
Eur. Phys. J. Spec. Top. (2021) 230:2123–2138
https://doi.org/10.1140/epjs/s11734-021-00194-x

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Review

Cosmological curvature acceleration
S. Capozziello1,2,3,a and G. Lambiase4,5,b
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Abstract Observed accelerated behavior of the Hubble flow, usually related to the existence of a mysterious
unknown fluid dubbed dark energy, can be framed in natural extensions of General Relativity that work
at infrared scales. This approach gives rise to a geometric view of the phenomenon that does not require
any new particle to be addressed. In this review paper, without claiming for completeness, we will give
the main ingredients of such an approach considering models like f(R) gravity, with R the Ricci curvature
scalar, and, in general, higher-order theories of gravity including other curvature invariants. In this context,
we will review also Teleparallel Equivalent General Relativity and its extensions like f(T ) gravity, where
T is the torsion scalar. We will show that the curvature picture and the torsion picture can be related
each other giving an equivalent paradigm where the observed cosmological acceleration can be addressed
by extending the gravitational sector.

1 Introduction

Explaining the observed accelerated phase of the late
Universe [1,2] is till now an argument of debate.
According to the present view, approximately 70% of
the energy content of the Universe is a mysterious form
of dark energy, exotic, invisible, and unclustered. Many
classes of models have been proposed to address the
problem. They can be classified as follows: (i) models
with cosmological constant Λ; (ii) dark energy related
to some fundamental field; and (iii) possible modifi-
cations of gravity. The cosmological constant Λ gives
rise to the cosmic acceleration and dominate today the
Universe. It seems to be the most obvious explana-
tion. However, the cosmological constant is affected by
the well known cosmological constant problem and the
8coincidence problem [3].

The second class of models postulates the existence
of a dark energy fluid (the equation of state is P ≈ −ρ
(ρ and P are the energy density and pressure of the
fluid, respectively), and it is assumed to dominate the
late Universe. Such a fluid should be related to some
fundamental field. Dark energy could even be phantom
energy (the equation of state is P < −ρ). Many dark
energy models have been proposed. They are not def-
initely convincing, as well as they are not free of fine-
tuning problems. A third possibility consists in modi-
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fying gravity at the large scales, i.e. at infrared scales.
Here we focus on this class of models.

The most popular and simplest theory proposed to
modified General Relativity (GR) is the f(R) gravity.
More than a modification, it is an extension of GR
where the Einstein theory is a particular case. In fact,
the usual Einstein–Hilbert action

LEH =
1
2κ

√−g R + L(matter) (1)

is modified to

L =
1
2κ

√−g f(R) + L(matter), (2)

where f(R) is a non-linear function of its argument
[4,5]. Here R denoted the Ricci curvature of the met-
ric tensor gαβ with metric determinant g, κ ≡ 8πG, is
the Newton coupling [6]. It is worth noticing that, in
principle, the metric tensor contains several degrees of
freedom: tensor, vector, and scalar, massless or massive.
In GR, only massless spin 2 graviton propagates, while
its modifications give rise to the occurrence of other
degrees of freedom. For example, the change R → f(R),
in the action, induces, in addition to the massless gravi-
ton, the appearance of a massive scalar mode which can
be responsible of the cosmic acceleration (this is analo-
gous to the inflaton field driving the accelerated expan-
sion of the early Universe). Including in the gravita-
tional Lagrangian quadratic terms depending on Ricci
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and Riemann tensor, and/or other curvature invariants,
can induce massive gravitons and vector degrees of free-
dom enriching a lot the dynamics [7,8].

A comment is in order at this point: in modify-
ing gravity, it may occur that there could be viola-
tions of experimental limits on the parametrized-post-
Newtonian (PPN) parameters at terrestrial and Solar
System scales [9], instabilities, ghosts and, as in any
newly proposed theory, the Cauchy problem could be
ill-posed. All these problems are studied in literature,
and we will briefly focus on them, being mainly inter-
ested on the cosmological consequences.

The prototype of f(R) gravity working at late epoch
is

f(R) = R − μ4/R, (3)

where μ is a mass scale of the order of the present
value of the Hubble parameter μ ∼ H0 ∼ 10−33 eV.
Although ruled out by its weak-field limit [10] and by a
violent instability [11], this model gives the idea under-
lying modified gravity: the 1/R correction is negligible
in comparison with R at the high curvatures of the early
universe, and kicks in only as R → 0, late in the history
of the universe.

Early and late cosmic acceleration can be successfully
described by assuming this geometric approach, allow-
ing at the same time to address shortcomings of the
standard cosmological model [12–17]. The paradigm is
that R2 term dominates at early epoch, R−1 dominate
at late cosmological scales while R is working at local
scales.

The main advantage is that the left-hand side of
the Einstein field equations get modified and the intro-
duction of ad hoc matter contributions to the energy-
momentum is avoided [18–24]. This ‘geometric pic-
ture’, generally referred as Extended Theories of Grav-
ity (ETG) [23], applies to all approaches in which curva-
ture or torsion invariants enter into the effective grav-
itational action allowing the recovery of GR in some
limit or as a particular case [23,25].

The general view is that terms depending on geo-
metric invariant are significative at a given epoch [24],
being directly related to important phenomena in the
Universe evolution (the process of structure formation,
early and late-time cosmic acceleration, inflation, and
so on. Refs. [26–47] and references therein give an idea
of possibilities.

In principle, both early and late time acceleration
can be achieved considering higher-order curvature
terms in the gravitational action [23,48–56]. Specifi-
cally, the Starobinsky model [18], is an inflationary sce-
nario which is realized considering a R2 contribution
in Ricci curvature scalar. Other models realize inflation
under a similar standard [57–64].

From a fundamental physics point of view, such cur-
vature invariants are derived as quantum corrections
from renormalisation of gravity in curved spacetime
[65]. Other curvature invariants, as RμνRμν , RμνσρR

μνσρ

have also been taken into account in literature [66–72],
in particular the Gauss–Bonnet topological invariant G

which is related to the emergence of the trace anomaly
in curved spacetime [65,73]. In general, if both R and
G are present in the gravitational action, all the cur-
vature budget is considered, if we do not take into
account further derivative terms like �R and others
[8]. As shown in [74], the presence of nonlinear G terms
in the action gives rise to a further inflationary episode
that can be connected to the observed large-scale struc-
ture process. In these models, one has an early G-
dominated phase followed by the usual R-dominated
phase. In general, the presence of Gauss–Bonnet topo-
logical invariant can solve some problems of f(R) grav-
ity, as discussed in [75–83]. The advantage of consid-
ering a Gauss–Bonnet non-minimal coupling is due to
the fact that an improved phantom-quintessence phase
of the late universe occurs thanks to such a term. The
Gauss–Bonnet curvature becomes dominant and then
the phantom phase is a transient: this means that the
Big Rip singularity is avoided.

An important issue to be mentioned is related to the
gravitational wave event GW170817 [84]. In fact, many
alternative theories of gravity can be discarded owing
the the upper bound on the wave propagation giving
by |cg/c − 1| ≤ 5 · 10−16 [85]. Interestingly f(R) grav-
ity remains a viable theory, while GR modified with
a scalar field f(φ)G [86], where f(φ) is a function of
a phantom field and G is the Gauss–Bonnet invariant
seems to be excluded by the observations. However,
not only f(R) remains a viable theory, but remarkably,
F (R,G) can be retained because it is a singularity free
theory where the Gauss–Bonnet contribution enhances
the reliable behavior of curvature quintessence [87] and
inflation [74].

In this short review paper, without claiming for com-
pleteness, we restrict ourselves to curvature based the-
ories of gravity in their various formulations, and we
focus the possibility that they can address the accel-
erated behavior of the present observed Universe. In
other context, these curvature based theories can also
be used as an alternative to dark matter in galaxies and
clusters of galaxies [89–96].

We adopt a conservative point of view considering
these theories to test the principle that modifying grav-
ity is a viable approach to explain the observed accel-
erated behavior of the cosmic Hubble fluid. However,
none can claim that any modified gravity model, pro-
posed thus far, is the correct final one, or has excep-
tional support from the observational data. While it
is true that many models, in particular f(R), pass all
the available experimental tests and fit the cosmological
data, the same is true for many dark energy models, and
it is currently impossible to use observational data to
discriminate between most of them, and between dark
energy and modified gravity models.

The layout of the paper is the following. Different
formulations of f(R) gravity, like metric, Palatini and
metric-affine ones, are discussed in Sect. 2. Viability
criteria are reported in Sect. 3 and equivalent between
f(R) gravity and scalar-tensor theories are sketched in
Sect. 4. Cosmology in curvature based modified grav-
ity is discussed in Sect. 5. In particular, we take into
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account f(R) gravity and F (R,G) gravity improved
with Gauss–Bonnet invariant. This last case is impor-
tant because the introduction of the topological invari-
ant exhausts all the quadratic curvature invariants that
can be considered into the gravitational action. We
close the section considering the f(T,B) extension of
teleparallel gravity, where T is the torsion scalar and
B is the boundary term. As we will see, a linear com-
bination of T and B is capable of restoring the Ricci
curvature scalar giving rise to an equivalent picture of
f(R) gravity. Conclusions and outlooks are reported in
Sect. 6.

2 Different formulations of f(R) gravity

As discussed, f(R) gravity is the straightforward exten-
sion of GR. It has quite a long history (see [97] for
an historical review). In his theory, Weyl (1919) added
a term quadratic in the Weyl tensor to the Einstein–
Hilbert Lagrangian [98]. Later, during the the 1960’s
and 1970’s, it was realized that quadratic corrections
to SEH were necessary to improve the renormalizability
of GR [99], and, some years later, Starobinsky pointed
out that quadratic corrections are needed to fuel infla-
tion without scalar fields [18]. Non-linear corrections
are also motivated by string theories [100,101].

As proposed in literature, f(R) gravity comes in three
versions: (1) metric (or second order) formalism; (2)
Palatini (or first order) formalism; and (3) metric-affine
formalism. Here, we will sketch them and their relations
with dark energy.

2.1 Metric formalism

In the metric formalism [4,5], the action is

Smetric =
1
2κ

∫
d4x

√−g f(R) + S(matter). (4)

Variation with respect to the metric tensor gαβ yields
the field equations

f ′(R)Rab − f(R)
2

gαβ

= ∇α∇βf ′(R) − gαβ�f ′(R) + κ Tαβ , (5)

where a prime denotes differentiation with respect to
R. The first two terms on the right hand side intro-
duce fourth order derivatives of the metric, hence the
name “fourth order gravity” sometimes given to these
theories. The trace of Eq. (5) yields

3�f ′(R) + Rf ′(R) − 2f(R) = κ T , (6)

where T ≡ Tα
α is the trace of the matter stress–energy

tensor. This second order differential equation for f ′(R)
differs deeply from the trace of the Einstein equations
R = −κ T which, instead, relates algebraically the Ricci

scalar to T . We already see that f ′(R) is indeed a
dynamical variable, the scalar degree of freedom con-
tained in the theory.

Formally, one can rewrite the field Eq. (5) in the form
of effective Einstein equations considering

T
(eff)
αβ =

1
f ′(R)

[
f(R) − Rf ′(R)

2
gαβ

+∇α∇βf ′(R) − gαβ�f ′(R)] (7)

as an effective stress–energy tensor containing geomet-
ric terms. Of course, as usual when adopting this proce-
dure, T

(eff)
αβ satisfies generalized energy conditions [102]

and the effective energy density is, in general, non-
positively defined. As is clear from these equations, in
f(R) gravity one can define an effective gravitational
coupling Geff ≡ G/f ′(R) in a way analogous to what
is done in scalar-tensor theories. Hence, f ′(R) must
be positive in order for the graviton to carry positive
kinetic energy. It is possible to demonstrate that (7) is
a perfect fluid whose origin is geometric [103].

2.2 The Palatini formalism

In the Palatini approach, both the metric gαβ and the
connection Γα

βγ are independent variables, i.e., the con-
nection is not the metric connection of gαβ . While in
GR, the metric and Palatini variations produce the
same (Einstein) equations, this is no longer true for non-
linear Lagrangians.1 After metric f(R) theories were
proposed as alternatives to dark energy, also the Pala-
tini version has been considered for the same purpose,
originally for the model f(R) = R − μ4/R [105]. The
Palatini action reads

SPalatini =
1
2κ

∫
d4x

√−g f
(
R̃

)

+S(matter)
[
gαβ , ψ(m)

]
. (8)

In this approach, we have to take into account two
Ricci tensors: Rαβ , which is constructed using the Levi–
Civita connection of the metric gαβ , and R̃αβ which is
the Ricci tensor of the non-metric connection Γα

βγ . The
latter gives rise to the scalar R̃ ≡ gαβR̃αβ . The mat-
ter part of the action does not depend explicitly on the
connection Γ, but only on metric and matter fields, col-
lectively denoted by ψ(m). The variation of the Palatini
action (8) yields the field equations

f ′(R̃)R̃αβ − 1
2
f(R̃) gαβ = κ Tαβ , (9)

which clearly reduce to the standard Einstein equations
for f(R̃) = R̃. Note the absence of second covariant

1 The requirement that the Palatini and metric variations
give the same field equations selects the Lovelock Gravity
Theories [104], where GR is a special case.
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derivatives of f ′, in contrast with Eq. (5). Variation
with respect to the independent connection produces
the field equation

∇̃δ

(√−g f ′(R̃)gαβ
)

− ∇̃δ

(√−g f ′(R̃)gγ(α
)

δβ)
γ = 0,

(10)

where ∇̃δ denotes the covariant derivative associated
to the non-metric connection Γ. Traces of Eqs. (9) and
(10) yield

f ′(R̃)R̃ − 2f(R̃) = κ T (11)

and

∇̃γ

(√−g f ′(R̃)gαβ
)

= 0 . (12)

Equation (12) tells us that ∇̃γ is the covariant deriva-
tive of the metric

g̃αβ ≡ f ′(R̃)gαβ (13)

conformally related to gαβ . In this sense, the Pala-
tini approach can be considered a bimetric formulation.
Note that Eq. (11) is an algebraic equation for f ′(R̃):
hence, this quantity is non-dynamical, contrary to f(R)
gravity in metric formalism. This lack of dynamics has
important consequences which we will sketch below.
However, metric and Palatini formalism can be con-
nected each other taking into account conserved cur-
rents [106].

An important remark is in order at this point. It is
worth noticing that, in Palatini formalism, non-linear
couplings between matter and gravity naturally emerge
as it is easy to see from Eq. (11). Such an equation,
sometimes called the structural equation or the mas-
ter equation [107], points out that Palatini field equa-
tions contain nonlinear terms in the stress-tensor and
its derivatives. If we solve algebraically Eq. (11), accord-
ing to the form of f(R), the solution R is a function of
the stress–energy tensor trace T . As a consequence, the
conformal factor in Eq. (13) is a function of T . Using
this result in the field Eq. (10), these equations contain
nonlinear terms in T and its derivatives. This picture
immediately tells us that the the theory reduces to GR
in vacuum (T = 0) and the so called universality of
the Einstein equations is restored [108]. In this perspec-
tive, the theory gives cosmic accelerated expansion only
if some effective cosmological constant is recovered, at
late times, or strong deviations from GR emerge into
dynamics at early times [50].

2.3 The metric-affine formalism

In metric-affine formalism [109], also the matter com-
ponent depends on the connection. It is

Saffine =
1
2κ

∫
d4x

√−g f
(
R̃

)

+S(matter)
[
gαβ ,Γα

βγ , ψ(m)
]
. (14)

Here Γ can be also non-symmetric. In this case, tor-
sion associated with matter has to be considered. The
approach was originally introduced to consider the spin
of elementary particles which generate the torsion. A
detailed discussion of f(R) gravity with torsion in
metric-affine formalism is reported in [110]. In the fol-
lowing, we shall focus on metric and Palatini f(R) grav-
ity in view of cosmological applications.

3 Viability criteria for f(R) gravity

Besides cosmological applications, f(R) gravity and
any modification/extension of GR must also pass tests
imposed by Solar System and terrestrial experiments.
In other words, any modification of GR must satisfy
some viability criteria to be a self-consistent formula-
tion for a relativistic theory of gravitation. In summary
they are:

• having the correct Newtonian and post-Newtonian
limit;

• cosmological dynamics has to be reproduced;
• not suffer for instabilities and ghosts;
• giving rise to cosmological perturbations compatible

with data from the cosmic microwave background
and large scale structure;

• having a well-posed and well-formulated Cauchy
problem.

Failing also even a single one of these criteria is a
statement that the theory does not work. These viabil-
ity criteria are examined in the following.

3.1 Weak field limit and solar system tests

In order to assess whether the limits set on the PPN
parameter γ by the available Solar System experiments
hold or not, one needs to find the weak-field solution
of the field equations and compute this parameter. It
is possible to consider a static, spherically symmetric,
non-compact body which constitutes a perturbation of
a background de Sitter solution. The line element is
written as

ds2 = − [
1 + 2Ψ(r) − H2

0r2
]
dt2

+
[
1 + 2Φ(r) + H2

0r2
]
dr2 + r2dΩ2 (15)

in Schwarzschild coordinates, where dΩ2 is the line
element on the unit 2-sphere and Ψ and Φ are post-
Newtonian potentials. These are of small amplitude,
|Ψ(r)| , |Φ(r)| << 1, and one considers small (non-
cosmological) scales so that H0r << 1 while expanding
the Ricci scalar around the constant curvature of the
background de Sitter space, that is R(r) = R0 + R1.
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The PPN parameter γ is given by γ = −Φ(r)/Ψ(r) [9].
Three assumptions can be made [10]:

1. f(R) is analytical in R0;
2. mr << 1, where m is the effective mass of the scalar

degree of freedom of the theory, i.e., it is assumed
that this scalar field is light and has a range larger
than the size of the Solar System (we remind the
reader that there are no experimental constraints of
scalars in the range m−1 < 0.2 mm).

3. For matter composing the spherical body, the pres-
sure is negligible, P 	 0, so that T = T0 +T1 	 −ρ.

The first and the last assumption are not stringent,
but the second one is, as it will be clear below.

The trace Eq. (6) yields the equation for the Ricci
scalar perturbation

∇2R1 − m2R1 = − κρ

3f ′′
0

, (16)

where

m2 =
(f ′

0)
2 − 2f0f

′′
0

3f ′
0f

′′
0

(17)

is the effective mass squared of the scalar. Equation (17)
coincides with the expression obtained in the gauge-
invariant stability analysis of de Sitter space and in
propagator calculations.

If mr << 1, the solution of the linearized field equa-
tions is

Ψ(r) = − κM

6πf ′
0

1
r
, (18)

Φ(r) =
κM

12πf ′
0

1
r
. (19)

Therefore, the PPN parameter is

γ = −Φ(r)
Ψ(r)

=
1
2
, (20)

in gross violation of the experimental limits [150]

|γ − 1| < 2.3 · 10−5. (21)

This result would be the end of metric f(R) gravity
if the assumptions made in the calculation were satis-
fied. However, this is not the case for assumption 2):
mr is not always less than unity due to the Chameleon
Effect . This consists in the effective mass m depending
on the curvature or, alternatively, the matter density
of the environment. The scalar degree of freedom can
be short-ranged (say m > 10−3 eV, corresponding to
a range λ < 0.2 mm) at Solar System densities and
evade the experimental constraints, while being long-
ranged at cosmological densities and thus it is able to
affect the cosmological dynamics [147,151]. Although

at a first glance the Chameleon Effect could be seen as
a contrived and fine-tuned mechanism, f(R) gravity is
rather complicated and the effective range does indeed
depend on the environment. The Chameleon Mecha-
nism is well-known and accepted in quintessence mod-
els, in which it was discovered for the scalar field poten-
tial V (φ) ≈ 1/φ [152,153]. Many forms of the function
f(R) are known to exhibit the chameleon mechanism
and pass the observational tests [154]. For example, the
model

f(R) = R − (1 − n) μ2

(
R

μ2

)n

(22)

is compatible with the PPN limits if μ ∼ 10−50 eV∼
10−17H0 [151]. It is obvious that a correction term ∼ Rn

with n < 1 to the Einstein-Hilbert Lagrangian R will
come to dominate as R → 0+ (for example, for n = 1/2,√

R > R as R → 0). The model (22) is compatible
with the experimental data but it could be essentially
indistinguishable from a dark energy model. Hope of
discriminating between dark energy and f(R) models,
or between different modified gravities, relies on the
study of the growth of cosmological perturbations.

3.2 Cosmological dynamics

In order to be acceptable and compatible with obser-
vations, a cosmological model has to exhibit some min-
imal requirements which are: (i) an early inflationary
epoch or an alternative mechanism to solve horizon,
flatness, and monopole problems together with a mech-
anism to generate density perturbations; (ii) a following
radiation-dominated era and (iii) a matter-dominated
era, and, finally, (iv) the model has to be compatible
with the present acceleration.

f(R) gravity has mainly be proposed to address this
sequence in a self-consistent way. The future eras are
usually found to be either an eternal de Sitter attractor
phase, or a Big Rip singularity truncating the history
of the universe at a finite time.

In particular, smooth transitions between different
eras are required. It has been pointed out that the
exit from the radiation era, in particular, may have
problems in many models [111–115], a warning that
has to be considered in building up f(R) cosmologies.
In general, exit from the radiation, or any era can be
achieved for given f(R) models. Consider, for example,
the so-called “designer f(R) gravity”: one can prescribe
a desired expansion history of the universe by a choice
of the scale factor a(t) and then integrate a differential
equation determining the function f(R) producing this
a(t) [116–120]. In general, this function is not unique
and can assume complicated forms and not only the
usual R − μ/Rn or other simple forms. In summary,
the recipe is a sort of “inverse scattering” where the
form of the model is achieved starting from the desired
behavior needed for matching the observations.
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3.3 Instabilities and ghosts

The prototype model for discussing instabilities is again
f(R) = R − μ4/R with μ ∼ H0 ∼ 10−33 eV. Shortly
after it was proposed, this model was found to a suf-
fer catastrophic instability [11]. The stability analysis
was later generalized to any metric f(R) theory [121]
and the extension to even more general gravitational
theories has been pursued in [122–124]. The approach
consists in parameterizing the deviations from GR as

f(R) = R + εϕ(R), (23)

where ε is a small positive constant with the dimensions
of a squared mass and the function ϕ is dimensionless.
The trace equation for the Ricci scalar R takes the form

�R +
ϕ′′′

ϕ′′ ∇αR∇αR +
(

εϕ′ − 1
3εϕ′′

)
R =

κ T

3εϕ′′ +
2ϕ

3ϕ′′ .

(24)

Next, one expands around a de Sitter background and
writes the metric locally as

gαβ = ηαβ + hαβ , (25)

while the scalar degree of freedom R is expanded as

R = −κ T + R1, (26)

with R1 a perturbation. To first order, the trace equa-
tion yields the dynamical equation for R1

R̈1 − ∇2R1 − 2κϕ′′′

ϕ′′ Ṫ Ṙ1 +
2κϕ′′′

ϕ′′ ∇T · ∇R1

+
1

3ϕ′′

(
1
ε

− ϕ′
)

R1 = κ T̈ − κ∇2T −
(
κTϕ2 + 2ϕ

)
3ϕ′′ .

(27)

The last term on the left hand side is dominated by the
term in ε−1 and gives the effective mass squared of R1

m2 	 1
3εϕ′′ , (28)

from which one deduces that the theory is

• stable if f ′′(R) > 0
• unstable if f ′′(R) < 0 .

The case of GR is excluded by the assumption f ′′ 
= 0,
but one can extend the stability criterion for metric
f(R) gravity to be f ′′ ≥ 0, including GR.

As an example, the prototype model f(R) = R −
μ4/R, which has f ′′ < 0 is unstable. The time scale for
the onset of this instability is dictated by the smallness
of the scale μ which corresponds to ∼ 10−26 s [11],
making this an explosive instability.

One can give a physical interpretation of this result
as follows [125]: remembering that the effective gravita-
tional coupling is Geff = GN/f ′(R), with GN the New-
ton constant, if dGeff/dR = −f ′′GN/(f ′)2 > 0 (which
corresponds to f ′′ < 0), then Geff increases with R and
a large curvature causes gravity to become stronger,
which, in turn, causes a larger R, in a positive feed-
back mechanism driving the system away. If instead
dGeff/dR < 0, then a negative feedback damps the
increase in the gravitational coupling strength.

Palatini f(R) gravity, by contrast, is described by
second order field equations, the trace equation f ′(R̃)R̃−
2f(R̃) = κ T . It is not a differential equation but rather
a non-dynamical algebraic one and, therefore, there is
no instability [126].

The previous analysis for metric f(R) gravity, obtained
with the local expansion (25), is necessarily limited to
short wavelengths (compared to the curvature radius),
but it can be extended to the longest wavelengths [127–
129]. This is necessarily more complicated because these
modes suffer for the well-known gauge-dependence
problems of cosmological perturbations. In order to
solve it, a covariant and gauge-invariant formalism is
needed. Let us assume that the background space is de
Sitter and consider the general action

S =
∫

d4x
√−g

[
f (φ,R)

2
− ω(φ)

2
∇αφ∇αφ − V (φ)

]
,

(29)

which contains a mixture of f(R) and scalar-tensor
gravity. On a Friedmann–Lemâıtre–Robertson–Walker
background, the field equations become

H2 =
1

3f ′

(
ω

2
φ̇2 +

Rf ′ − f

2
+ V − 3Hḟ

)
, (30)

Ḣ =
−1
2f ′

(
ωφ̇2 + f̈ ′ − Hḟ ′

)
, (31)

φ̈ + 3Hφ̇ +
1
2ω

(
dω

dφ
φ̇2 − ∂f

∂φ
+ 2

dV

dφ

)
= 0. (32)

A de Sitter space solution is recovered if conditions

6H2
0f ′

0 − f0 + 2V0 = 0 , f ′
0 = 2V ′

0 , (33)

hold. An analysis [127–129], using the covariant and
gauge-invariant Bardeen–Ellis–Bruni–Hwang formalism
[130–133] in the version given by Hwang [134–141] for
alternative gravitational theories, yields the stability
condition of de Sitter space in metric f(R) gravity with
respect to inhomogeneous perturbations

(f ′
0)

2 − 2f0f
′′
0

f ′
0f

′′
0

≥ 0. (34)

This condition is obtained in the zero momentum limit.
It coincides with the stability condition with respect to
homogeneous perturbations [125].
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At this point it is worth checking that the equivalence
between metric f(R) gravity and Brans–Dicke theory
with ω = 0 holds also at the level of perturbations.
Previous issues [142,143] on this equivalence have been
addressed.

For a Brans–Dicke model, with ω = 0, the stability
condition of de Sitter solution with respect to inhomo-
geneous perturbations is given again by Eq. (34). For
stability with respect to homogeneous perturbations,
Eq. (34) holds provided that stability against local per-
turbations, expressed by f ′′

0 > 0, is assumed. Therefore,
there is a complete equivalence between metric f(R)
gravity and Brans–Dicke theory with ω = 0 also at the
level of cosmological perturbations.

From a more conceptual point of view, instabilities
can be related to ghosts that are massive states of neg-
ative norm which cause a lack of unitarity and are com-
mon for generalizations of Einstein’s gravity. The good
news is that f(R) gravity is ghost-free. More general
theories of the form f

(
R,RαβRαβ , RαβγδR

αβγδ, . . .
)
,

in general, contain ghost fields. A possible exception
(under certain conditions [144,145]) is the case in which
the extra terms appear in the Gauss–Bonnet combi-
nation G = R2 − 4RαβRαβ + RαβγδR

αβγδ, as in f =
f (R,G). In this case, the field equations are of second
order and there are no ghosts [146,147].

Another important issue is related with the weak-
field limit. Early works on the weak-field limit of both
metric and Palatini f(R) gravity was subject to errors
and incompleteness (see [23] for details). A satisfactory
treatment for the prototype model f(R) = R − μ4/R
in the metric formalism was given in [148] and then
generalized to arbitrary forms of the function f(R) in
[10,149].

3.4 Cosmological perturbations dynamics

The expansion history of the universe alone is not suf-
ficient to discriminate between various models, but the
growth of structures depends on the theory of gravity
and has the potential to achieve this goal. For example,
in [155–163], it is assumed an expansion history a(t)
typical of the ΛCDM model and found that vector and
tensor modes are not affected by f(R) at lowest order,
while perturbation scalar modes depend on the specific
f(R) model. It is also found the condition f ′′(R) > 0 for
the stability of scalar perturbations, in agreement with
the arguments discussed above. The most interesting
results are that f(R) corrections lower the large angle
anisotropies of the cosmic microwave background and
produce correlations between cosmic microwave back-
ground and galaxy surveys different from those of dark
energy models.

Overall, the study of structure formation in modified
gravity is still work in progress, and often it is per-
formed within the context of specific models, some of
which are already in trouble because they do not pass
the weak-field limit or the stability constraints. A sim-
ilar situation holds for all Palatini f(R) models, and

for this reason, their weak-field limit and cosmological
perturbations are not discussed here.

3.5 The Cauchy problem

A physical theory must have predictive power and,
therefore, a well-posed and well-formulated initial value
problem. GR satisfies this requirement for “reasonable”
forms of matter [6]. The well-posedness of the Cauchy
problem for vacuum f(R) gravity was briefly discussed
for special metric models in earlier papers [165]. Thanks
to the equivalence between f(R) gravity and scalar-
tensor theory when f ′′(R) 
= 0, the Cauchy problem can
be reduced to the analogous one for Brans–Dicke grav-
ity with ω = 0,−3/2. Specifically, the initial value prob-
lem is well-posed and demonstrated for some scalar-
tensor theories in [164,165]. A general analysis is per-
formed in [166]. A general discussion of the Cauchy
problem in the case of Palatini f(R) gravity is reported
in [167–169]. Here, the well-posedness and the well-
formulation are discussed according to the fluids sourc-
ing the field equations.

4 Equivalence of f(R) gravity with
scalar-tensor theories

An important issue is related with the fact that f(R)
gravity can be a particular scalar-tensor theory. Specifi-
cally, if f ′′(R) 
= 0, the metric f(R) gravity is equivalent
to an ω = 0 Brans–Dicke theory2 [170]. On the other
hand, in Palatini formalism, f(R) gravity is equivalent
to Brans–Dicke with ω = −3/2. This equivalence is
discussed in Refs. [171–176]. Let us give details of both
formulations in the following.

4.1 Metric formalism

Assuming that f ′′(R) 
= 0 and starting with the
Lagrangian (2), one can introduce the auxiliary scalar
field φ and considers the action

S =
1
2κ

∫
d4x

√−g [ψ(φ)R − V (φ)] + S(matter), (35)

where

ψ(φ) = f ′(φ) , V (φ) = φf ′(φ) − f(φ). (36)

The action (35) trivially reduces to (2) for metric f(R)
gravity if φ = R. Vice-versa, the variation of (35) with
respect to gαβ gives

Gαβ =
1
ψ

(
∇α∇βψ − gαβ�ψ − V

2
gαβ

)
+

κ

ψ
Tαβ , (37)

2 The general form of the Brans–Dicke action is SBD =
1
2κ

∫
d4x

√−g
[
φR − ω

φ
∇γφ∇γφ − V (φ)

]
+ S(matter).
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while varying with respect to φ yields

R
dψ

dφ
− dV

dφ
= (R − φ) f ′′(φ) = 0 (38)

and φ = R under the assumption f ′′ 
= 0. Hence, the
scalar field φ = R is dynamical and satisfies the trace
equation

3f ′′(φ)�φ + 3f ′′′(φ)∇γφ∇γφ + φf ′(φ) − 2f(φ) = κ T.

(39)

This scalar is massive and the analysis of small pertur-
bations of de Sitter space allows one to compute explic-
itly its mass squared

m2
φ =

1
3

(
f ′
0

f ′′
0

− R0

)
, (40)

where a zero subscript denotes quantities evaluated at
the constant curvature of the de Sitter background. It
turns out to be more convenient considering the scalar
field ψ ≡ f ′(φ), which satisfies

3�ψ + 2U(ψ) − ψ
dU

dψ
= κ T (41)

with U(ψ) = V (φ(ψ)) − f(φ(ψ)). It is clear, therefore,
that the theory contains a scalar degree of freedom, and
the action

S =
1
2κ

∫
d4x

√−g [ψR − U(ψ)] + S(matter), (42)

is recognized as an ω = 0 Brans–Dicke theory. This
theory, called “massive dilaton gravity” was originally
introduced in the 1970’s in order to generate a Yukawa
term in the Newtonian limit [177]. The assumption
f ′′ 
= 0 can be seen as the requirement that the change
of variable R → ψ(R) be invertible.

4.2 The Palatini formalism

In the Palatini case, the discussion of the equivalence
with a Brans–Dicke theory proceeds in an analogous
way. One begins with the action (8) and introduces φ =
R̃ and ψ ≡ f ′(φ). Then, apart from a boundary term
that can be neglected, the action is rewritten, in terms
of the metric gαβ and of its Ricci tensor Rαβ , as

SPalatini =
1
2κ

∫
d4x

√−g

[
ψR +

3
2ψ

∇γψ∇γψ − V (ψ)
]

+S(matter), (43)

where we used the fact that, since g̃αβ = ψ gαβ , the
Ricci curvatures of gαβ and g̃αβ are related by

R̃ = R +
3

2ψ
∇γψ∇γψ − 3

2
�ψ. (44)

The action (43) is recognized as a Brans–Dicke theory
with ω = −3/2.

As a final consideration, we can state that f(R) grav-
ity can be reduced in any case to the more general class
of scalar-tensor theories and, in general, higher-order
theories in curvature invariants can be reduced to multi-
scalar tensor theories [178].

5 Cosmology in extended gravity

One of the main purpose for introducing Extended
Gravity is to achieve the cosmic accelerated expan-
sion observed at late time [4]. However, besides the
first models related to f(R) gravity, the approach has
been expanded in view to consider also other geomet-
ric invariants like the Gauss–Bonnet one G, the scalar
torsion T and so on.

Here we present and comment the cosmological equa-
tions for different Extended Gravity models. We focus
in particular on f(R), Gauss–Bonnet f(R,G), and f(T )
cosmologies. The aim is to show that the equation of
states for the models provide a sort of geometric adia-
batic index which negative which can naturally explain-
ing the accelerated phase of the today universe. In what
follows, we shall refer to the spatially flat Friedmann–
Lemâıtre–Robertson–Walker (FLRW) metric, which is
usually adopted as the kinematic description of the uni-
verse,

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
. (45)

5.1 f(R) cosmology and the accelerated expansion

From the field equations (5), the cosmological equa-
tions

H2 =
κ

3f ′(R)

[
ρ(matter)

+
Rf ′(R) − f(R)

2
− 3HṘf ′′(R)

]
, (46)

2Ḣ + 3H2 = − κ

f ′(R)

[
P (matter)

+f ′′′(R)
(
Ṙ

)2

+ 2HṘf ′′(R) + R̈f ′′(R)

+
f(R) − Rf ′(R)

2

]
, (47)

can be derived. Here an overdot denotes differentia-
tion with respect to the comoving time t. It is assumed
that f ′ > 0 to keep the effective gravitational coupling
positive, and that f ′′ > 0 to avoid local instabilities
[121,179]. The effective energy density and pressure of
the f(R) fluid are

ρeff =
Rf ′ − f

2f ′ − 3HṘf ′′

f ′ , (48)

123



Eur. Phys. J. Spec. Top. (2021) 230:2123–2138 2131

Peff =
Ṙ2f ′′′ + 2HṘf ′′ + R̈f ′′ + 1

2 (f − Rf ′)
f ′ . (49)

The effective density ρeff is non-negative in a spa-
tially flat FLRW universe in the limit ρ → 0. f(R)
gravity can produce accelerated expansion without any
material dark energy counterpart. In vacuo, the above
equations assume the form [4,180]

H2 =
κ

3
ρeff , (50)

ä

a
= −κ

6
(ρeff − 3Peff) (51)

but, if a material cosmological fluid is present, it couples
to gravity with the effective strength κ/f ′. One can
define the effective EoS parameter as

weff ≡ Peff

ρeff
=

Ṙ2f ′′′ + 2HṘf ′′ + R̈f ′′ + 1
2 (f − Rf ′)

Rf ′−f
2 − 3HṘf ′′ .

(52)
In this approach, a metric f(R) model mimics the de

Sitter equation of state weff = −1 when

f ′′′

f ′′ =
ṘH − R̈

(Ṙ)2
. (53)

By introducing explicitly the scalar degree of freedom
of metric f(R) gravity, φ ≡ f ′(R), the effective EoS
parameter becomes

weff = −1 + 2

(
φ̈ − Hφ̇

)

Rφ − f − 6Hφ̇
= −1 +

κ
(
φ̈ − Hφ̇

)

3φH2
,

(54)
while

ρeff + Peff =
φ̈ − Hφ̇

φ
=

φ̇

φ

d
dt

[
ln

(
φ̇

a

)]
. (55)

and a de Sitter solution corresponds to φ̇ = f ′′(R)Ṙ =
0. The above mechanism can, in principle, not only
address the dark energy behavior but also the cosmo-
logical constant problem related to the fact that Λ does
not evolve. Considering the above equations, the evolu-
tion of the gravitational vacuum state is allowed by the
Extended Gravity.

It is worth stressing that equations describing spa-
tially homogeneous and isotropic cosmologies are of
fourth order in the scale factor a(t). When matter is
absent (a situation of interest in early time inflation or
in a late universe completely dominated by f(R) correc-
tions), a(t) appears only through the Hubble parameter
H ≡ ȧ/a. In this situation, it is convenient to adopt H,
instead of a, as the dynamical variable. First, H is a
cosmological observable; second, the above field equa-
tions are of third order in H. This elimination of a is
not possible when the spatial 4s are not flat or when a
fluid with density ρ(a) is present.

The dynamical fields of the theory are the metric gμν

and the massive scalar degree of freedom φ ≡ f ′(R).
As previously noted by several authors, quadratic cor-
rections to the Hilbert-Einstein action introduce a mas-
sive scalar field [181–186]. This result is relevant for any
metric f(R) theory [187–189].

In principle, the metric tensor contains various
degrees of freedom: spin two modes, vector and scalar
modes, and all of these can be massless or massive. GR
contains only a massless graviton but when nonlinear
corrections depending on R, RμνRμν , RμνρσRμνρσ are
included in the action, other modes have to be con-
sidered [8]. In the case of f(R) gravity, these further
degrees of freedom include only a massive scalar mode,
which is dynamical in the metric formalism but not in
the Palatini formalism.

f(R) gravity can achieve cosmic acceleration through
the effective equation of state parameter weff 	 −1, as
it is well known from R2-inflation. This is possible also
in the late universe, and it has even been attempted
to unify early inflation and late time acceleration in
the context of modified gravity [190–193]. However,
modelling the late-time cosmic acceleration should not
spoil the successes of the standard cosmological model
which requires early inflation, a radiation era allowing
Big Bang nucleosynthesis, a matter era during which
matter overdensities can grow and form structures, and
the present accelerated epoch leading to an uncertain
future era the prediction of which is model-dependent
(a de Sitter attractor solution or a Big Rip singular-
ity are common predictions as discussed above). The
transitions between consecutive eras must be smooth.
Smoothness may not be guaranteed in all f(R) mod-
els and the radiation-matter transition, in particular,
can originate problems in specific f(R) models, includ-
ing f = R − μ2(n+1)/Rn, n > 0 [194–197]. However,
the prototypical toy model f(R) = R − μ4/R, which
reportedly could not terminate the radiation era, was
analyzed in detail with singular perturbation methods
[198] and a sufficiently long matter era was found. In
general, although a caveat exists about terminating the
radiation era and allowing a sufficiently long matter
era, one can always find choices of the function f(R)
which achieve the correct cosmological dynamics (or
any prescribed evolutionary history) by first assigning
the desired form of the scale factor a(t) and then by
integrating a differential equation for f(R) that pro-
duces the desired scale factor as discussed above. The
solution f(R) solution is not unique [199–202], which
shows that observational data providing information on
(a segment of) the cosmic expansion history a(t) cannot
suffice for a reconstruction of the function f(R) spec-
ifying the theory of gravity. Additional information is
necessary, and it may come from the growth history of
cosmological density perturbations, which depends on
the theory of gravity.

Analytical solutions of FLRW cosmological equations
are rare in literature [203] and phase space analyses are
often necessary. They originated with pre-1998 stud-
ies of R2-inflation and are not limited to spatially flat
FLRW spaces [18,204–206].

123



2132 Eur. Phys. J. Spec. Top. (2021) 230:2123–2138

5.2 The Gauss–Bonnet cosmology

A straightforward generalization of f(R) gravity involves
the inclusion in the action of the Gauss–Bonnet topo-
logical invariant

G ≡ R2 − 4RμνRμν + RμνρσRμνρσ. (56)

Considering the action F (R,G) means to take into
account all the second order curvature invariants con-
nected by the relation (56).

Following the lines of Ref. [78] and adopting physical
units such that c = kB = � = 1, we can write the action

A =
1
2κ

∫
d4x

√−g
[
F (R,G) + L(matter)

]
. (57)

It is worth saying that the action (57) contains all the
possible curvature invariants that can be derived start-
ing from the Riemann tensor.

The variation of action (57) with respect to the met-
ric provides the following field equations

Rμν − 1
2gμνR = κ T (matter)

μν + T (GB)
μν , (58)

where κ = 8πG, T
(matter)
μν is the stress energy tensor

describing the ordinary matter. The extra term T
(GB)
μν ,

containing all extra curvature terms, is defined as

T (GB)
μν = ∇μ∇ν

∂F (R,G)
∂R

− gμν � ∂F (R,G)
∂R

+2R∇μ∇ν
∂F (R,G)

∂G − 2gμνR � ∂F (R,G)
∂G

−4R λ
μ ∇λ∇ν

∂F (R,G)
∂G

−4R λ
ν ∇λ∇μ

∂F (R,G)
∂G + 4Rμν�∂F (R,G)

∂G
+4gμνRαβ∇α∇β

∂F (R,G)
∂G + 4Rμαβν∇α∇β ∂F (R,G)

∂G
−1

2
gμν

[
R

∂F (R,G)
∂R

+ G ∂F (R,G)
∂G − F (R,G)

]

+
(

1 − ∂F (R,G)
∂R

) (
Rμν − 1

2
gμνR

)
. (59)

where ∇ is the covariant derivative and � is the
d’Alembert operator. As for f(R) case, Einstein’s grav-
ity is immediately recovered for F (R,G) = R.

In the following, for the sake of simplicity, we denote
by

fR ≡ ∂F (R,G)
∂R

, fG ≡ ∂F (R,G)
∂G , (60)

the partial derivatives with respect to R and G. From
the above definition (59), it is clear that the form of
F (R,G) determines the dynamical behavior of the the-
ory. In particular, the term

W (R,G) ≡ R
∂F (R,G)

∂R
+ G ∂F (R,G)

∂G − F (R,G), (61)

can be considered as an effective double-field potential
for the theory where R and G act as two different scalar
fields whose regimes can lead different phases of the cos-
mological evolution. This can be easily seen considering
the trace of field equations

3[�fR + VR] + R[�fG + WG ] = 0 . (62)

Clearly we have the combination of two Klein–Gordon
equations where the two fields can lead different phases
of dynamics. Below, we are going to derive the cosmo-
logical equations in order to discuss the quintessential
behavior. Assuming as above a spatially flat FLRW, we
can write the Friedmann equations as

3fRH2 = κρ(matter) +
1
2
(fRR − F (R,G) − 6H ˙fR

+GfG − 24H3ḟG), (63)

2fRḢ = −κ
(
ρ(matter) + P (matter)

)
+ H ˙fR − f̈R

+4H3ḟG − 8HḢḟG − 4H2f̈G . (64)

The system of cosmological equations becomes self-
consistent considering the definition of the Ricci cur-
vature scalar and the Gauss–Bonnet invariant in terms
of the scale factor a and then the Hubble parameter H.
As derived in [78], they are related to the Lagrange mul-
tipliers that have to be introduced in the action (57).
We have

R = 6

[
ä

a
+

(
ȧ

a

)2
]

= 6
(
2H2 + Ḣ

)
, (65)

G =
24ȧ2ä

a3
= 24H2

(
H2 + Ḣ

)
. (66)

We can also rewrite the total energy density and pres-
sure, ρ(tot) and P(tot), due to R and Gauss–Bonnet con-
tributions as [83]:

ρ(tot) =
1
fR

[
ρ(matter) +

1
2κ

(RfR − F (R,G)

−6HḟR + GfG − 24H3ḟG
)]

, (67a)

P(tot) =
1
fR

{
P (matter) +

1
κ

[
2HḟR + f̈R + 8H3ḟG

+8HḢḟG + 4H2f̈G

−1
2

(RfR + GfG − F (R,G))
]}

. (67b)

For cosmic acceleration, ρ(tot)+3P(tot) < 0, and assum-
ing that all matter components have non-negative pres-
sure, we can write the equation of state w(GB) =
P(GB)/ρ(GB) from the geometry terms as
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w(GB) =
GfG + RfR − F (R,G) − 4H

[
2Hf̈G + 4ḟG

(
H2 + Ḣ

)
+ ḟR + f̈R/(2H)

]

F (R,G) + 24H3ḟG − GfG + 6HḟR − RfR

, (68)

where the quintessence behavior is obtained for −1 ≤
w(GB) < 0 while the phantom behaviour is achieved for
w(GB) < −1.

Specifically, the Gauss–Bonnet term plays the role of
a geometrical dark energy as in the case of f(R) grav-
ity and then it contributes to the effective cosmological
density according to the formula

H(z) = H0

[
Ωma−3 + Ωra

−4 + Ω(GB)a
−3(1+w(GB))

]
.

(69)
This means that the effective value of the Gauss–
Bonnet contribution can be “measured” by evaluating
the standard matter and radiation contributions at the
various epochs, that is

Ω(GB) = 1 − Ωm − Ωr . (70)

However, the form of F (R,G) determines the evolution
of w(GB). A viable F (R,G) form can be achieved by
considering the so called Noether Symmetry Approach
[78]. It can be shown that symmetries select the form
of the function to be

F (R,G) = F0R
nG1−n, (71)

where n is any real number and F0 is a constant. For
power law solutions of the form a(t) = a0t

s [80], we
obtain the relations

n1 =
1 + s

2
and n2 =

1
1 + 2s(s − 1)

− 2s , (72)

such that Eq. (68) can be written in terms of n and s
as:

w(GB) =
3 − 2(n + s)

3s
, (73)

where n can assume the values n1 or n2. Asymptotically
w(GB) behaves like the ΛCDM model with w(GB) → −1.
By a cosmographic analysis reported in Ref. [87], it is
possible to trace the whole cosmic history in terms of
F (R,G) gravity. It emerges that Gauss–Bonnet field is
dominant in early epochs while Ricci scalar field domi-
nates in the late universe.

Finally, it should be noted that F (R,G) = R + G,
obtained simply adding the Gauss–Bonnet term to the
Ricci scalar R, does not differ from GR in 4-dimensional

spacetime as it can be rewritten as a boundary term. A
detailed discussion on this point is reported in [88].

5.3 Recovering f(R) gravity from teleparallel
gravity

In GR, gravitational interaction is described in terms of
spacetime curvature. However, this is not the only pos-
sibility because equivalent formulations of GR can be
achieved in flat spacetimes where gravity is described
either by torsion or by non-metricity. This fact points
out the existence of further representations of the
same underlying theory [207]. Particularly relevant
are the Teleparallel Equivalent of General Relativity
(TEGR) and its generalization, f(T ) gravity, which do
not require the Equivalence Principle as its founda-
tion [25]. However, also in this framework an analogue
description of accelerated cosmological dynamics can be
achieved as in the case of curvature.

Let us sketch the main ingredients of TEGR approach
and how f(R) gravity can be recovered also in this
framework.

In this theory, the dynamical variables are the vier-
beins or tetrad fields ea

μ. They form an orthonormal
basis for the tangent space at each point xμ of the
spacetime manifold. The tetrads en

μ and their inverses
Eμ

m fulfill the orthogonality conditions Eμ
men

μ = δn
m,

Eν
mem

μ = δν
μ. In terms of the tetrad fields, the met-

ric tensor can be written as gμν = ea
μeb

νηab, where
ηab denotes the Minkowski metric. The idea underly-
ing TEGR is to build up a theory with a geometry
endorsed with torsion and with a globally flat curva-
ture. This can be realized by defining the torsion tensor
in terms of the curvatureless Weitzenböck connection
Wμ

a
ν = ∂μea

ν , that is

T a
μν = Wμ

a
ν − Wν

a
μ = ∂μea

ν − ∂νea
μ . (74)

In addition, it is convenient to define the contorsion
tensor

2Kμ
λ

ν = Tλ
μν − Tνμ

λ + Tμ
λ

ν , (75)

and the tensor 2Sσ
μν = Kσ

μν −δμ
σT ν +δν

σTμ. The com-
bination T = Sσ

μνT σ
μν is the torsion scalar,3 which is

a topological object. The action corresponding to the
TEGR is given by

STEGR =
1
κ

∫
d4x e T + S(matter), (76)

3 In this section, we are indicating with T the torsion scalar.
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where e = det(ea
μ) =

√−g is the volume element of
the metric. The Ricci scalar R and the torsion scalar T
differs by a boundary term

R = −T +
2
e
∂μ(eTμ) = −T + B , (77)

where B = (2/e)∂μ(eTμ) = ∇μTμ. It can be shown that
the TEGR action reproduces the same field equations as
GR being (76) equivalent to the Hilbert-Einstein action.

The straightforwardly generalization of (76) is

Sf(T ) =
1
κ

∫
d4x e f(T ) + S(matter), (78)

where f(T ) is a smooth function of the torsion scalar.
Some comment are in order: (1) In this generalized the-
ory is not possible to find the teleparallel equivalent
of f(R) gravity since the boundary term in (77) con-
tributes to the field equations. (2) Since the torsion field
T is not invariant under local Lorentz transformations,
this theory is also not invariant under Lorentz transfor-
mations. (3) The theory is a second order theory and
hence, mathematically, it is easier than f(R) gravity.

An important remark is in order at this point. As we
said, the dynamical variables in TEGR are the tetrad
fields ea

μ, while, in the metric formulation, this role is
fulfilled by the metric tensor gμν . This means the break-
ing of Lorentz invariance. However, it is worth noticing
that TEGR and its generalizations can be reduced to
equivalent metric theories, where the further degrees of
freedom of the geometrical background are encoded in
the metric potentials (see ref. [25], for more details).
It means that passing from the anholonomic system of
variables given by ea

μ, to the holonomic system of space-
time coordinates, assigning gμν , the Lorentz invariance
is restored.

The above action (78) can be immediately general-
ized by assuming that the function f(T ) depends also
on the boundary term B. The action can be then writ-
ten as [208]

Sf(T,B) =
1
κ

∫
d4x e f(T,B) + S(matter), (79)

where f(T,B) is a smooth function of the scalar tor-
sion T and of the (scalar) boundary term B. The moti-
vation of this action is due to the fact that from the
only f(T ) gravity, it is not possible to find an equiva-
lent theory of its metric counterpart, the f(R) grav-
ity. From the above action, instead, one can easily
show that f(R) gravity can be recovered by assuming
f(T,B) = f(−T + B) = f(R).

The variation of the action (79) with respect to the
tetrad field yields the field equations

2eEλ
a �fB − 2eEσ

a ∇λ∇σfB + eBEλ
a fB

+4e
[
(∂μfB) + (∂μfT )

]
Sa

μλ

+4∂μ(eSa
μλ)fT − 4efT T σ

μaSσ
λμ

−efEλ
a = 16πeΘλ

a , (80)

where fT = ∂f/∂T , fB = ∂f/∂B, ∇σ is the covariant
derivative with respect to the Levi-Civita connection
and Θλ

a is the energy-momentum tensor.
Let us consider f(T,B) cosmology in a flat FLRW

Universe. In this perspective, one can construct the
tetrad field ea

μ = diag
(

− 1, a(t), a(t), a(t)
)
. Since

f(T,B) is not invariant under Lorentz transformations,
the choice of the tetrad deserves some caution (for
instance, the unwanted condition fTT = 0 appears
when one considers a flat diagonal FLRW tetrad in
spherical coordinates). According to Ref. [209], the
above choice of vierbein fields is a good tetrad. The
Friedmann equations read

−3H2(3fB + 2fT ) + 3HḟB − 3ḢfB

+
1
2
f(T,B) = κρ(matter), (81)

−(3H2 + Ḣ)(3fB + 2fT ) − 2HḟT + f̈B

+
1
2
f(T,B) = −κP(matter). (82)

As above, dots represent derivation with respect to
the cosmic time and fT and fB are the derivatives of
f(T,B) function with respect to T and B.

Immediately, the cosmological equations can be writ-
ten as

3H2 = κ(ρ(matter) + ρeff), (83)

3H2 + Ḣ = −κ(P(matter) + Peff), (84)

and then the adiabatic factor is again weff = Peff/ρeff

which means that the above considerations for f(R)
gravity can be easily recovered.

6 Conclusions

In this short review paper we have discussed the possi-
bility to address the cosmic history by Extended Grav-
ity, i.e. extensions of GR aimed to address the gravita-
tional interaction at ultraviolet and infrared scales. In
particular, a straightforward extension of Einstein the-
ory, f(R) gravity, can potentially explain the cosmic
accelerated expansion by curvature both at early and
late epochs.

The approach is based on the fact that the further
degrees of freedom, related to curvature, behave as a
scalar field capable of leading the expansions in the var-
ious cosmic epochs without considering further material
ingredients like dark energy and dark matter.

Taking into account some viability criteria in order to
avoid inconsistencies and dangerous instabilities of the
models, large classes of theories, involving also other
geometric invariants, can be considered. The underly-
ing philosophy is that geometry can give a compre-
hensive picture of the universe ranging from inflation
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up today. Clearly, the final cosmological model will be
derived once a consistent amount of data, tracing back
the evolution at any epoch, will be matched with meth-
ods of the precision cosmology. This inverse scattering
approach is a sort of Designer Extended Gravity which
will be more and more reliable if it will steam out from
some fundamental theory.
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82. R. Myrzakulov, D. Sáez-Gómez, A. Tureanu, Gen. Rel.

Grav. 43, 1671 (2011)
83. M. De Laurentis, Mod. Phys. Lett. A 30(12), 1550069

(2015)
84. B. Abbott et al., Virgo, LIGO Scientific. Phys. Rev.

Lett. 119, 161101 (2017)
85. J.M. Ezquiaga, M. Zumalacárregui, Phys. Rev. Lett.

119(2017), 251304 (2017)
86. S. Nojiri, S.D. Odintsov, M. Sasaki, Phys. Rev. D 71,

123509 (2005)
87. I. de Martino, M. De Laurentis, S. Capozziello, Phys.

Rev. D 102, 063508 (2020)

88. F. Bajardi, S. Capozziello, Eur. Phys. J. C 80, 704
(2020)

89. S. Capozziello, S. Nojiri, S.D. Odintsov, Phys. Lett. B
632, 597 (2006)

90. S. Capozziello, V.F. Cardone, A. Troisi, Mon. Not. R.
Astron. Soc. 375, 1423 (2007)

91. S. Capozziello, V.F. Cardone, A. Troisi, JCAP 0608,
001 (2006)

92. S. Capozziello, V.F. Cardone, A. Troisi, AIP Conf.
Proc. 751, 54 (2004)

93. S. Capozziello, A. Troisi, V.F. Cardone, New Astron.
Rev. 51, 341 (2007)

94. S. Capozziello, V.F. Cardone, S. Carloni, A. Troisi,
Phys. Lett. A 326, 292 (2004)

95. C. Frigerio Martins, P. Salucci, Mon. Not. R. Astron.
Soc. 381, 1103 (2007)

96. R. Saffari, Y. Sobouti, Astron. Astrophys. 472, 833
(2007)

97. H.-J. Schmidt, Int. J. Geom. Meth. Phys. 4, 209 (2007).
arXiv:gr-qc/0602017

98. H. Weyl, Ann. Phys. 59, 101 (1919)
99. R. Utiyama, B. DeWitt, J. Math. Phys 3, 608 (1962)

100. P. Candelas, G.T. Horowitz, A. Strominger, E. Witten,
Nucl. Phys. B 258, 46 (1985)

101. S. Nojiri, S.D. Odintsov, M. Sami, Phys. Rev. D 74,
046004 (2006)

102. S. Capozziello, F.S.N. Lobo, J.P. Mimoso, Phys. Rev.
D 91, 124019 (2015)

103. S. Capozziello, C.A. Mantica, L.G. Molinari, Int. J.
Geom. Meth. Mod. Phys. 16, 1950008 (2018)

104. Q. Exirifard, M.M. Sheikh-Jabbari, Phys. Lett. B 661,
158 (2008)

105. D.N. Vollick, Phys. Rev. D 68, 063510 (2003)
106. S. Capozziello, F. Darabi, D. Vernieri, Mod. Phys. Lett.

A 26, 65 (2011)
107. G. Allemandi, M. Capone, S. Capozziello, M. Francav-

iglia, Gen. Rel. Grav. 38, 33 (2006)
108. M. Ferraris, I. Francaviglia, Volovich. Class. Quant.

Grav. 11, 1505 (1994)
109. T.P. Sotiriou, S. Liberati, Ann. Phys. (NY) 322, 935

(2007)
110. S. Capozziello, R. Cianci, C. Stornaiolo, S. Vignolo,

Class. Quant. Grav. 24, 6417 (2007)
111. L. Amendola, D. Polarski, S. Tsujikawa, Phys. Rev.

Lett. 98, 131302 (2007)
112. S. Capozziello, S. Nojiri, S.D. Odintsov, A. Troisi,

Phys. Lett. B 639, 135 (2006)
113. L. Amendola, R. Gannouji, D. Polarski, S. Tsujikawa,

Phys. Rev. D 75, 083504 (2007)
114. S. Nojiri, S.D. Odintsov, Phys. Rev. D 74, 086005

(2006)
115. A.W. Brookfield, C. van de Bruck, L.M.H. Hall, Phys.

Rev. D 74, 064028 (2006)
116. S. Capozziello, V. Cardone, A. Troisi, Phys. Rev. D 71,

043503 (2005)
117. S. Capozziello, S. Nojiri, S.D. Odintsov, A. Troisi,

Phys. Lett. B 639, 135 (2006)
118. S. Nojiri, S.D. Odintsov, Phys. Rev. D 74, 086005

(2006)
119. A. Cruz-Dombriz, A. Dobado, Phys. Rev. D 74, 087501

(2006)
120. S. Fay, S. Nesseris, L. Perivolaropoulos, Phys. Rev. D

76, 063504 (2007)

123

http://arxiv.org/abs/1412.1073
http://arxiv.org/abs/gr-qc/0602017


Eur. Phys. J. Spec. Top. (2021) 230:2123–2138 2137

121. V. Faraoni, Phys. Rev. D 74, 104017 (2006)
122. G. Cognola, S. Zerbini, J. Phys. A 39, 6245 (2006).

arXiv:0802.3967
123. G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, S.

Zerbini, JCAP 0502, 010 (2005)
124. G. Cognola, M. Gastaldi, S. Zerbini, Int. J. Theor.

Phys. 47, 898 (2008)
125. V. Faraoni, Phys. Rev. D 75, 067302 (2007)
126. T.P. Sotiriou, Phys. Lett. B 645, 389 (2007)
127. V. Faraoni, Phys. Rev. D 70, 044037 (2004)
128. V. Faraoni, Phys. Rev. D 72, 061501(R) (2005)
129. V. Faraoni, S. Nadeau, Phys. Rev. D 72, 124005 (2005)
130. J.M. Bardeen, Phys. Rev. D 22, 1882 (1980)
131. G.F.R. Ellis, M. Bruni, Phys. Rev. D 40, 1804 (1989)
132. G.F.R. Ellis, J.-C. Hwang, M. Bruni, Phys. Rev. D 40,

1819 (1989)
133. G.F.R. Ellis, M. Bruni, J.-C. Hwang, Phys. Rev. D 42,

1035 (1990)
134. J.-C. Hwang, Class. Quant. Grav. 7, 1613 (1990)
135. J.-C. Hwang, Class. Quant. Grav. 14, 1981 (1997)
136. J.-C. Hwang, Class. Quant. Grav. 14, 3327 (1997)
137. J.-C. Hwang, Class. Quant. Grav. 15, 1401 (1998)
138. J.-C. Hwang, Class. Quant. Grav. 15, 1387 (1998)
139. J.-C. Hwang, Phys. Rev. D 42, 2601 (1990)
140. J.-C. Hwang, Phys. Rev. D 53, 762 (1996)
141. J.-C. Hwang, H. Noh, Phys. Rev. D 54, 1460 (1996)
142. V. Faraoni, Phys. Rev. D 74, 023529 (2006)
143. S. Capozziello, S. Nojiri, S.D. Odintsov, A. Troisi,

Phys. Lett. B 639, 135 (2006)
144. A. De Felice, M. Hindmarsh, M. Trodden, JCAP 08,

005 (2006)
145. G. Calcagni, B. de Carlos, A. De Felice, Nucl. Phys. B

752, 404 (2006)
146. D. Comelli, Phys. Rev. D 72, 064018 (2005)
147. I. Navarro, K. Van Acoleyen, JCAP 0603, 008 (2006)
148. A. Erickcek, T.L. Smith, M. Kamionkowski, Phys. Rev.

D 74, 121501(R) (2006)
149. G.J. Olmo, Phys. Rev. D 75, 023511 (2007)
150. B. Bertotti, L. Iess, P. Tortora, Nature 425, 374 (2003)
151. T. Faulkner, M. Tegmark, E.F. Bunn, Y. Mao, Phys.

Rev. D 76, 063505 (2007)
152. J. Khoury, A. Weltman, Phys. Rev. Lett. 93, 171104

(2004)
153. J. Khoury, A. Weltman, Phys. Rev. D 69, 044026

(2004)
154. S. Capozziello, S. Tsujikawa, Phys. Rev. D 77, 107501

(2008)
155. Y.-S. Song, W. Hu, I. Sawicki, Phys. Rev. D 75, 044004

(2007)
156. S. Nojiri, S.D. Odintsov, J. Phys. Conf. Ser. 66, 012005

(2007)
157. W. Hu, I. Sawicki, Phys. Rev. D 76, 104043 (2007)
158. W. Hu, I. Sawicki, Phys. Rev. D 76, 064004 (2007)
159. A. de la Cruz-Dombriz, A. Dobado, Phys. Rev. D 74,

087501 (2006)
160. S. Fay, S. Nesseris, L. Perivolaropoulos, Phys. Rev. D

76, 063504 (2007)
161. T. Faulkner, M. Tegmark, E.F. Bunn, Y. Mao, Phys.

Rev. D 76, 063505 (2007)
162. A.A. Starobinsky, JETP Lett. 86, 157 (2007)
163. S. Nojiri, S.D. Odintsov, J. Phys. A 40, 6725 (2007)
164. W.J. Cocke, J.M. Cohen, J. Math. Phys. 9, 971 (1968)
165. D.R. Noakes, J. Math. Phys. 24, 1846 (1983)

166. M. Salgado, Class. Quant. Grav. 23, 4719 (2006)
167. S. Capozziello, S. Vignolo, Int. J. Geom. Meth. Mod.

Phys. 9, 1250006 (2012)
168. S. Capozziello, S. Vignolo, Class. Quant. Grav. 26,

175013 (2009)
169. S. Capozziello, S. Vignolo, Int. J. Geom. Meth. Mod.

Phys. 8, 167 (2011)
170. C.H. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)
171. P.W. Higgs, Nuovo Cimento 11, 816 (1959)
172. B. Whitt, Phys. Lett. B 145, 176 (1984)
173. P. Teyssandier, P. Tourrenc, J. Math. Phys. 24, 2793

(1983)
174. J.D. Barrow, S. Cotsakis, Phys. Lett. B 214, 515 (1988)
175. K. Maeda, Phys. Rev. D 39, 3159 (1989)
176. T. Chiba, Phys. Lett. B 575, 1 (2005)
177. J. O’Hanlon, Phys. Rev. Lett. 29, 137 (1972)
178. S. Gottlober, H.J. Schmidt, A.A. Starobinsky, Class.

Quant. Grav. 7, 893 (1990)
179. S. Nojiri, S.D. Odintsov, Phys. Rev. D 68, 123512

(2003)
180. S. Capozziello, S. Carloni, A. Troisi, Rec. Res. Dev.

Astron. Astrophys. 1, 625 (2003)
181. R. Utiyama, B.S. DeWitt, J. Math. Phys. 3, 608 (1962)
182. K.S. Stelle, Phys. Rev. D 16, 953 (1977)
183. K.S. Stelle, Gen. Relat. Gravit. 9, 343 (1978)
184. A. Strominger, Phys. Rev. D 30, 2257 (1984)
185. I.L. Buchbinder, S.D. Odintsov, I. Shapiro, Effective

Action in Quantum Gravity (IOP Publishing, Bristol,
1992)

186. G. Vilkovisky, Class. Quant. Grav. 9, 895 (1992)
187. M. Ferraris, M. Francaviglia, G. Magnano, Class.

Quant. Grav. 5, L95 (1988)
188. G.J. Olmo, Phys. Rev. D 75, 023511 (2007)
189. A. Hindawi, B.A. Ovrut, D. Waldram, Phys. Rev. D

53, 5597 (1996)
190. S. Nojiri, S.D. Odintsov, Phys. Rev. D 78, 023511

(2008)
191. S. Nojiri, S.D. Odintsov, Phys. Rev. D 77, 026007

(2008)
192. S. Nojiri, S.D. Odintsov, Phys. Lett. B 659, 821 (2008)
193. K. Bamba, S.D. Odintsov, J. Cosmol. Astropart. Phys.

0804, 024 (2008)
194. L. Amendola, D. Polarski, S. Tsujikawa, Phys. Rev.

Lett. 98, 131302 (2007)
195. S. Capozziello, S. Nojiri, S.D. Odintsov, A. Troisi,

Phys. Lett. B 639, 135 (2006)
196. L. Amendola, R. Gannouji, D. Polarski, S. Tsujikawa,

Phys. Rev. D 75, 083504 (2007)
197. A.W. Brookfield, C. van de Bruck, L.M.H. Hall, Phys.

Rev. D 74, 064028 (2006)
198. J.D. Evans, L.M.H. Hall, P. Caillol, Phys. Rev. D 77,

083514 (2008)
199. T. Multamaki, I. Vilja, Phys. Rev. D 73, 024018 (2006)
200. A.A. Starobinsky, Gravit. Cosmol. 6, 157 (2000)
201. L.M. Sokolowski, Class. Quant. Grav. 24, 3391 (2007)
202. L.M. Sokolowski, Class. Quant. Grav. 24, 3713 (2007)
203. S. Capozziello, A. De Felice, JCAP 0808, 016 (2008)
204. V. Muller, H.-J. Schmidt, A.A. Starobinsky, Class.

Quant. Grav. 7, 1163 (1990)
205. L. Amendola, S. Capozziello, M. Litterio, F.

Occhionero, Phys. Rev. D 45, 417 (1992)
206. S. Capozziello, F. Occhionero, L. Amendola, Int. J.

Mod. Phys. D 1, 615 (1993)

123

http://arxiv.org/abs/0802.3967


2138 Eur. Phys. J. Spec. Top. (2021) 230:2123–2138

207. J.B. Jimenez, L. Heisenberg, T.S. Koivisto, Universe 5,
173 (2019)

208. S. Bahamonde, C.G. Boehmer, M. Wright, Phys. Rev.
D 92(10), 104042 (2015)

209. N. Tamanini, Ch. Boehmer, Phys. Rev. D 86, 044009
(2021)

123


	Cosmological curvature acceleration
	1 Introduction
	2 Different formulations of f(R) gravity
	2.1 Metric formalism
	2.2 The Palatini formalism 
	2.3 The metric-affine formalism

	3 Viability criteria for f(R) gravity
	3.1 Weak field limit and solar system tests
	3.2 Cosmological dynamics
	3.3 Instabilities and ghosts
	3.4 Cosmological perturbations dynamics
	3.5 The Cauchy problem

	4 Equivalence of f(R) gravity with scalar-tensor theories
	4.1 Metric formalism
	4.2 The Palatini formalism

	5 Cosmology in extended gravity
	5.1 f(R) cosmology and the accelerated expansion
	5.2 The Gauss–Bonnet cosmology
	5.3 Recovering f(R) gravity from teleparallel gravity

	6 Conclusions
	References
	References




