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Abstract Containment measures have been applied throughout the world to halt the COVID-19 pandemic.
In the United States, several forms of lockdown have been adopted in different parts of the country, leading
to heterogeneous epidemiological, social, and economic effects. Here, we present a spatio-temporal analysis
of a Twitter dataset comprising 1.3 million geo-localized Tweets about lockdown, from January to May
2020. Through sentiment analysis, we classified Tweets as expressing positive or negative emotions about
lockdown, demonstrating a change in perception during the course of the pandemic modulated by socio-
economic factors. A transfer entropy analysis of the time series of Tweets unveiled that the emotions
in different parts of the country did not evolve independently. Rather, they were mediated by spatial
interactions, which were also related to socio-ecomomic factors and, arguably, to political orientations.
This study constitutes a first, necessary step toward isolating the mechanisms underlying the acceptance
of public health interventions from highly resolved online datasets.

1 Introduction

The word “lockdown” originated in the context of crim-
inal justice in the middle of the 20th century [1], indi-
cating an emergency measure in which people are tem-
porarily prevented from entering or leaving a restricted
area. Since the first wave of SARS-CoV-2 in 2019, this
word has been utilized to broadly define the measures
adopted by governments and local administrations to
curb the diffusion of the epidemic, by reducing individ-
uals’ mobility and in-person interactions. These mea-
sures include restricted access to shops, workplaces, and
other public spaces, along with travel limitations. With
their high population densities and productive and eco-
nomic fabric, cities have been dramatically affected by
the pandemic and its containment measures [2]. Lock-
downs have had a broad and strong impact on the life
of individuals and communities [3–5], who have expe-
rienced different psychological responses that evolved
over time. While such measures are undoubtedly bene-
ficial from an epidemiological point of view, their eco-
nomic, social, and psychological costs cannot be denied.

The adoption of lockdown measures to curb the dif-
fusion of COVID-19 has impacted social interactions,
accelerating massive use of online platforms at a rate
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even faster than the spread of the epidemic [6–8].
Among social media, Twitter is one of the preferred
platforms for users to express their reactions to the
ongoing epidemics and related policies [9,10]. Twitter
is a micro-blogging platform, where users can write
posts of up to 280 characters, including images and
URLs. Users interact through re-Tweets, by forwarding
the text of others on their own post stream; mentions,
where users explicitly refer to others in their Tweets;
and follows, where users decide to permanently incor-
porate others’ Tweets in their stream.

Twitter has been studied by researchers to investigate
public opinion on a variety of topics. Notably, Twitter
was extensively used to understand how the political
debate evolved and was perceived [11–15], investigate
how rumors and opinions spread [16,17], and test the
validity of models of complex social behavior [18–20].
Other efforts aimed at understanding the spread of con-
tagious diseases that would be otherwise hard to track
with traditional medical testing [21], such as influenza
[22–27], Ebola virus disease [28–30], and, more recently,
COVID-19 [31].

The availability of data about COVID-19 diffusion
and the access to Twitter data enabled different studies
on the perception of and reaction to the pandemic [32].
Typically, these studies rely on sentiment analysis, also
known as opinion mining [33]. The tools used in senti-
ment analysis are statistical techniques that explore and
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extract emotions conveyed by selected texts [34–39], in
terms of a discrete classification or a continuous score.
Twitter data on COVID-19 pandemic has been used
to study reactions to the outbreak in different coun-
tries [40–42], benchmark and validate new models for
natural language processing [43–45], perform sentiment
analysis about the pandemic [46–48], and conduct anal-
yses about a specific event [49].

Of the entire body of knowledge on the topic, only
the study by Rahman et al. [49] frames the sentiment
analysis within a socio-economic perspective, although
relying on a relatively small dataset. Other authors have
used Twitter to study real-time events [50], mostly rely-
ing on a limited number of interactions [51] or tackling
the analysis mainly from a theoretical point of view [52].
To the best of our knowledge, sentiment analysis on a
big dataset collected over long periods of time remains
elusive, especially in the context of a disruptive event,
such as the COVID-19 pandemic.

In this vein, the present study explores temporal
variations in the emotions expressed online by Twit-
ter users regarding lockdown measures in the United
States (U.S.), starting from what is commonly referred
to as the first wave of the virus (January–May 2020).
To identify the drivers of sentiment dynamics, we con-
sider spatio-temporal variations in the severity of the
pandemic, along with social, economical, and politi-
cal aspects. Within an information-theoretic approach,
we use the notion of transfer entropy [53] to discover
causal relationships that underlie the spread of emo-
tional content among different geographical regions in
the U.S. Toward the identification of salient factors,
we then proceed to a dimensionality reduction using
principal component analysis. In light of the granular-
ity and extent of the available data, we are successful in
spatially correlating emotional shifts to epidemic preva-
lence and socio-economic factors.

2 Methods

We examined the sentiment expressed in the online
debate surrounding the containment policies to com-
bat COVID-19 in the U.S. between January 21st and
May 31st 2020. The data we processed comprise about
55 million Tweets in English [32], as defined by Twit-
ter’s metadata. The data was subsequently filtered to
retain only those originating from one of the fifty U.S.
states or from the District of Columbia. We performed
a polar sentiment analysis [54] on all Tweets containing
the word “lockdown,” categorizing them as expressions
of positive, negative, or neutral emotions. For each U.S.
state and the District of Columbia, we recorded the
daily portion of positive and negative Tweets. Along-
side these data, we collected the number of daily infec-
tions in the U.S. from the publicly available dataset of
the New York Times [55], and several socio-economic
indicators from the Census Bureau website [56].

2.1 Data, pre-processing, and post-processing

Our analysis is based on the ongoing collection of data
curated by Chen et al. [32], which started on Jan-
uary 21st, 2020, and which included more than 123
million Tweets in several languages when this project
started. To comply with the Twitter privacy policy,
the database contains only Tweets IDs. We used the
software Hydrator [57] to retrieve the Tweets text and
metadata. Specifically, metadata are used to select only
Tweets written in English. Re-tweets are not distin-
guished from ordinary Tweets, under the premise that
a user who re-Tweets is expressing a form of endorse-
ment [36].

We filtered the data set by restricting the search
to Tweets containing the keywords established by the
data set curator before February 16th 2020. Specifi-
cally, we used the following keywords: “Coronavirus”,
“Corona”, “CDC”, “Ncov”, “Wuhan”, “Outbreak”,
“China”, “Koronavirus”, “Wuhancoronavirus”,
“Wuhanlockdown”, “N95”, “Kungflu”, “Epidemic”,
“Sinophobia”, and “Covid-19”. Starting from such a
filtered data set, we restricted our field of analysis to
those Tweets containing the term “lockdown,” either
as Tweet text or as a hashtag, regardless of any cap-
italization. Only Tweets originated in the U.S. have
been retained, through a geo-localization procedure
detailed in what follows. Eventually, the data set con-
tained about 1.3 million Tweets, monthly distributed
as follows: January, 56, 920; February, 40, 030; March,
322, 877; April, 857, 612; and May, 32, 865.

Multiple metadata are associated with Tweets,
thereby allowing for inferring the position of the user
at the time of content creation or their home and work-
place. The largest portion of Tweets, ranging from
99.69% to 99.92%, have a user-defined location. This
is likely connected to users’ home or workplace [58],
although it may not reflect their exact position and,
sometimes, does not contain meaningful information
(referring, for example, to imaginary places, or to whole
countries [58]). A much smaller portion of Tweets is
associated with platform-generated locations, based on
the Tweet content (0.11% − 0.26%). An even smaller
portion of Tweets contains a GPS location (0.02% −
0.08%).

To associate specific coordinates to each Tweet we
relied on the geoparsing software CLIFF-CLAVIN [59].
Upon retrieval of a geographical entity in the Tweet,
we used the open data provided by OpenStreetMap
Contributors© to determine the country of origin. If
the Tweet is originated in the U.S., we sought to nar-
row the origin to any of the fifty states or the District of
Columbia. In case of conflicting information regarding
the state of origin, we discarded the Tweet.

We studied polarization and changes in sentiment in
the online debate about the topic of lockdown using a
classification of emotions aroused by text, in positive,
neutral, or negative. Such an analysis was performed
using VADER [54], a valence-aware sentiment analy-
sis tool. For each Tweet, VADER assigns a composite
score that is used for classification. Specifically, follow-
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ing [54], we selected three thresholds to assign an emo-
tional quality to each Tweet. Composite scores below
−0.050 were classified as carrying negative emotions;
between −0.050 and 0.050 as neutral; and above 0.050
as carrying positive emotions.

By performing sentiment analysis on the geo-localized
Tweets, we created two local time-series for each region
(all the U.S. states and the District of Columbia),
namely, daily fractions of positive Tweets ρP (t) and
negative Tweets, ρN (t). In total, we collected 102 local
time-series, with the resolution of one day, each one
with a length of 132 days.

To acknowledge country-wise changes in the percep-
tion of the pandemic, we partitioned each time-series
(from the fifty U.S. states and the District of Columbia)
in three sections: before the onset of the pandemic (the
first day in which the incidence of 5/10, 000, 000 daily
cases in the population of the corresponding region was
registered), from the onset of the pandemic to the first
peak of the infection incidence (evaluated using a mov-
ing weekly average), and from such a peak to the end
of May 2020.

For each region, we studied the time-series of the
portion of positive and negative Tweets over the total
number of Tweets, ρP (t) and ρN (t). From each of these
time-series, we computed the average values over the
three sections, ρiP and ρiN , and the standard deviations,
σi
P and σi

N , with i = {1, 2, 3}. To ascertain time varia-
tions in the positive and negative sentiments across the
three sections, we used a Welch’s t-test with a signifi-
cance level of 0.050.

2.2 Socio-economic factors

We considered education and wealth indicators from
the 2018 data of the U.S. Census Bureau [56]. For each
region (U.S. state or the District of Columbia), we col-
lected the corresponding data for Population (POP ),
Median Household Income (MHI), and the following
rates: Poverty (PR), Employment (ER), Uninsured
(UR), High School Diploma (or higher level, HSD),
Bachelor Degree (BD), and Professional or Doctoral
Degree (PDD).

To consolidate the number of explanatory variables
into interpretable indicators [60], we performed a prin-
cipal component analysis on these socio-economic fac-
tors [61]. We retained three main components, account-
ing for 73% of the total variance and all having a cor-
responding eigenvalue above 0.995. We excluded vari-
ables contributing to a principal component with an
absolute loading lower than 0.500. The first princi-
pal component, accounting for 37% of the variance,
is interpreted as “Wealth” and is mainly associated
with the poverty rate (principal component loading
equal to −0.958), employment rate (0.816), rate of
Bachelor Degree (0.768), and median household income
(0.673). The second principal component, accounting
for 27% of the variance, is interpreted as “Education”
and is mainly associated with the rate of Professional or
Doctoral Degree (loading equal to 0.940), the Median

Household Income (0.599), the rate of Bachelor Degree
(0.557), and the rate of High School Diplomas (−0.523).
Finally, the third principal component, accounting for
10% of the variance, is interpreted as “Social Exclu-
sion” and is mainly associated with the rate of high
school degree (−0.562) and the rate of uninsured (load-
ing equal to 0.553).

The obtained principal component scores were used
as dependent variables in a Kendall correlation test [62]
with combinations of sentiment analysis parameters.
The null-hypothesis of independence was tested with
a two-sided test with p < 0.050.

2.3 Spatial interactions

Given the massive use of Twitter throughout the
country, it is tenable to expect that local sentiment
does not evolve in silos, but is the result of a spa-
tial influence process. Hence, we studied the influence
of sentiments among regions. We pursued this anal-
ysis through an information-theoretic approach based
on the notion of transfer entropy. Transfer entropy is
designed to unveil cause-and-effect relationships in a
Wiener-Granger sense. Specifically, a process X is said
to cause another process Y if knowledge of the present
state of X improves the prediction of the future of Y
from its present [53].

We separately studied spatial interactions associated
with positive and negative Tweets. For each type of
Tweet, we computed transfer entropy between any pair
of local time-series, totaling 51 × 50 = 2, 550 values of
transfer entropy. To control for common-driver effects
in the evolution of time-series (for example, one state
simultaneously influencing two other states that would
otherwise be independent), we conditioned over the
average of positive or negative Tweets across the entire
country. Specifically, given a source process X (local
time-series of positive or negative Tweets), a target pro-
cess Y (local time-series of positive or negative Tweets),
and the conditioning process Z (national average of
time-series of positive or negative Tweets), we com-
puted conditional transfer entropy as

TEX→Y |Z = H(Y (t + 1)|Y (t), Z(t))
−H(Y (t + 1)|Y (t),X(t), Z(t)), (1)

where H(·) is the Shannon entropy.
In the computation of transfer entropy, we used

a symbolic representation with a binary alphabet to
ensure the accuracy of the estimation of the probability
mass functions in the Shannon entropy, similar to our
previous work [63]. Specifically, we first detrended the
local time-series of positive and negative Tweets by sub-
tracting at each instant of time the average value of the
corresponding time section (before the onset of the pan-
demic, from the onset of the pandemic to the incidence
peak, from the incidence peak to the end of May 2020);
we verified the stationarity of the time-series using a
Dickey-Fuller test [64]. Then, we symbolized the time
series into a sequence of binary symbols: ↑ and ↓, asso-
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ciated with daily values above or below the median,
respectively. This transformation was performed sepa-
rately for both the time-series of positive and negative
Tweets, obtaining a total of 102 symbolic time-series.

Statistical testing was performed by following the
approach presented in [65]. To test whether transfer
entropy in Eq. (1) was different from chance, we cre-
ated a surrogate distribution by shuffling the values
of the source process, while preserving the associations
between the target and conditional processes. A total of
10, 000 permutations were executed for each statistical
test and a significance level of 0.050 was considered.

Hence, for every pair of candidate target and source
processes, we rejected (or failed to reject) the null
hypothesis that their directional interaction from pos-
itive or negative Tweets was due to chance. Through
this analysis, we determined two directed networks, one
from spatial influences inferred from positive Tweets,
and the other from negative Tweets, in which a link
signifies rejection of the null hypothesis. No assump-
tion was made on the topology of these networks, so
that, in principle, links between regions may emerge
independently of their geographic location.

To highlight the strongest patterns of spatial influ-
ence, we studied the normalized in-degree centrality,
K(N,P ),in and the normalized out-degree centrality,
K(N,P ),out [66] of the obtained networks. The in-degree
centrality of a node of a directed network is equal to
the total number of links that terminate at the node,
thereby measuring the extent to which the node is influ-
enced by the rest of the network. On the contrary, the
out-degree centrality is equal to the total number of
links that originates at the node, thereby quantifying
the overall influence of the node on the rest of the net-
work. Both quantities were normalized by their maxi-
mum value, so that they range between zero and one.

Using the directed networks and the centralities
described above, we investigated potential associations
between socio-economic factors and spatial influence
patterns through Kendall-τ correlation tests using a
two-sided significance threshold of p < 0.050. In addi-
tion, we sought to connect these patterns to politi-
cal ideology, as defined by Berry et al. [67] and using
updated 2018 data from Professor R.C. Fording [68]. To
this aim, we assigned to each region a label, either “lib-
eral” or “conservative”, and then we counted in any of
the two networks the number of links connecting nodes
with the same or different ideology.

3 Results

Across time, we registered a variation in both the means
of the positive and negative Tweets (Fig. 1a). Specif-
ically, the portion of positive Tweets before the onset
of the pandemic was lower than the section between
the onset of the pandemic and the incidence peak
(t74.33 = 6.24, p < 0.001) and than the section from the
incidence peak to the end of May 2020 (t83.12 = 6.12,
p < 0.001). We did not register a difference between

the portion of positive Tweets from the central section
to the last section (t96.56 = 0.82, p = 0.416). Like-
wise, we determined a temporal variation in the portion
of negative Tweets, whereby the central section was
higher than the initial one (t99.88 = 2.04, p = 0.045)
and the last section was higher than the central section
(t99.67 = 2.44, p = 0.016). However, such differences did
not reverberate into a significant change from the first
to the last section (t99.18 = 0.50, p = 0.620).

Differences in the mean of the portion of positive
Tweets in time were accompanied by changes in their
variability (Fig. 1b). Specifically, the standard devia-
tion showed an inverted U-shape, by increasing from
the first to the second section (t96.16 = 5.26, p < 0.001)
and decreasing from the second to the third section
(t91.78 = 4.81, p < 0.001); no difference was reg-
istered when comparing the first with the last sec-
tion (t81.86 = 0.84, p = 0.405). On the other hand,
the variability of the portion of negative Tweets was
indistinguishable in time (first versus second section:
t95.06 = 1.66, p = 0.101; second versus third section:
t83.18 = 1.27, p = 0.207; and first versus third section:
t74.82 = 0.11, p = 0.910).

We further investigated the correlation between socio-
economic factors and the shift in sentiment across the
three-time sections (Table 1). The variation in the por-
tion of positive Tweets before the onset of the pan-
demic and between the onset of the pandemic and the
incidence peak correlates with all the identified socio-
economic factors: negatively with Wealth (τ = −0.442,
p < 0.001), and positively with Education and Social
Exclusion (τ = 0.500, p < 0.001; τ = 0.487, p <
0.001; respectively). We did not observe a correlation
when examining the variation in the portion of posi-
tive Tweets between the onset and the peak and after
the peak with neither Wealth (τ = 0.183, p = 0.058)
nor Social Exclusion (τ = −0.228, p = 0.270). On
the other hand, we recorded a correlation with Edu-
cation (τ = −0.235, p = 0.015). Exploring the cor-
relation between socio-economic factors and the vari-
ation in the portion of negative Tweets, we did not
find a correlation between the variation from the first
to the second time sections and Wealth (τ = −0.112,
p = 0.245), Education (τ = −0.079, p = 0.412) or
Social Exclusion (τ = 0.082, p = 0.393). Likewise, we
did not register a correlation between the variation in
negative Tweets between the second and the third time
sections and Wealth (τ = 0.106, p = 0.273), Edu-
cation (τ = −0.101, p = 0.295), or Social Exclusion
(τ = −0.107, p = 0.266).

Not only were socio-economic factors associated with
the averages of the portions of Tweets, but also were
they related to the standard deviations in time of the
portions of Tweets (Table 1). Across the first and sec-
ond time sections, we did not register a correlation
of the change of the standard deviation of positive
Tweets with Wealth (τ = 0.082, p = 0.394), Edu-
cation (τ = −0.049, p = 0.609) or Social Exclusion
(τ = −0.059, p = 0.542). Differently, such a correlation
for the same data is observed between the second and
the third time sections, namely, negatively with Wealth
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Fig. 1 Green and red
violin plots represent
Tweets corresponding to
positive and negative
sentiments, respectively.
Each point represents the
value for any of the fifty
U.S. states or the District
of Columbia. Stars indicate
significant comparisons at
p < 0.001 and diamonds at
p < 0.050

(a)

(b)

(τ = −0.536, p < 0.001) and positively with both Edu-
cation (τ = 0.550, p < 0.001) and Social Exclusion
(τ = 0.540, p < 0.001). The variation in standard devi-
ation of the portion of negative Tweets between the
first and the second time sections did not correlate with
Wealth (τ = 0.061, p = 0.530), Education (τ = −0.086,
p = 0.380), or Social exclusion (τ = −0.086, p = 0.380).
With respect to the standard deviation in the portion
of negative Tweets between the second and the third
time sections, we registered a negative correlation with
Wealth (τ = −0.528, p < 0.001), and a positive corre-
lation with both Education (τ = 0.556, p < 0.001) and
Social Exclusion (τ = 0.543, p < 0.001).

In Fig. 2, we illustrate a cartographic map obtained
form the transfer entropy analysis. Therein, each state
is colored based on the in-degree (top images) and
out-degree (bottom images) centrality as computed
from the time-series of positive (green) and negative
(red) Tweets: the higher the out-degree (in-degree), the
higher the influence exerted (experienced) by a node on
(from) the rest of the network. In total, the network
of positive Tweets has 249 directed edges, whereas the
network of negative Tweets contains 146 directed edges.

The in-degrees of each region, computed from the
network of positive Tweets, correlate negatively with
Wealth (τ = −0.442, p < 0.001) and positively with
Education and Social Exclusion (τ = −0.442, p <
0.001; τ = −0.442, p < 0.001; respectively). On the
other hand, the out-degrees computed from the same
network do not correlate with any of the socio-economic

factors, let them be Wealth (τ = 0.087, p = 0.383),
Education (τ = −0.099, p = 0.322), or Social Exclu-
sion (τ = −0.102, p = 0.306). The same analysis
was performed on the centrality measures for the net-
work of negative Tweets. Here, we recorded a positive
correlation between the out-degree and Wealth (τ =
0.428, p < 0.001), and a negative correlation with Edu-
cation and Social Exclusion (τ = −0.437, p < 0.001;
τ = −0.440, p < 0.001; respectively). A similar pattern
was noted for the in-degree, which also entailed a posi-
tive correlation with Wealth (τ = 0.313, p = 0.002) and
a negative correlation with Education and Social Exclu-
sion (τ = −0.341, p < 0.001; τ = −0.342, p < 0.001;
respectively).

Finally, we performed a cluster analysis on the net-
works based on the liberal or conservative ideologies
of the corresponding nodes. For the network associated
with the positive Tweets, out of the existing 249 edges,
we determined 87 (34.9%) links from conservative to
liberal, 76 (30.5%) from to conservative to conservative,
46 (18.5%) from liberal to conservative, and 40 (16.1%)
from liberal to liberal. For the network related to nega-
tive Tweets, out of the 146 edges, 34 (23.3%) were from
conservative to liberal nodes, 48 (32.9%) from conser-
vative to conservative, 37 (25.3%) from liberal to con-
servative, and 27 (18.5%) from liberal to liberal.
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Table 1 Kendall-τ coefficients for the correlation between socio-economic factors and changes in the averages and standard
deviations of the portions of positive and negative Tweets

Kendall-τ Wealth Education Social Exclusion

ρ2
P − ρ1

P – 0.442 0.500 0.487
(p < 0.001) (p < 0.001) (p < 0.001)

ρ3
P − ρ2

P 0.183 – 0.235 −0.228
(p = 0.058) (p = 0.015) (p = 0.270)

ρ2
N − ρ1

N −0.112 0.079 0.082
(p = 0.245) (p = 0.412) (p = 0.393)

ρ3
N − ρ2

N 0.106 −0.101 −0.107
(p = 0.273) (p = 0.295) (p = 0.266)

σ2
P − σ1

P 0.082 −0.049 −0.059
(p = 0.394) (p = 0.609) (p = 0.542)

σ3
P − σ2

P – 0.536 0.550 0.540
(p < 0.001) (p < 0.001) (p < 0.001)

σ2
N − σ1

N 0.061 −0.086 −0.086
(p = 0.530) (p = 0.380) (p = 0.380)

σ3
N − σ2

N – 0.528 0.556 0.543
(p < 0.001) (p < 0.001) (p < 0.001)

Numbers in parentheses report the p-value from the correlation; a bold value indicates p < 0.050

Fig. 2 Maps of the U.S. showing the in-degree (top) and out-degree (bottom) distributions associated with the networks
for positive (green) and negative (red) Tweets

4 Discussion

The first wave of SARS-CoV-2 has impacted the health,
the wealth, and the life of millions of people all over the
country. Information about the pandemic has spread
over the globe, creating waves of polarized emotions
and, at times, influencing actions in response to the
ongoing crisis. A controversial debate has emerged
about the application of strict containment policies,
such as severe lockdowns and travel bans. Opinions

have been extremely heterogeneous across geographical
regions and social strata [69].

Here, we analyzed online sentiment on Twitter from
January 21st to May 31st, 2020 in the U.S. about
lockdown measures. Beyond qualitatively describing
the opinion throughout the country, we sought to dis-
sect potential explanations and causal mechanisms. In
this vein, we pursued a principal component analy-
sis on socio-economic factors to consolidate variations
across the country in a few salient explanatory variables
(Wealth, Education, and Social Exclusion). Alongside,
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Table 2 Kendall-τ coefficients between socio-economic factors and either in- or out-degrees from the portions of positive
and negative Tweets

Kendall-τ Wealth Education Social Exclusion

KP,out 0.468 – 0.525 – 0.517
(p < 0.001) (p < 0.001) (p < 0.001)

KP,in 0.087 −0.099 −0.102
(p = 0.383) (p = 0.322) (p = 0.306)

KN,out 0.428 – 0.437 – 0.440
(p < 0.001) (p < 0.001) (p < 0.001)

KN,in 0.313 – 0.341 – 0.342
(p = 0.002) (p < 0.001) (p < 0.001)

Numbers in parentheses report the p-value from the correlation; a bold value indicates p < 0.050

we conducted a transfer entropy study to unveil spa-
tial interactions among different regions of the country
(U.S. states and the District of Columbia).

In agreement with our expectations, we registered
a time variation of public opinion regarding lockdown
measures. People expressed support of lockdown mea-
sures in the early stage of the pandemic, whereby the
portion of positive Tweets increased and the portion of
negative Tweets decreased. It is likely that risk percep-
tion regarding the spreading of the infection caused fear
in the population, spurring emotional changes toward
containment measures that were evident from our Twit-
ter dataset. As the pandemic progressed, the portion of
positive Tweets remained leveled and that of the neg-
ative Tweets raised, suggesting that pandemic fatigue,
stress, and isolation started taking a toll [70] in how
people felt about lockdowns.

Interestingly, the U.S. did not react uniformly, so that
different parts of the country responded differently to
the pandemic as a function of socio-economic factors.
In the initial stage of the pandemic, lower Wealth and
higher Education and Social Exclusion contributed to
the raise in positive emotions around lockdown policies.
Educated individuals, but also those fearing for their
health due poverty and lack of social safety nets, were
more favorable to containment measures.

As the pandemic progressed and people changed their
views regarding lockdowns, these correlations were lost
and, sometimes, even reversed. In particular, neither
Wealth nor Social Exclusion were explanatory of the
changes in positive emotions regarding lockdown. Edu-
cation became negatively correlated with the sentiment
change, so that people living in more affluent regions
with a higher portion of college graduates were those
who reduced the most their support to lockdown mea-
sures. Perhaps, this reflected some sort of cheering for
the end of restrictions or the final acceptance of the
new normalcy by those individuals who kept abreast of
advancements about the combat against the pandemic.
We warn care when interpreting this claim, whereby its
statistical significance was drastically lower than any
other of the observed associations and higher educa-
tion was also positively correlated with changes in the
temporal variability of positive sentiments, registered in
our Twitter dataset and echoed by online debates [71].

As a result, claims drawn on changes in the mean values
may not be indicative of a true change in sentiment.

It is tenable that the complex response of the U.S.
to lockdown was mediated by spatial interactions sup-
porting the spread of opinions across state borders. Our
transfer entropy analysis offers evidence in this direc-
tion, whereby we detected close to four hundred dyadic
interactions in relation to positive and negative Tweets.
In agreement with one’s expectation, the distribution
of these links was not at random, but rather it was
informed by socio-economic factors. People living in
regions with a higher Wealth tended to have a higher
influence on how the rest of the country perceived lock-
downs, whether through positive or negative emotions.
Such an influence was, instead, moderated by Educa-
tion and Social Exclusion, which may exacerbate polit-
ical and cultural polarization as well as differences in
the very use of Twitter [72,73].

Interestingly, we discovered that these associations
would also underlie the tendency of a region to be influ-
enced by, rather than influence, others with respect to
negative emotions. Negative emotions are likely to res-
onate more in wealthier parts of the country, which
could have been more worried for the downturn caused
by the pandemic [74]. Such a worry was indeed miti-
gated by higher levels of education and the presence of
social safety nets. Perhaps, political orientations could
play a role on these spatial interactions, but present
evidence is not conclusive. We speculate that the posi-
tions on lockdowns taken by the two major parties were
partly responsible for the observed spatial interactions,
with conservative states playing a more influential role
on opinion spreading.

Our study is not free of limitations. First, not every-
body uses Twitter, so that the Twitter database may be
skewed toward a fraction of the population with limited
representativeness [75]. Second, we acknowledge that
the Twitter database could be excessively widespread
[76], thereby challenging the retrieval of pertinent infor-
mation from selected keywords, especially when dealing
with a new topic. Third, sentiment analysis may not
allow for a deeper understanding of nuances or sarcasm
[54], thereby confounding the classification of some of
the Tweets in a database. Fourth, the use of aggre-
gated socio-economic data only allows for the study of
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macroscopic phenomena without capturing fine details
of human behavior.

There are several routes for future inquiry from this
effort. In principle, our analysis could be expanded to
encompass different sentiment analysis of Tweets than
a simple positive/negative classification, at the cost of
a more intricate interpretation of results. Likewise, our
correlation studies could be undertaken without the use
of a principal component analysis on socio-economic
factors, thereby allowing for a more detailed assessment
of potential drivers. Further work could also address a
finer resolution of time effects, rather than the coarse
three-section representation proposed in this work. The
use of a finer resolution may help elucidate sentiment
dynamics in the online debate, potentially assisting in
the inference of key attributes of Tweets that become
viral. Further insight could be gathered by developing
a mathematical model for the dynamic evolution of the
sentiment; linear spatio-temporal models could be pur-
sued to address this need, but it is presently unclear
whether the observed interactions among the regions
obey to linear dependencies [77]. Although our focus
was the ongoing pandemic, the approach presented in
this effort could be beneficial to policy-makers when
dealing with unpopular, yet timely, interventions in
general [69].
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