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Abstract The recent claim of Google to have brought forth a breakthrough in quantum computing repre-
sents a major impetus to further analyze the foundations for any claims of superiority regarding quantum
algorithms. This note attempts to present a conceptual step in this direction. I start with a critical anal-
ysis of what is commonly referred to as entanglement and quantum nonlocality and whether or not these
concepts may be the basis of quantum superiority. Bell-type experiments are then interpreted as statistical
tests of Bohr’s principle of complementarity (PCOM), which is, thus, given a foothold within the area of
quantum informatics and computation. PCOM implies (by its connection to probability) that probabilistic
algorithms may proceed without the knowledge of joint probability distributions (jpds). The computa-
tion of jpds is exponentially time consuming. Consequently, classical probabilistic algorithms, involving
the computation of jpds for n random variables, can be outperformed by quantum algorithms (for large
values of n). Quantum probability theory (QPT) modifies the classical formula for the total probability
(FTP). Inference based on the quantum version of FTP leads to a constructive interference that increases
the probability of some events and reduces that of others. The physical realization of this probabilistic
advantage is based on the discreteness of quantum phenomena (as opposed to the continuity of classical
phenomena).

1 Introduction

The recent tremendous success in engineering of quan-
tum computers generated the new wave of interest to
foundational analysis of their functioning. This interest
is heated by widely distributed in media claims that
they beat classical digital computers as well as intensive
critique of such claims—especially, the recent Google-
team claim [1,2] (and its questioning in [3,4]). This
type of controversy cannot be resolved just my making
large investments and hype in the new media. Unfortu-
nately, the foundational grounds of quantum computing
are really shaky.1
The possibility to process superpositions is often

pointed as basic for quantum computing. However, clas-
sical wave devices can also generate superpositions, e.g.,
optical computers. So, superposition (treated straight-
forwardly) cannot lead to computational supremacy
(see Sect. 3, classical vs. quantum superpositions).
Typically entanglement is considered as crucial for

quantum computing. However, entanglement is just a
mathematical structure and its physical meaning is still

1 We mean really foundational grounds, not formal mathe-
matical propositions.
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the subject of intensive foundational debates related to
such an ambiguous notion as quantum nonlocality. We
can point to two main tendencies in treatment of entan-
glement: (1) using the formal mathematical definition—
state’s non-separability; and (2) sanctifying entangle-
ment (and quantum computing) by referring to quan-
tum nonlocality.
To avoid involvement into deep foundational discus-

sions, typically researchers working on quantum com-
puting theory use the first strategy and the essential
part of this theory is simply linear algebra in complex
Hilbert space. One of our aims is to show that the for-
mal mathematical treatment of entanglement cannot
justify supremacy of quantum computing. Following
recent paper [5], we criticize common referring to quan-
tum nonlocality as the physical basis of entanglement.
We elevate the role of the Bohr’s principle of comple-
mentarity (PCOM) [7] by interpreting the Bell experi-
ments as statistical tests of this principle (Sect. 3).
This principle is endowed with the information inter-

pretation (see also Plotnitsky and Jaeger [8–12]). The
latter has various versions, some of them are cou-
pled to traditional interpretations of QM, as say the
Copenhagen and statistical ones; others were elab-
orated within quantum information theory such as
Växjö interpretation (VXI) [13], Quantum Bayesianism
(QBism)—Fuchs et al. [14], and RTW (Reality without
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Realism)—Plotnitsky, see, e.g., [15] for detailed pre-
sentation and foundational discussion. VXI combines
the statistical interpretation with contextuality: QM
describes probability update for context transition. 2 In
this paper, we do not stress the update component of
VXI; the reader can proceed with the statistical inter-
pretation: A quantum state represents symbolically an
ensemble of identically prepared systems. At the same
time, we shall use the terminology “the state of a sys-
tem”, but with above statistical meaning.
Bohr did not use with the statistical interpreta-

tion and the “Copenhagen interpretation” is typically
understood as the individual interpretation, i.e., a
quantum state is the state of the concrete system.
However, the basis of Bohr’s formulation of PCOM is
interpretation-invariant (see PCOM 1–PCOM3, Sect. 4).
Bohr’s views can be easily adapted to the statistical
interpretation. The latter matches best with QPT and
its applications to quantum computing.
The main distinguishing feature of QPT is processing

of probabilistic data without computing the joint prob-
ability distribution (jpd). Jpd’s calculation is exponen-
tially time consuming. Consequently, classical proba-
bilistic algorithms involving calculation of jpd for n ran-
dom variables can be over-performed by quantum algo-
rithms (for big values of n). QPT modifies the classi-
cal formula of total probability (FTP). Inference based
on the quantum version of FTP leads to constructive
interference increasing probabilities of some events. In
QPT, this interference of probabilities is obtained via
operation with superpositions. However, as was already
mentioned, superposition by itself is also a feature of
classical waves and it cannot lead to computational
supremacy. The basic feature of quantum computing
is the possibility to extract discrete observations from
a quantum state, in Bohr’s terminology, quantum phe-
nomena. This discreteness is a consequence of the exis-
tence individual quantum systems, say photons (in con-
trast to continuous beams of classical light).

2 Superposition: classical vs. quantum

Quantum and classical superpositions were compared
by Dirac [16], p. 13:“The nonclassical nature of the super-
position process is brought out clearly if we consider the
superposition of two states A and B, such that there exists
an observation which, when made on the system instate A,
is certain to lead to one particular result, a say, and when
made on the system in state B, is certain to lead to some
different result, b say. What will be the result of the obser-
vation when made on the system in the superposition state?
The answer is that the result will be sometimes a and some-
times b, depending on the relative weights of A and B.”.
Dirac clearly pointed to the crucial role of observation in
the interpretation of quantum superposition (see also Jaeger
[10], p. 1) and its characteristic feature: its ability to pro-
duce “one particular result.” This discreteness of quantum

2 QBism also emphasizes update, but within subjective
probability theory.

observations was formalized by Bohr as the notion of phe-
nomenon [7,9,11] (Sect. 4). The possibility to extract the
individual value from a signal plays the crucial role in quan-
tum computing. Thus, superposition is basic for quantum
computing, but it has to be understand in the right way as
the genuine quantum superposition.

3 Entanglement and quantum nonlocality
or complementarity of quantum
observables?

We turn to aforementioned two behavioral tendencies
in handling of entanglement, see introduction. The for-
mal mathematical treatment of entanglement is convenient
(especially in quantum engineering), but it leads to mis-
understanding of the real physical situation. We illustrate
this problem by referring to studies on classical entangle-
ment (see review [17]). The mathematical structure for a
few degrees of freedom of the classical electromagnetic field
is identical to its counterpart for a compound genuine quan-
tum system. Entangled (in the mathematical sense) states
can be generated by beams of classical light. This means
that the strategy based on the formal mathematical treat-
ment of entanglement (without its physical interpretation)
was not successful. And commonly, the second behavioral
tendency is in use: quantum systems are so unusual that
they can have really mystical features, e.g., such as a spooky
action at a distance—quantum nonlocality.

However, the notion of quantum nonlocality is ambiguous
(see, e.g., [18]). This notion is a mixture of quantum and
subquantum considerations culminating in the Bell-type
inequalities. In discussions, nonlocality of genuine quantum
theory is mixed with possible nonlocality of hypothetical
subquantum models. The first one is combination of the
Lüders projection postulate and the individual interpreta-
tion of a quantum state. The second one is formulated in
terms of hidden variables and operationally represented as
violation the Bell-type inequalities. The first step to clarifi-
cation should be separation of two types of nonlocality [5]
(see also [6] for detailed classification). The projection non-
locality can be eliminated from quantum theory by endow-
ing it with the statistical interpretation. What is about vio-
lation of the Bell inequalities? Although consideration of
hidden variables may be interesting for foundations, in real
applications, say to quantum computing, it is natural to
use solely the standard quantum theory and, in particu-
lar, to treat the Bell-type inequalities in the purely quan-
tum mechanical framework. In recent article [5], I demon-
strated that local incompatibility of observables, i.e., observ-
ables Aj , j = 1, 2, of Alice (and Bj , j = 1, 2, of Bob) is
necessary and sufficient for violation of the CHSH-inequality
for at least one quantum state. Mathematically local incom-
patibility is described as noncommutativity of the operators
representing observables: [A1, A2] �= 0 and [B1, B2] �= 0.
Thus, Bell’s type inequalities can be interpreted as the spe-
cial statistical tests of PCOM [5]. Quantum mechanics is a
local theory constrained by PCOM: there is no need neither
in spooky action at a distance nor in consideration of non-
local theories with hidden variables to explain violation of
Bell inequality. In the light of the critical argumentation [5],
the quantum nonlocality interpretation of entanglement lost
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its power. The main operational consequence of this argu-
mentation is that entanglement should be treated not as
“entanglement of systems”, but as entanglement of (incom-
patible) observables.

4 Complementarity principle

In 1949, Bohr ([7], v. 2, p. 40–41) presented the essence of
complementarity in the following widely cited statements:
“This crucial point ... implies the impossibility of any sharp
separation between the behavior of atomic objects and the
interaction with the measuring instruments which serve to
define the conditions under which the phenomena appear. In
fact, the individuality of the typical quantum effects finds
its proper expression in the circumstance that any attempt
of subdividing the phenomena will demand a change in
the experimental arrangement introducing new possibilities
of interaction between objects and measuring instruments
which in principle cannot be controlled. Consequently, evi-
dence obtained under different experimental conditions can-
not be comprehended within a single picture, but must
be regarded as complementary in the sense that only the
totality of the phenomena exhausts the possible informa-
tion about the objects.”

“While the combination of these concepts [space-time
representations and dynamical conservation laws] into a sin-
gle picture of a causal chain of events is the essence of clas-
sical mechanics, room for the regularities beyond the grasp
of such a description is just afforded by the circumstance
that the study of the complementarity phenomena demands
mutually exclusive experimental arrangements.”

By PCOM, observables do not deliver the genuine prop-
erties of quantum systems. Their outputs result from the
interaction of a system S and a measurement instrument
M. PCOM implies impossibility to separate features of a
system S from interaction with a measurement instrument
M. This implies the existence of complementary complexes
of experimental conditions (contexts). Logically, there is no
reason to assume that information obtained for different
contexts can be always consistently comprehended within a
single theoretical picture. Complementarity is often treated
as physical impossibility of joint measurements, say of posi-
tion and momentum. However, from the citation it is clear
that, although Bohr did not write about information, his
statement is informational per its nature (Sect. 5).

PCOM has another part that is also encoded in Bohr’s
statement, as “the individuality of the typical quantum
effects”. This is discreteness of outputs of quantum observ-
ables: individuality of the act of measurement, say the click
of a photo-detector with the possibility to couple this click
with the individual photon. This individual act is called
phenomenon (see Bohr [7,9,11]). Discreteness of detection
events is the fundamental feature of quantum physics justi-
fying existence of quantum systems, carriers of quanta [18].
This is the main distinguishing feature of genuine quantum
superposition—superposition of concrete outputs of obser-
vations.

Thus, PCOM can be presented as following five intercon-
nected statements (see also [19]):

– PCOM 1 Inseparability: Dependence of measurement’s
output on the experimental context.

– PCOM 2 Complementarity: Existence of complemen-
tary experimental contexts.

– PCOM 3 Individuality: Discreteness of quantum mea-
surements.

Application of these principles is constrained by the inter-
pretation of a quantum state; we use the statistical inter-
pretation (in fact, VXI).

Now, we discuss the last part of Bohr’s formulation of
PCOM, “... the totality of the phenomena exhausts the pos-
sible information about the objects.” Using the Copenhagen
interpretation, Bohr coupled this statement to individual
objects. However, we want to use the statistical interpreta-
tion. Then, Bohr’s statement can be understood is as fol-
lows: using complementary experimental contexts, we are
able to collect the complete information about a quantum
state, as representing an ensemble of identically prepared
quantum systems. And we can complete the above list by
the following principle:

– PCOM 4 Observational Completeness: Complemen-
tary observations provide complete information about
a quantum state.

5 Quantum supremacy from QPT

We now analyze PCOM 2 in more detail. We proceed with
its information interpretation that is the most appropriate
for quantum computing (see [21] and especially [8]). As we
know, information is firmly coupled to probability. Hence,
PCOM 2 is about the impossibility of construction of the
comprehensive probabilistic description of data collected
through measurements of a few arbitrary quantum observ-
ables. Observables for which such description is possible are
called compatible and those for which it is impossible are
called incompatible. However, the meaning of “comprehen-
sive probabilistic description” cannot be specified without
specification of a mathematical model of probability. And it
seems to be natural to follow Kolmogorov [22] (1933) and
consider his measure—theoretical model of probability.

The Kolmogorov probability space [22] is any triple
(Λ, F , P ), where Λ is a set of random parameters, F is a
σ-algebra of its subsets, and P is a probability measure on
F . Probability measure is countably additive. Another basic
feature is the introduction of conditioning by the Bayes’ for-
mula p(B|A) ≡ p(B ∧ A)/P (A), P (A) > 0. Observables are
represented by random variables. For any group of random
variables A1, ..., An : Λ → R, their joint probability distri-
bution (jpd) is well defined, pA1...An(x1, ..., xn) = P (λ ∈ Λ :
A1(λ) = x1, ..., An(λ) = xn). Moreover, to operate consis-
tently, we have to compute jpds for all possible combinations
of observables. They can be found as marginals of pA1...An ,
The classical probability version of PCOM 4 is that prob-
ability measure P represents the complete state of a system.

Now, we briefly recall the basics of quantum calculus of
probability (see, e.g., [13,23,24]), to compare with classical
probability. Consider a pure quantum state ψ and quantum
observables A and B with discrete spectra. For simplicity, we
consider representation of observables by Hermitian opera-
tors with nondegenerate spectra; (|αi〉) and (|βi〉) denote
their eigenbases. Quantum probability is defined by Born’s
rule: q(B = βi) ≡ q(B = βi; ψ) = |〈ψ|βi〉|2, q(A = αi) ≡
q(A = αi; ψ) = |〈ψ|αi〉|2. Quantum conditional probability
q(B = βi|A = αj) is defined as the probability w.r.t. the
post-measurement state for output A = αj . In the case of

123



1056 Eur. Phys. J. Spec. Top. (2021) 230:1053–1057

non-degenerate spectrum of A, this state is simply eigenvec-
tor |αj〉 and q(B = βi|A = αj) = |〈βi|αj〉|2.

The impossibility to define jpds (see PCOM 2) for
incompatible quantum observables led to discovery of the
novel probability calculus, quantum probability theory. Here,
instead of manipulating with jpds, one uses quantum state
vectors and their transformations. The algorithmic power
of quantum probability is also coupled to PCOM 4. By
operating with incompatible observables, one can extract
complete information about the state of a quantum sys-
tem. (We recall that in classical probability calculus com-
plete information is encoded in jpd.) Moreover, by PCOM
3 this information can be represented in the form of dis-
crete events, phenomena. The latter is important for the
frequency realization of probability playing the crucial role
in quantum computing.

Of course, the quantum probability theory was not just a
mathematical discovery of a nonclassical probability model
(similar to the discovery by Lobachevsky of non-Euclidean
geometry). The crucial point is that creation of the quantum
probability theory was based on the discovery of a wide class
of physical systems following the laws of this theory. The
most important feature of these systems is represented by
PCOM 4. Complete information about the state of a quan-
tum system can be extracted from separate measurements
of quantum observables. In contrast to classical systems, for
quantum systems, there is no need in joint measurements.

In the classical model of probability, all observables can
be represented as random variables with respect to the same
probability measure P. Additivity and Bayes’ conditioning
imply the formula of total probability (FTP). Consider two
discrete random variables A = α1, .., αn and B = β1, ..., βn.
Then p(B = βi) =

∑
j p(A = αj)p(B = βi|A = αj). In

QPT, FTP is violated (see, e.g., [13,24]). It is transformed
into FTP with the interference term (a perturbation of the
classical formula). By expanding ψ with respect to orthonor-
mal bases consisting of eigenvectors of A and B, we obtain
[13,24]:

q(B = βi; ψ) =
∑

j

q(A = αj ; ψ)q(B = βi|A = αj)

+2
∑

k<j

cos θkj
√

q(A = αj)q(B = βi|A = αj), (1)

where the additional parameter θkj are combination of
phases of ψ and eigenvectors of observables A, B.

Transformation of classical FTP into quantum FTP is
one of the main roots of quantum superiority. If the inter-
ference term is positive (constructive interference of proba-
bilities), then

q(B = βi) − p(B = βi) > 0, (2)

(the quantum and classical probabilities are given by cor-
responding FTPs). Thus, an algorithm exploring QPT can
essentially increase the probability of some event. We stress
that this can happen only by exploring incompatible quan-
tum observables. They are represented by noncommuting
operators.

The computational power of operating with incompatible
observables is based on PCOM 4: the possibility to extract
the complete information about system’s state with the aid
of such observables. So, any event E can be represented in
the form E = {B = βi} for some quantum observable B.

6 Quantum versus classical inference

Bayes’ formula for conditioning and FTP are the basic ele-
ments of classical probability update, the procedure known
as inference. QPT represents a different procedure for prob-
ability inference. This new form of probability update leads
to assigning to event {B = βi} probability q(B = βi) that
can be higher than probability p(B = βi) obtained via clas-
sical probability update.

Quantum FTP (1) can lead to increase of probability for
some event. However, this is just the formal explanation of
quantum superiority. Yes, mathematics implies (2). What
does it mean from the computational viewpoint? Here we
point that the basic feature of QPT is the possibility to pro-
ceed without calculation of jpds. This possibility to get rid of
calculations of jpds in combination with quantum condition-
ing via state’s projection is the origin of probability increase,
see (2), implied by the quantum probability calculus. This
is the computational basis of supremacy of quantum algo-
rithms.

Our previous considerations lead to the following hypoth-
esis: The essence of “quantum superiority” in the use of
nonclassical probability inference. In connection with this
hypothesis, the natural question arises: Can one approach
superiority over some classical probabilistic algorithms using
nonclassical probability inferences different from the quan-
tum inference? Formally, it seems to be possible and this
is an interesting topic for studies in computer science. This
is the good place to remark that, although simple deriva-
tion of FTP with the interference term is based on Hilbert
space, this formula can be derived without any coupling to
linear space representation. Such quantum-like FTP can be
derived (see [13,24]) on the basis of contextual probability
theory. which provides the general probabilistic representa-
tion of PCOM.

7 Concluding remarks

In the light of controversy generated by Google’s claim on
approaching superiority of quantum computer over classical
digital computer, it is important to reanalyze the founda-
tional grounds of the possibility of such superiority. Typ-
ically, the latter is associated with entanglement (quan-
tum nonlocality, spooky action at a distance) or straightfor-
wardly interpreted superposition. However, after the recent
article [5] representing the PCOM-based interpretation of
violation of the Bell type inequalities and demonstrating
locality of quantum mechanics, the mystical nonlocality
argument lost its power. The crucial difference between the
classical (wave type) and genuine quantum superpositions
was highlighted in [18].

In this note, we coupled quantum computational supremacy
with quantum complementarity, PCOM. The information
interpretation of PCOM 2 (existence of complementary
experimental contexts) and PCOM 4 (complementary
observations provide complete information about system’s
state) lead to their probabilistic reinterpretation.

By analyzing the difference between classical and quan-
tum probability calculi, we point to calculation of jpds (joint
probability distributions) as the main source of consuming
of computational resources in classical probabilistic algo-
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rithms. The quantum calculus can function without calcu-
lation of jpds, without this (exponential) time consuming.
This calculus opens the door to a new way of probability
update, via quantum state update. This non-Bayesian infer-
ence is based on the modification of FTP expressing inter-
ference of probabilities. Constructive interference can essen-
tially increase probability of some events, comparing with
classical Bayesian inference. This constructive interference
is the main root of quantum computational superiority.

We also elevate the role of the frequency realization of
probability (mathematically the law of large numbers) and
its coupling with PCOM 3, the basic distinguishing feature
of quantum measurements—extraction of discrete phenom-
ena.

We can conclude that in principle algorithms based
on QPT can demonstrate superiority over corresponding
classical probabilistic algorithms, via saving computational
resources by eliminating jpds-calculations and by exploring
quantum inference, based on the constructive interference of
probabilities.

The role of linear space representation and linear dynam-
ics of measurement in realization of supremacy of quantum
computations was analyzed in preprint [20]. However, as was
emphasized in this preprint, the complete analysis would be
possible only after solution of the measurement problem [25]
(see [26,27] for the recent progress).

Funding Information Open access funding provided by
Linnaeus University.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to
the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this arti-
cle are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. F. Arute et al., Nature 574, 505–510 (2019)
2. J. Martinis, S. Boixo, Quantum supremacy using a pro-

grammable superconducting processor, (2019), posted
on Wednesday, October 23, 2019, accessed on October
28th, (2019)

3. E. Pednault, J.A. Gunnels, G. Nannicini, L. Horesh, R.
Wisnieff, (n.d.) arXiv:1910.09534

4. K. Svozil, (n.d.) arXiv:1911.00577
5. A. Khrennikov, Get rid of nonlocality from quantum

physics. Entropy 21(8), 806 (2019)
6. K. Hess, J. Modern Phys. 10, 1209–1221 (2019)
7. N. Bohr, The Philosophical Writings of Niels Bohr (Ox

Bow Press, Woodbridge, 1987)
8. A. Plotnitsky, Quantum Atomicity and Quantum Infor-

mation: Bohr, Heisenberg, and Quantum Mechanics as
an Information Theory, in Quantum Theory: Recon-
sideration of Foundations (Växjö Univ. Press, Växjö,
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