark case, see [20]. Setting
μ = μm = mQ for Q = t, b, c, one finds

N = 0.4606 (top), 0.5048 (bottom), 0.5366 (charm) ,

(27)

where the tiny difference relative to [20] is due to the
inclusion of s3, which was not fully available at the time
(lack of β4). A conservative estimate of the uncertainty
of these values from the independent variations of μ
and μm is ±10% (error symmetrized, see [20]), but the
accuracy of the large-nl result at μ = μm = m suggests
that it may be considerably smaller. It is worth noting
that N is only half as large as the large-nl result for
physical values of nl, implying that the intrinsic ambi-
guity of the pole mass is smaller than inferred from the
one-loop correction dressed by fermion loops.

To display the numerical properties of the series, I use
the MS mass values mt = 163.643GeV, mb = 4.20GeV
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and mc = 1.28GeV. The strong coupling is taken to be
α

(5)
s (mZ) = 0.1180 at the scale mZ = 91.1876 GeV and

evolved with five-loop accuracy to mQ including the
flavour thresholds at 2μb = 9.6GeV and 2μc = 3GeV
with the help of RunDec [26,27]. The series coefficients
are then evaluated at μ = μm = mQ in an expansion
in α

(5)
s (mt) = 0.1084, α

(4)
s (mb) = 0.2246, α

(3)
s (mc) =

0.3889, for top, bottom and charm, respectively. The
result is

mt = 163.643 + 7.531 + 1.606 + 0.494 + 0.194
+0 .111 + 0 .079

+0 .066 + 0.064 + 0 .070 + 0 .087
+0 .119 + 0 .178 + · · · GeV (28)

mb = 4.200 + 0.400 + 0.199 + 0.145 + 0.135
+0 .177 + 0 .284

+0 .539 + 1 .185 + · · · GeV (29)
mc = 1.280 + 0.211 + 0.202 + 0.282 + 0.510

+1 .259 + 3 .798 + · · · GeV (30)

for the series expansion of the mass conversion for-
mula. In these expressions the first five numbers cor-
respond to the five exactly known terms including the
four-loop order, and the subsequent numbers in italics
are obtained from the asymptotic formula (21). By con-
struction, the asymptotic formula agrees with the exact
one for the fifth term. The minimal term of the series is
highlighted in bold face. The asymptotic formula cor-
responds to the “prediction”

c5 = 45.43 (top, nl = 5), 73.69 (bottom, nl = 4),
110.56 (charm, nl = 3) (31)

at μ = μm = mQ for the presently unknown five-loop
conversion coefficient. The behaviour of the series is
illustrated in Fig. 1, including an extrapolation of the
asymptotic formula to all n > 0. It is apparent that it
is already accurate at the three-loop order, n = 3.

Comparing (28), (29), (30), we observe that the top
mass series attains its smallest term at the eighth
order in perturbation theory, far beyond the four-loop
order currently known. On the other hand, the bot-
tom series reaches its minimal term at this order, while
the charm series starts to diverge from the two-loop
order, which renders the charm pole mass of limited
use for phenomenology. From a pragmatic point of
view, the minimal term represents the ultimate accu-
racy beyond which the purely perturbative use of the
pole quark mass ceases to be meaningful. The mini-
mal term scales as

√
αs(mQ) ΛQCD and decreases with

larger mQ, which reflects the fact that the minimum is
shallower in this case. A renormalization-group invari-
ant measure of the intrinsic limitations of the concept of
the pole mass can be defined in terms of the ambiguity
(10) of the Borel integral of the series,

δmQ =
πN

|2β0| × Λ
(nf )
QCD , (32)

exactly proportional to ΛQCD, as it should be. Dividing
by π gives a numerical value close to the minimal term
for the top mass series, and this definition of ultimate
accuracy has been adopted in [20].

Determining the non-perturbative normalization N
of the leading pole mass renormalon singularity from
matching to the highest known order is perhaps the sim-
plest and most intuitive, but not the only method that
has been suggested. I refer to [28–35] for other work,
noting that earlier work did not have access to four-
loop accuracy. As will be seen in Sec. 3.4 below, N is
related to a similar leading renormalon constant of the
static heavy quark potential by a factor −1/2 [36–38].
Some of the quoted works apply this relation to infer N
from an analysis of the series expansion of the colour-
singlet Coulomb potential. The normalization constants
are much more difficult to obtain when there is more
than one constant, or an interference of sign-alternating
UV and fixed-sign IR renormalon behaviour, as is the
case for generic observables. In this case, one can resort
to simplified parameterizations of the Borel transform
as was done for τ -decay spectral moments [39], but the
level of rigour and precision that has been achieved for
the pole mass of a heavy quark is unmatched by any
other series in QCD.

2.5 Internal quark mass effects

The analysis assumed up to now that the lighter quarks
are massless. In low orders of perturbation theory, this
is often a good approximation, especially for the top
quark pole mass, where mc,mb � mt. (We do not con-
sider the effect of the up, down and strange quark mass
and always neglect quark masses smaller than ΛQCD.)
However, in the regime where the series is dominated
by the leading renormalon divergence, the typical loop
momentum at order αn+1

s is of order mQe−n. Internal
quark mass effects from the bottom and charm quark
are expected to become important in higher orders. The
minimal term of the series is attained when the typi-
cal loop momentum is of order ΛQCD. At this scale the
theory is a theory of three massless flavours, indepen-
dent of whether the heavy quark was the top, bottom
or charm quark. Hence, the true large-n behaviour of
the series beyond the minimal terms is always deter-
mined by the nl = 3 result, and likewise the ambiguity
(32) should involve the Λ-parameter Λ

(3)
QCD in the three-

flavour scheme, always excluding the bottom and charm
quark, independent of nl.

The decoupling of internal quarks with masses mq

larger than ΛQCD in the renormalon asymptotic behav-
iour was studied analytically and numerically in the
large-nl limit [40], and the described behaviour has
been demonstrated. More precisely, the analysis showed
that the asymptotic behaviour of the series in a theory
with nl quarks of which nm are massive, approaches
the series of the theory with nl − nm massless quarks
when both are expressed in terms of the MS coupling
α

(nl−nm)
s (mQ) in the nl − nm flavour scheme. How-

ever, as noted above the large-nf limit overestimates
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Fig. 1 Graphical
representation of the series
(28), (29), (30), exhibiting
the typical dependence of
the size of terms with
order of a factorially
divergent series. The (blue)
circles for n < 5 represent
exactly known terms, the
(yellow) squares the
asymptotic formula applied
to all n > 0

the normalization of the leading renormalon by about
a factor of two. Furthermore, one is rarely interested
in the formal large-n behaviour of the series beyond
the minimal term, but rather in the approach to it. At
such intermediate orders, the typical loop momentum
crosses the flavour thresholds, as the order of pertur-
bation theory increases, and the internal quark masses
are neither negligible nor decoupled.

The issue is especially relevant for the top quark,
since the masses of the bottom and charm quark are
too small in relation to mt to express the entire series
in terms of the four- or three-flavour coupling. In con-
trast, one may argue [32] that the bottom pole to
MS mass conversion factor should be expressed in
terms of α

(3)
s (mb) rather than the four-flavour cou-

pling α
(4)
s (mb). For the two- and three-loop coeffi-

cients, for which the mass dependence is known [41–43],
this substitution indeed renders the charm mass effect
almost negligible. A quantitative investigation of bot-
tom and charm mass effects on the top pole mass series
was undertaken in [20,44]. The following discussion is
adapted from [20].

I first recall that the numerical series (28), (29), (30)
for mQ include internal loops of Q, but are expressed
in terms of α

(nl)
s (mQ), where nl is the number of mass-

less quarks, including bottom and charm for the case
of Q = top (nl = 5). To estimate the effect of the finite
bottom and charm mass, we switch from the five- to
the four-flavour scheme at the order, where the typ-
ical internal loop momentum is of order mb, which is
O(α5

s), and from the four- to the three-flavour scheme at
O(α6

s). Since the mass effect is not known for c4 at the
four-loop order, and since cn beyond the four-loop order

can only be estimated assuming dominance of the first
renormalon (as done above), this implies the following
procedure: (a) at two and three loops, we include the
known mass dependence, but c4 is approximated by the
massless value. For given top MS mass, this increases
the top pole mass by 11 (2-loop) + 16 (3-loop) MeV,
adopting mb = 4.2 GeV and mc = 1.28 GeV, out of
which 8.1 (2-loop) + 11.2 (3-loop) MeV are due to the
finite bottom mass, and 2.4 (2-loop) + 4.6 (3-loop) from
charm.5 Since the cn increase as nl decreases, the mass
effect is also expected to be positive in higher orders.
Hence approximating c4 by its massless value underesti-
mates the mass effect. (b) At the five-loop order, we use
c
(as)
5 [α(4)

s (mt)]5 with c
(as)
5 determined by matching to

the exactly known four-loop coefficient for nl = 4, that
is with normalization Nm = 0.5048 and beta-function
coefficients for the four-flavour theory. (c) Beyond five
loops, the remainder of the series is computed with the
three-flavour scheme coupling α

(3)
s (mt) and normaliza-

tion Nm = 0.5366. Since the bottom and charm quarks
are not yet completely decoupled at the five- to seven-
loop order, and since an extra quark flavour decreases
the cn, we expect that (b) and (c) overestimate the
mass effect, since the approximation assumes that bot-
tom and charm are already decoupled completely. The
sum of (b) and (c) adds another 54 MeV to the top pole

5 The poor convergence of the series of mass corrections
is expected, since the leading internal mass correction is
linear. This linear dependence is a consequence of the same
linear IR sensitivity that causes the leading IR renormalon
divergence. It is therefore possible to calculate the linear
internal mass correction by focusing on the soft region of the
loop integral, which would provide a more accurate estimate
of the internal mass effect in large orders than the order-
dependent decoupling procedure employed here.
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mass, such that the total mass effect is estimated to be
80 MeV. Explicitly, the series (28) is modified to

mt = 163.643 + 7.531 + 1.616 + 0.510 + 0.194
+0 .140 + 0 .106
+0.094 + 0 .096 + 0 .112 + 0 .145
+0 .209 + 0 .329 + · · · GeV, (33)

where the increasing importance of finite-quark mass
effects with order is evident. In case of the top quark
pole mass, the decoupling of the bottom and charm
quark in internal loops increases the intrinsic uncer-
tainty of the pole mass concept by almost 50% due to
the more rapid divergence of the series in the three-
massless flavour theory. Note that this ambiguity is
independent of the precise value of the bottom and
charm mass, as long as mb,mc � ΛQCD. This also
implies that it is the same for any heavy quark, includ-
ing the bottom quark, since it depends only on the
infrared properties of the theory, which is QCD with
three approximately massless flavours.

Since the bottom quark is neither heavy enough to be
decoupled in low orders, nor light enough to be ignored,
where in both cases a massless approximation can be
justified, there is an inherent uncertainty in the above
estimate. However, as argued above, the errors in the
approximations are expected to go in opposite direc-
tions, hence we consider (80 ± 30) MeV a conservative
estimate of the total internal bottom and charm quark
mass effect on the top pole mass. The 30 MeV error
estimate arises from an estimate of the neglected mass
effect on c4 by extrapolation from the known lower
orders. The approximation described here has been
checked to work well in models for the series inspired
by the large-nl limit.

2.6 Finite width

With the electroweak interaction turned on, the heavy
quarks become unstable. In perturbation theory, the
pole of the heavy-quark propagator is shifted to

m2
∗ = m2 − imΓ (m) , (34)

which defines the pole mass m and on-shell decay width
Γ . Unlike the quark mass, the width is not a parameter
of the Standard Model (SM)—for heavy quarks it can
be computed in perturbation theory in terms of m and
other SM parameters.

The width is negligibly small compared to m except
for the top quark, where Γt ≈ 1.4 GeV. The large width
Γt � ΛQCD does not eliminate the renormalon diver-
gence of the top pole mass, as was emphasized in [45].
This does not mean that the large width is not relevant,
since it does provide a cut-off on IR effects for phys-
ical observables. For example, measurements on jets
containing top quarks are generically linearly sensitive
to ΛQCD and accordingly display a strong renormalon
divergence, which can be screened by the sizeable width

[46]. In effect, as is intuitive, there is simply no quantity,
for which the pole mass of a quark is ever the relevant
parameter, once the quark’s width is larger than ΛQCD.

Interestingly, the on-shell width of a quark, Γ (m), is
itself an observable, which is less sensitive to IR physics
than the pole mass. When the final state masses can
be neglected, Γ (m) ∝ G2

F m5, where GF denotes the
Fermi constant. The leading power corrections are of
relative order (ΛQCD/m)2. However, when the series
is expressed in terms of the pole mass, an IR renor-
malon divergence indicating an ambiguity of linear
order ΛQCD/m appears in the series of QCD corrections
to the tree-level width. This ambiguity is spurious and a
consequence of using a parameter with stronger IR sen-
sitivity than the observable itself. Once the width of the
quark is expressed in terms of the MS mass or (better)
another leading renormalon-free mass definition such as
will be discussed in Sect. 3, the leading renormalon is
cancelled [47], and the series of loop corrections shows a
much better behaviour. This is particularly important
for the decay width of the bottom and charm quark, for
which Γ could otherwise be obtained only with large
uncertainty.

2.7 Beyond the leading renormalon

Much less is known about the renormalon singularities
of the pole mass series beyond t = −1/(2β0). On gen-
eral grounds one expects a sign-alternating UV renor-
malon divergence from a singularity at t = 1/β0, and an
IR renormalon singularity at t = −1/β0 related to the
Λ2

QCD/m kinetic-energy correction to the meson mass
(2). The Borel transform of the series is known exactly
in the large-nf limit [8]. Table 11 in [10] displays the
breakdown of the nth order term into the contribu-
tions from the first three IR renormalon and the first
UV renormalon poles, and the MS subtraction terms.
At least in the large-nf approximation, the subleading
poles never contribute more than one per mille of the
dominant asymptotics from t = −1/(2β0) for n beyond
the four-loop order. For practical purposes, dealing with
the leading singularity appears to be enough.

Curiously, the Borel transform in the large-nf limit
does not exhibit the expected next IR renormalon sin-
gularity at t = −1/β0. The authors of [8] specu-
lated that Lorentz invariance might forbid a quadratic
power-divergent mixing of the kinetic energy operator
h̄v(iD⊥)2hv into h̄vhv, in which case there would be
no matrix element to compensate the ambiguity of the
Borel transform from t = −1/β0, and hence it should
be absent. Invoking the virial theorem of HQET, the
power-divergent mixing of the kinetic energy opera-
tor was related to the one of h̄vigsG

μνhv into h̄vhv

[48]. This work confirms that Lorentz invariance for-
bids one-loop mixing, which explains the absence of the
t = −1/β0 singularity in the large-nf limit, but also
showed that there is no reason for this to hold beyond
this limit. Recent investigations [49] of a remainder
series with the leading renormalon subtracted show sign
alternation more fitting to UV renormalon behaviour.
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The question whether the subleading renormalon sin-
gularity at t = −1/β0 is absent or simply suppressed
by a loop factor, is therefore still undecided.

3 Renormalon-free “on-shell” masses

Many important properties of heavy quarks are less IR
sensitive than the pole quark mass itself—for exam-
ple, the inclusive decay width discussed above, or the
production cross section of a heavy quark-antiquark
pair. Their perturbative expansions do not display an
IR renormalon singularity at t = −1/(2β0), leading to
rapid divergence, provided they are not expressed in
terms of the pole mass. In other words, although the
pole mass is IR finite, it is for many purposes not a use-
ful renormalized mass parameter. Instead, one should
use a renormalization convention that is not only IR
finite but also insensitive to the IR at least at linear
order ΛQCD.

The MS definition suggests itself. However, in phys-
ical systems where heavy quarks are nearly on-shell
and have primarily soft fluctuations, the MS mass is
not the appropriate choice. Being essentially a bare
object, it does not include the short-distance fluctua-
tions, which should have been integrated out to describe
soft heavy-quark systems. In practice, this means that
the MS mass value is too far away (by O(mQαs))
from the pole of the heavy-quark propagator. While
the spurious pole mass renormalon is eliminated and
the asymptotic behaviour improved, there still appear
large corrections in low orders. It does not help to evolve
the MS mass m(μ) to scales μ < m, since the MS quark-
mass anomalous dimension applies only to the logarith-
mic evolution above m.

The resolution to the problem consists in quark mass
concepts that are numerically closer to the pole mass,
yet are constructed such that their perturbative relation
to the MS mass is free from the leading IR renormalon.
This has several benefits: 1) The concept is unambigu-
ous, at least up to O(αsΛ

2
QCD/m), which is sufficient for

practical purposes. 2) Such masses can be determined
accurately from measurements or lattice calculations,
and 3) they can be precisely related to the MS mass.
4) The impact of light internal quark mass effects is
reduced, since the leading IR loop momentum contribu-
tions have been removed. The MS mass is then the con-
venient reference parameter (similar to αs(mZ) for the
strong coupling) to which different leading renormalon-
free, “on-shell” mass definitions can be related.

3.1 General considerations

We start from the observation that the asymptotic
behaviour (20) of the pole to MS mass conversion (3)
has a very simple, exact linear dependence on the cou-
pling renormalization scale μ, which follows on very
general grounds [17], as well as on μm, which appears
only through m(μm). The asymptotic coefficients c̃

(as)
n+1

themselves in (21) are m(μm), μ and μm indepen-
dent. Since the Borel-integral ambiguity of the asymp-
totic series is always ΛQCD,6 we can replace m(μm) by
another scale μf . We therefore define

δmX(μf ) = μf

∞∑
n=1

sX
n (μ/μf )αn

s (μ)

= μf

∞∑
n=1

sX
n αn

s (μf ) . (35)

The series coefficients sX
n (μ/μf ) are polynomials of

order n − 1 in ln(μ/μf ) and must be chosen to satisfy

sX
n (μ/μf ) −→

n→∞ N
μ

μf
c̃(as)
n , (36)

where N and c̃
(as)
n are exactly the same as for the coef-

ficients in the pole to MS mass relation (20) and (21),
respectively.7 Once such sX

n have been found, we can
define a leading renormalon-free, “short-distance” mass
mX(μf ) by subtracting δmX(μf ) from the pole mass
m:

mX(μf ) ≡ m − δmX(μf )

= m(μm) +
∞∑

n=1

[m(μm) cn(μ, μm,m(μm))

−μf sX
n (μ/μf )

]
αn

s (μ) . . (37)

By construction the leading IR renormalon divergence
of the series cancels in the square bracket. This in turn
guarantees that the series that relates mX(μf ) to the
MS mass m(μm) is well behaved (no leading IR renor-
malon divergence).

The new scale μf should be chosen such that
ΛQCD � μf � m. The first equality is required for
perturbativity. The second guarantees that the differ-
ence between the pole mass and mX(μf ) is only of order
μf αs and can be made sufficiently small to avoid the
problem with the MS mass (where μf ∼ m) discussed
above. A common feature of all renormalon-free quark
mass definitions suitable for the description of nearly
on-shell heavy-quark physics is therefore the existence
of a new “subtraction scale” μf and a linear dependence
on this scale. This reflects that the running of the quark
mass changes from logarithmic to linear below the scale
m in accordance with the fact that the self-energy of a
point charge is linearly divergent in the static or non-
relativistic regime and turns logarithmic only when the
anti-particle fluctuations become relevant in the rela-
tivistic theory.

6 m(μm) is cancelled in m(μm) c
(as)
n (μ, m(μm)).

7 It is also assumed that the series defines an RGE invariant,
such that all logarithms of ln(μ/μf ) can be absorbed into
the running coupling at scale μf . sXn ≡ sXn (1).
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The leading renormalon-free masses satisfy a sim-
ple renormalization group equation in the subtraction
scale μf , which may be used to relate mX(μf ) at differ-
ent scales μf2, μf1, when logarithms of μf2/μf1 might
have to be summed. Defining the anomalous dimension
γX(αs) through

γX(αs) = −dmX(μf )
dμf

, (38)

the general form (35) of the subtraction term yields

γX(αs(μf )) =
∞∑

n=1

sXn
[
αn
s (μf ) + 2nαn−1

s (μf ) β(αs(μf ))
]

= sX1 αs(μf ) + [sX2 + 2sX1 β0] α
2
s(μf ) + · · · .

(39)

In the following, I discuss several suitable mass def-
initions with no claim to completeness. With respect
to (2), note that any definition of δmX(μf ) automati-
cally yields an unambiguous, renormalon-free definition
Λ̄X(μf ) of the Λ̄ parameter that appears in the heavy-
quark expansion of the heavy meson mass and many
other HQET expressions by the rearrangement

MQ = [mQ − δmX(μf )︸ ︷︷ ︸
mX(μf )

] + [Λ̄ + δmX(μf )︸ ︷︷ ︸
Λ̄X(μf )

] + · · · .

(40)

This can be turned around: any renormalon-free defi-
nition of the HQET parameter Λ̄ can be turned into a
renormalon-free, “short-distance”, on-shell mass defini-
tion.

3.2 RS mass

The renormalon subtracted (RS) mass definition [28] is
the first of two schemes, which implement the condition
(36) in a very direct way. Namely, for RS, one simply
defines the sRS

n to equal the asymptotic coefficients, that
is,

sRS
n (μ/μf ) = N

μ

μf
c̃(as)
n . (41)

While this expression could be used for any μ/μf , the
implementation proposed in [28] first assumes μ = μf ,
in which case

δmRS(μf ) = μfN
∞∑

n=1

c̃(as)
n αn

s (μf ) , (42)

which by construction subtracts the leading renormalon
divergence of the series (3), and then replaces αs(μf )
by its series expansion in αs(μ), where μ is the scale at
which the pole to MS series is evaluated. For the bottom
and charm mass, the effectiveness of this subtraction is

analyzed in detail in [32], which also discusses variants
of this definition.

A drawback of the RS mass definition is that it needs
a precise determination of the normalization N , which
depends on the method employed and further on the
number of light flavours, see (27). To fully define the
RS mass, one needs to provide the order to which c̃

(as)
n

is included according to (21), and specify the value of
N .

3.3 MSR mass

Another simple realization of the general subtraction
condition (36) that avoids the drawback of the RS mass
definition is to set the sn equal to cn and simply replace
m(μr) in (20) by the subtraction scale μf [31,34]. More
precisely, for μ = μf , which is assumed here, we define

sMSR
n |μ=μf

= cn(m,m,m) , (43)

where the pole to MS mass conversion coefficients are
evaluated at μ = μr = m(μr) = m, in which case they
are pure numbers. This gives the “practical version”
[34] of the MSR mass definition

δmMSR(μf ) = μf

∞∑
n=1

cn(m,m,m)αn
s (μf ) . (44)

The requirement (36) is satisfied since according to (20)

sMSR
n |μ=μf

= cn(m,m,m) −→
n→∞ N c̃(as)

n . (45)

The MSR mass subtraction is straightforward to imple-
ment, once the pole to MS mass conversion coefficients
are given. The MSR mass interpolates between m for
μf = m and the pole mass for μf = 0, although the lat-
ter limit cannot be taken as the coupling αs(μf ) flows
into the strong-coupling regime. The efficiency of the
MSR mass subtraction is analyzed in detail in [34].

Both the RS and MSR mass satisfy a simple renor-
malization group equation in the subtraction scale, as
discussed above. As for μf = m, the MSR mass equals
the MS mass m, the relation between mMSR(μf ) and
m can be obtained conveniently by solving the RGE
equation, see [34]. Alternatively, as for the RS scheme,
one can replace αs(μf ) in (44) by its series expansion
in αs(μ), where μ is the scale at which the pole to MS
series is evaluated, as long as ln(μ/μf ) is small enough
not to require resummation.

3.4 PS mass

The potential-subtracted (PS) mass [36] is the first of
two renormalon-free, short-distance, on-shell masses,
which are motivated and defined in terms of another
physical quantity than the pole mass. A non-relativistic
system of heavy quark and anti-quark in a colour-
singlet configuration experiences an attractive potential
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force, whose leading term is the Coulomb potential. In
momentum space,

Ṽ (q) = −4πCF

q 2
vc(αs(μ), q/μ) , (46)

where q = |q| and vc = αs + · · · incorporates the loop
corrections to the tree-level potential.

The PS scheme is based on the observation that
there is a cancellation of the leading divergent series
behaviour in the combination 2m+ [V (r)]Coulomb. This
can be seen explicitly at the one-loop order and in the
large-β0 approximation [36–38], and by a diagrammatic
argument at two loops [36] and beyond. The cancel-
lation expresses the fact that while the separation of
the total energy of the quarkonium-like system into the
quark pole masses and binding energy is ambiguous (as
was the case for m + Λ̄ for a heavy-light system), the
total energy is physical and unambiguous. The PS mass
at subtraction scale μf is defined by

mPS(μf ) = m +
1
2

∫

|q |<μf

d3q

(2π)3
Ṽ (q) , (47)

which removes the leading IR contributions to the self-
energy from q = |q| < μf .

The series expansion of vc(αs(μ), q/μ) appearing in
the Coulomb potential (46) is conventionally written in
the form

vc(αs(μ), q/μ)|μ=q = αs(q) +
∞∑

n=1

an

(
αs(q)
4π

)n+1

+
(

αs(q)
4π

)3

8π2C3
A ln

ν2

q2
+ · · · (48)

The coefficients a1,2,3 are known, where a3 refers to the
three-loop colour-singlet Coulomb potential [50–52]. I
note that the potential here is not defined in terms of a
Wilson loop, but as a matching coefficient [53] to poten-
tial non-relativistic QCD (PNRQCD) [54,55], defined
with minimal subtraction. The last term in (48) is the
first of an infinite series of terms, which contains an
explicit dependence on the factorization or PNRQCD
matching scale ν (to be distinguished from μ), which
arises from an IR divergence related to the ultrasoft
scale.

Up to the third order to which the potential is cur-
rently known, performing the integration over q yields
[36,56]8

δmPS(μf )

= −1
2

∫
q≤μf

d3q

(2π)3
Ṽ (q)

=
μfCF αs(μ)

π

[
1 +

αs(μ)
4π

(
2β0 l1 + a1

)

8 In [56] ν = μf was assumed.

+
(

αs(μ)
4π

)2(
4β2

0 l2 + 2
(
2a1β0 + β1

)
l1 + a2

)

+
(

αs(μ)
4π

)3(
8β3

0 l3 + 4
(
3a1β

2
0 +

5
2
β0β1

)
l2

+2
(
3a2β0 + 2a1β1 + β2

)
l1

+ a3 + 16π2C3
A

[
ln

ν

μf
+ 1

] )]
, (49)

where

l1 = ln(μ/μf ) + 1 ,

l2 = ln2(μ/μf ) + 2 ln(μ/μf ) + 2 ,

l3 = ln3(μ/μf ) + 3 ln2(μ/μf ) + 6 ln(μ/μf ) + 6 .

(50)

To fully specify the PS mass definition, a value of ν
must be chosen and the standard value is ν = μf , which
sets the logarithm ln(ν/μf ) to zero in the last line.
This still leaves a constant term 16π2C3

A = 4263.67...,
which is large compared to a3 = 1461.32... (quoted
for nl = 5). Since the former is related to an ultra-
soft rather than potential effect, another well-motivated
choice is ν = μfe−1, which nullifies the entire square
bracket in the last line, resp. the extra term in (48) at
this accuracy. I will refer to this choice as the PS∗ def-
inition. The difference between the PS and PS∗ mass
is largely irrelevant when the expanded formula (49) is
used, since the nth order term is dominated by the li
terms, originating from the running coupling in lower
order terms, for relevant values of μf . On the other
hand, the difference affects directly the size of the last
presently known term in the anomalous dimension and
RGE below.

It is instructive to interpret vc(q) = vc(αs(μ),
q/μ)|μ=q = αs(q) + · · · as an effective coupling, and
write the mass subtraction term as

δmPS(μf ) =
CF

π

∫ μf

0

dq vc(q) . (51)

The μf evolution of the PS mass is governed by the
anomalous dimension

γPS(αs(μf )) = −dmPS(μf )
dμf

=
CF

π
vc(μf ) . (52)

The solution is evidently (see (51))

[
δmPS(μf )

]μf2

μf1

=
CF

π

∫ μf2

μf1

dq vc(q) , (53)

which allows us to compute mPS(μf ) at widely differ-
ent scales μf1, μf2 without large logarithms by integrat-
ing the expansion of vc(q) in terms of the running MS
coupling αs(q). The leading-logarithmic solution can be
expressed in terms of the exponential-integral function.
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The PS scheme is especially well suited for quarko-
nium-like systems including open QQ̄ systems near
threshold, since it subtracts the leading IR contri-
butions explicitly already in low orders of perturba-
tion theory. Prime examples are quarkonium masses
at next-to-next-to-next-to-leading order (NNNLO) [56],
the determination of the bottom-quark mass from high
moments of the pair production cross section at second
[57] and third order [58] in PNRQCD, and in particu-
lar precision calculations of top-quark pair production
near threshold to NNLO and NNNLO [55,59] in the PS
scheme. For QQ̄ systems near threshold, the scale μf

should be chosen parametrically of order mv ∼ mαs

such that δmPS ∼ mv2, in order not to violate the
power counting of the non-relativistic expansion. With
this choice, the relation (47) is already accurate to order
mα5

s.

3.5 Kinetic mass

The kinetic mass scheme is another physical scheme,
in this case related to the physics of semi-leptonic
decays of heavy-light mesons [60,61]. The pseudoscalar
B meson mass has the heavy-quark expansion (cf. (2))

mB = mb + Λ̄ +
μ2

π − μ2
G

2mb
+ · · · , (54)

where μ2
π and μ2

G are the B-meson matrix elements
of the kinetic energy and chromo-magnetic operators,
respectively. The kinetic mass can be understood as a
perturbative evaluation of this formula, in which the
matrix elements include loop momentum integration
regions below the scale μf :

mkin(μf ) = m −[Λ̄(μf )]pert −
[

μ2
π(μf )

2mkin(μf )

]
pert︸ ︷︷ ︸

−δmkin(μf )

+ · · ·

(55)

The matrix elements on the right-hand side subtract the
long-distance sensitive contributions to the pole mass
order by order in μf/mQ and αs. Comparing to (40),
we note that the kinetic mass definition not only sub-
tracts the leading IR renormalon divergence through
[Λ̄(μf )]pert, but also the IR sensitivity at subleading
power Λ2

QCD/m.
Up to now the discussion has been general. The

kinetic scheme is defined by providing a concrete pre-
scription for calculating the perturbative matrix ele-
ments in terms of the perturbative evaluation of short-
distance observables. It relies on the fact that the Λ̄
parameter and kinetic-energy matrix element appear in
the heavy-quark expansion of the dilepton-differential
spectrum of inclusive semi-leptonic B → Xc�ν̄ decays
[62,63], which can be constructed from the imaginary
part of the two-point function of the b → c transition
current. The convention for the kinetic mass used in the

literature employs an indirect definition of the matrix
elements through heavy flavour sum rules [60,61] in the
small-velocity limit, which is rather complicated when
compared with the other three mass definitions above.
The central quantity is the forward amplitude

T (q) =
i

2mQ

∫
d4x e−iqx〈Q|TJ(x)J†(0)|Q〉 (56)

and its discontinuity

W (q) = 2 Im [T (q)] . (57)

Since the perturbative matrix elements (55) to be com-
puted are spin-independent and universal, instead of
the physical V–A current, one can define the kinetic
scheme by adopting the scalar current J = QQ′ pro-
vided Q and Q′ are heavy. To simplify further, one
can set Q′ = Q and compute the forward scattering
of the heavy quark off the current J with momentum
q = (q0, q) in the limit when v = q/mQ � 1. To iso-
late the IR region of the final state momenta, the total
energy of the quark and gluon final state X excluding
the heavy quark Q is restricted to

ω ≡ q0 −
[√

m2
Q + q2 − mQ

]
< μf . (58)

Employing the variables (ω,v) instead of (q0, q), the
mass subtractions are defined in terms of the double
limit of the first moments of the spectral function:

[Λ̄(μf )]pert = lim
v→0

lim
mQ→∞

2
v 2

∫ μf

0

dω ω W (ω,v)
∫ μf

0

dω W (ω,v)
,

(59)

[μ2
π(μ)]pert = lim

v→0
lim

mb→∞
3
v 2

∫ μf

0

dω ω2 W (ω,v)
∫ μf

0

dω W (ω,v)
.

(60)

The demonstration that the right-hand sides of these
equations can be identified with the subtracted Λ̄ and
kinetic-energy parameters, which appear in the heavy-
quark expansion of the meson mass, is given in [61].
It is sufficient to compute W (ω,v) in an expansion in
ω, |q| � mQ to order

W (ω,v) = Wvirt(v)δ(ω) +
v2

ω
WrealΘ(ω) + O(ω0,v4) .

(61)

The two-loop computation [64] has been known for
some time, but the three-loop result has been obtained
only recently [65,66]. Different from the other three
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Table 1 Comparison of top quark mass definitions for μf = 20 GeV for given MS mass mt. αs(mZ) = (0.1180 ± 0.0010)

top mt 1-loop 2-loop 3-loop 4-loop Sum

mt 163.643 7.531 1.606 0.494 0.194 173.468+0.101
−0.101

mt,RS 163.643 6.123 1.079 0.239 0.048 171.132+0.071
−0.071

mt,MSR 163.643 6.611 1.154 0.242 0.042 171.691+0.076
−0.076

mt,PS 163.643 6.611 1.190 0.265 0.048 171.756+0.077
−0.077

mt,PS∗ 163.643 6.611 1.190 0.265 0.051 171.759+0.078
−0.077

mt,kin 163.643 6.248 0.995 0.180 — 171.065+0.068
−0.068

“n-loop” refers to the value of the n-loop contribution to the mass. All numbers in GeV

Table 2 Comparison of bottom quark mass definitions for μf = 2 GeV for given MS mass mb. αs(mZ) = (0.1180±0.0010)

bottom mb 1-loop 2-loop 3-loop 4-loop Sum

mb 4.200 0.400 0.199 0.145 0.135 5.079+0.031
−0.029

mb,RS 4.200 0.126 0.065 0.028 0.007 4.425+0.006
−0.006

mb,MSR 4.200 0.210 0.062 0.020 0.001 4.493+0.007
−0.007

mb,PS 4.200 0.210 0.080 0.032 0.000 4.521+0.008
−0.008

mb,PS∗ 4.200 0.210 0.080 0.032 0.005 4.526+0.008
−0.008

mb,kin 4.200 0.101 0.004 −0.002 — 4.303+0.002
−0.002

“n-loop” refers to the value of the n-loop contribution to the mass. All numbers in GeV

Table 3 Comparison of charm quark mass definitions for μf = 1 GeV for given MS mass mc. αs(mZ) = (0.1180± 0.0010)

charm mc 1-loop 2-loop 3-loop 4-loop Sum

mc 1.280 0.211 0.202 0.282 0.510 2.486+0.126
−0.109

mc,RS 1.280 −0.017 0.037 0.026 0.005 1.331+0.006
−0.005

mc,MSR 1.280 0.046 0.022 0.010 0.002 1.356+0.004
−0.004

mc,PS 1.280 0.046 0.052 0.034 −0.019 1.393+0.006
−0.006

mc,PS∗ 1.280 0.046 0.052 0.034 −0.002 1.414+0.009
−0.008

mc,kin 1.280 −0.073 −0.062 −0.017 — 1.128+0.008
−0.009

“n-loop” refers to the value of the n-loop contribution to the mass. All numbers in GeV

mass schemes, the O(α4
s) term of δmkin(μf ) is presently

not available.
The kinetic scheme is especially well suited for

observables derived from semi-leptonic decays of heavy
quarks since it subtracts the leading IR contributions
explicitly already in low orders of perturbation the-
ory. Initially, it was suggested to eliminate the leading
renormalon divergence from the semi-leptonic width by
replacing the pole mass by the MS mass [67], but this
does not improve the behaviour in low orders. The com-
parison to the series convergence when renormalon-free
on-shell masses are used (Table 2 of [68]) clearly shows
the latter’s advantage. The kinetic scheme was used
for bottom quark mass and |Vcb| determinations at sec-
ond order [69]. Recently, the semi-leptonic decay width
was calculated to NNNLO and the effectiveness of the
kinetic mass scheme was demonstrated for the inclusive
rate for the first time at this order [70].

3.6 Comparison

Once any of the leading renormalon-free, on-shell,
short-distance masses has been determined from some
observable, one is eventually interested in converting
them to the MS reference mass m. Over the past 20
years the accuracy of the mass definitions and observ-
ables has improved by one order (typically from two-
loop to three-loop, and three-loop to four-loop for the
pole to MS mass series). It is, therefore, timely to
update and extend the comparison [68] of different def-
initions (see also [25]).

The purpose of the following comparison is to dis-
play the good behaviour of the relation between the
various subtracted masses and the MS mass contrary
to the pole mass series (28), (29), (30). As above, the
MS masses are fixed to mt = 163.643GeV, mb =
4.20GeV and mc = 1.28GeV. The strong coupling is
taken to be α

(5)
s (mZ) = 0.1180 ± 0.0010 at the scale

mZ = 91.1876 GeV, and the series coefficients are eval-
uated at μ = μm = m in an expansion in α

(5)
s (mt) =
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0.1084, α
(4)
s (mb) = 0.2246, α

(3)
s (mc) = 0.3889, for top,

bottom and charm, respectively. The subtraction scale
μf is chosen to be μf = (20, 2, 1)GeV for top, bottom
and charm, equal for all mass definitions for the sake
of comparison, even if different “canonical” values are
often adopted for the different schemes. Internal mass
effects are neglected, since they are not always known
with comparable precision. In case of mass schemes
originally defined in terms of αs(μf ), the series have
been converted into expansions in αs(mQ) with the
required four-loop accuracy.

I use private code for the RS, MSR and PS mass.
The RS and PS scheme (for ν = μf ) is also imple-
mented in CRunDec3.1 [27] and the PS mass also
in QQbar_threshold [71]. In case of the RS scheme
I adapted the normalization constants Nm = 0.563
(nl = 3), Nm = 0.547 (nl = 4), Nm = 0.527 (nl = 3)
given in [32] (and hard-coded in CRunDec3.1) to the
values from (27). Finally, the kinetic mass mkin is imple-
mented for massless internal quarks with CRunDec3.1’s
mMS2mKIN[mQ, 0, 0, "[as]"*α

(nl)
s (mQ), mQ, μf , nl,

nl, 3, ""] call, presently available only to three-loop
accuracy.

The results are summarized in Tables 1, 2, and 3.
It is evident that in terms of the size of mass correc-
tions up to the shown four-loop order, all mass schemes
are rather similar with exception of the kinetic scheme.
In all cases, one observes a spectacular improvement
of convergence relative to the pole mass series given in
the first line. One expects the cancellation of the lead-
ing renormalon to become more and more effective in
higher orders measured relative to the order of the min-
imal term, which can be seen explicitly by comparing
the top, bottom and charm tables. The effect is par-
ticularly dramatic for the charm mass, for which the
pole mass series starts diverging beyond the two-loop
order, while the renormalon-subtracted masses are still
well behaved at the fourth order, with corrections in
the few MeV range. The top pole mass series is still
in the regime of decreasing coefficients at the four-loop
order, albeit slowly, hence the relative improvement of
the subtraction should increase in the next orders. The
four-loop coefficient is typically (40 − 50)MeV, but the
size of the next unknown term can be assumed to be
small enough relative to the experimental precision that
can be attained in the future, even from the scan of the
pair production cross section in e+e− collisions [72].

“Sum” in the last column of the tables refers to the
sum of the terms up to the four-loop order shown, and
the error attached quantifies the variation of the sum
under a variation of αs(mZ) by ±0.001. It is appar-
ent that once leading renormalon-free, on-shell masses
are employed, the limitation of the accuracy of their
relations to the MS mass is (currently) no longer deter-
mined by the convergence of the expansion, but by the
precision of αs(mZ). For the case of the top quark,
this uncertainty is mainly caused by the large one-
loop correction of a few GeV to be compared to the
ultimate precision to which the subtracted masses can
be obtained theoretically and (in principle) experimen-

tally. Unlike the bottom and charm masses, to make
use of this precision requires better knowledge of the
strong coupling.
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