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Abstract
We introduce the Real Quantum Amplitude Estimation (RQAE) algorithm, an
extension of Quantum Amplitude Estimation (QAE) which is sensitive to the sign of
the amplitude. RQAE is an iterative algorithm which offers explicit control over the
amplification policy through an adjustable parameter. We provide a rigorous analysis
of the RQAE performance and prove that it achieves a quadratic speedup, modulo
logarithmic corrections, with respect to unamplified sampling. Besides, we
corroborate the theoretical analysis with a set of numerical experiments.

1 Introduction, motivation and main results
Quantum Amplitude Estimation (QAE) is an algorithm which retrieves information
stored in the amplitude of a quantum state. It is argued to have a quadratic speedup over
simple repeated sampling of the quantum state. For this reason, QAE is a central sub-
routine in quantum computation for various applications, e.g. in chemistry [1, 2], finance
[3–5], and machine learning [6, 7]. The original QAE algorithm [8] is built composing
Quantum Phase Estimation (QPE) [9] and Grover’s algorithms [10]. Standard QPE relies
on a Quantum Fourier Transform (QFT) which is very demanding in terms of computa-
tional resources, especially if considered for the Noise Intermediate-Scale Quantum era
(NISQ).

Several approaches have been proposed to reduce the resources needed by QAE, both
in terms of qubits and circuit depth, while approximately preserving the same speedup.
These approaches can be broadly categorized in three families.

1. The first family consists in techniques which take advantage of classical
post-processing. As an example, in [11] the authors show how to replace QPE by a
set of Grover iterations combined with a Maximum Likelihood Estimation (MLE)
post-processing algorithm. To correctly assess the overall performance of such
techniques, one needs to include the overhead due to the classical post-processing
in the total cost of the algorithm, therefore diminishing the potential speedup.
Moreover, at the time of writing, no rigorous proof of the correctness of the
proposed algorithms has been given yet.

2. The second family includes strategies which still rely on phase estimation, but
eliminate the need of a QFT. The main idea is to replace the QFT with Hadamard
tests [12]. This variation of QPE was first suggested by Kitaev [13] and is called

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1140/epjqt/s40507-023-00159-0
https://crossmark.crossref.org/dialog/?doi=10.1140/epjqt/s40507-023-00159-0&domain=pdf
mailto:alberto.manzano.herrero@udc.es
mailto:mussodaniele@uniovi.es
http://creativecommons.org/licenses/by/4.0/


Manzano et al. EPJ Quantum Technology            (2023) 10:2 Page 2 of 24

“iterative phase estimation”. In papers following this approach such as [12] it is not
even clear how to control the accuracy of the algorithm other than possibly
increasing the number of measurements. Besides, they do not give rigorous proof of
the correctness of the algorithm.

3. The methods belonging to the third and last family are based entirely on Grover
iterations and they do not require any post-processing. The main difference among
algorithms of this family is in the amplification policy. Representative examples of
this approach are the Iterative Quantum Amplitude Estimation (IQAE) and the
Quantum Amplitude Estimation Simplified (QAES) algorithms [14, 15]. Both
provide rigorous proofs of the correctness of the techniques. Although the strategy
described in [15] achieves the desired asymptotic complexity exactly (i.e. without
logarithmic factors), the constants involved are very large, and likely to render the
algorithm impractical. In [14] they do not exactly match the desired asymptotic
complexity, yet the constants involved are much lower.

RQAE can be thought of as a generalization of the Quantum Coin algorithm [16, 17] and
it is based on an iterative strategy, like [14, 15]. In particular, RQAE utilizes a set of auxiliary
amplitudes which allow to shift in a controlled fashion the amplitude to be retrieved. Such
shift can be easily and efficiently implemented following the methods presented in [18].
Relying on this, we propose a specific strategy to iteratively choose the amplification factor
k (i.e. the Grover exponent) and the shift b at each iteration, progressively improving the
estimation of the quantum amplitude to be retrieved, i.e. the target amplitude.

We prove a set of tight bounds for the RQAE algorithm. Moreover, the bounds for RQAE
depend on a free parameter q which directly controls the amplification policy. More specif-
ically, the parameter q is a minimum bound for the ratio between the amplification on
consecutive steps:

q ≤ qi ≡ Ki+1

Ki
≡ 2ki+1 + 1

2ki + 1
. (1)

The parameter q affects both the depth of the circuit and the performance (in terms of calls
to the oracle) of the algorithm, thus offering a handle to discuss the trade-off between the
two.

The other feature that makes RQAE different from alternative amplitude estimation al-
gorithms is the possibility of recovering the sign of the amplitude to be retrieved, hence the
name Real Quantum Amplitude Estimation (RQAE). Concretely, RQAE is a parametric al-
gorithm that depends on a real input amplitude b1, which provides a reference, through
which we can unambiguously assign a phase to every other amplitude in the quantum
register. Then, when referring to the sign of an amplitude, we mean the relative phase be-
tween such amplitude and b1. As the notation already suggests, b1 is the shift mentioned
above for the first iteration. The new sensitivity to the relative sign of an amplitude allows
one to tackle a wider variety of problems, precluded to standard algorithms.

The remainder of this paper is organized as follows. Section 2 introduces the intuition
behind the construction of the algorithm. In Sect. 3 we state some theoretical results on
the performance of the algorithm for a specific set of parameters (for the rigorous proof
see Appendix A). Moreover, we confirm the theoretical properties with a set of simulated
experiments. To conclude, we discuss the results and related open questions in Sect. 4.
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2 Real quantum amplitude estimation
Consider a one-parameter family of oracles Ab that, acting on the state |0〉, yield

Ab|0〉 = |ψ〉 = (a + b)|φ〉 + cb |φ⊥〉b, (2)

where a is a real number, b is an auxiliary, continuous and real parameter that we call
“shift”, and |φ〉 is a specified direction in the Hilbert space H. The RQAE algorithm esti-
mates the amplitude a exploiting the possibility of tuning the shift b iteratively. The ket
|ψ〉 belongs to the plane �b = span{|φ〉, |φ⊥〉b} ⊂H for which the kets |φ〉 and |φ⊥〉b pro-
vide an orthonormal basis. Note that all the quantities with a sub-index b depend on the
actual value of the shift. In practice, the construction of oracles such as Ab from a given
un-shifted oracle A is generally not difficult. In most cases, a controlled shift of an ampli-
tude can be efficiently implemented via Hadamard gates and some controlled operations.
We give an example on how to build such a shifted oracle in Appendix B. In particular, its
implementation is straightforward in the framework described in [18].

Given a precision level ε and a confidence level 1 – γ , the goal of the algorithm is to
compute an interval (amin

I , amax
I ) ⊂ [–1, 1] of width smaller than 2ε which contains the value

of a with probability greater or equal to 1 – γ (see Fig. 1). Here, I denotes the number of
iterations to achieve the prescribed accuracy. We take as a representative of the interval
its center, aI = amin

I +amax
I

2 , thus admitting a maximum error of ε:

P
[|a – aI | ≥ ε

]≤ γ . (3)

It is convenient to express the amplitudes in terms of their corresponding angles, that
is, we consider the generic mapping θx = arcsin(x) for any real amplitude x. Note that the
angle representation is particularly suited to describe Grover amplifications, which indeed
admit an interpretation as rotations in the plane �b. As an example, the state |ψ〉 given in
(2) can be written as

|ψ〉 = sin(θa+b)|φ〉 + cos(θa+b)
∣
∣φ⊥〉

b, (4)

where θa+b represents a rotation in the plane �b defined above. Throughout the paper, we
will be changing back and forth from the representation in terms of the actual amplitude or
its associated angle whenever needed. To avoid notational clutter, we henceforth drop the
sub-index b on the perpendicular ket, leaving its dependence on the shift as understood.
Actually, such dependence does not play any role for the algorithm.

Figure 1 a is the target amplitude to be estimated, 2ε is the width of the estimation interval with bounds
(amin

I ,amax
I ), aI is the center of the confidence interval. In the image we distinguish three possibilities to

emphasize that the algorithm described below is sensitive to the sign of a
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In the following subsections we address the details of the procedure describing all the
steps contained in each iteration.

2.1 First iteration: estimating the sign
This step achieves a first estimation of the bounds of the confidence interval (amin

1 , amax
1 ).

Normally, this estimation would not be sensitive to the sign of the underlying amplitude
because, when sampling from a quantum state, we obtain the square of the amplitude.
Nevertheless, taking advantage of the shift b we can circumvent this limitation. In order
to compute the sign, we will combine two different pieces of information: the result of
measuring the two oppositely shifted states |ψ1〉± defined as:

|ψ1〉+ := (a + b1)|φ〉 + · · · ,

|ψ1〉– := (a – b1)|φ〉 + · · · ,
(5)

for an arbitrary real shift b1. The sign of b1 has to be decided at the start of the algorithm to
have a clear reference. In practice, in some setups it is possible to measure at the same time
both states taking advantages of Hadamard gates as in the quantum arithmetic techniques
discussed in [18] (more details are given in Appendix B). As a and b1 are real numbers, we
have the identity:

a =
(a + b1)2 – (a – b1)2

4b1
, (6)

and we can build a first empirical estimation â1 of a as follows:

â1 =
p̂sum – p̂diff

4b1
, (7)

where p̂sum and p̂diff are the empirical probabilities of getting |φ〉 when measuring |ψ1〉–

and |ψ1〉+, respectively. Throughout the paper, when we measure, we will use p̂ to denote
the empirical probability obtained from direct sampling. As an example, if in iteration i we
sample the state Ni times, getting |φ〉 as an outcome N̂i times, the estimated probability
of |φ〉 will be p̂i = N̂i

Ni
.

From (6) and (7), we can obtain a first confidence interval:

amax
1 = min

(
p̂sum – p̂diff

4b1
+

ε
p
1

|2b1| , 1
)

,

amin
1 = max

(
p̂sum – p̂diff

4b1
–

ε
p
1

|2b1| , –1
)

,

a1 =
amax

1 + amin
1

2
,

εa
1 =

amax
1 – amin

1
2

,

(8)
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Figure 2 Left: the dot corresponds to a, namely the probability to be estimated; amin
1 and amax

1 define the
confidence interval whose width is 2ε1. Right: the same confidence interval represented in terms of angles.
Note that the “true value” (represented by either a and θa) falls in a generic position within the confidence
interval. To avoid clutter, here we are not representing the central value of the confidence interval

where the max and the min operations are introduced because we know a priori that
probabilities are bounded between 0 and 1. The assignment of an error ε

p
1 to the empiri-

cal result p̂1 relies on a statistical analysis and depends on the employed statistical bound,
such as Chebysev, Chernoff (Hoeffding) and Clopper-Pearson bounds. Here one of the
main differences with respect to the other algorithms present in the literature becomes
obvious, although the probabilities are bounded between 0 and 1 the estimated amplitude
obtained by the identity (7) is now bounded between –1 ≤ a1 ≤ 1, that is, it can be neg-
ative (see Fig. 2). Note that the sign of the amplitude depends on the sign of b1, which is
taken as being positive for simplicity. However, this election is arbitrary and it could be
chosen negative.

2.2 Following iterations: amplifying the probability and shrinking the interval
On consecutive iterations, given an input confidence interval (amin

i , amax
i ) (see Fig. 3a) we

want to obtain a tighter one (amax
i+1 , amin

i+1 ) and iterate the process until the desired precision
ε is reached. At each iteration, the process for narrowing the interval starts by choosing a
new shift according to

bi+1 = –amin
i . (9)

This election is not unique. Again, we could have chosen bi+1 = –amax
i . Always keep in mind

that the phase that we are obtaining is relative to the original value of b = b1. Considering
the choice (9), we force our lower bound to match exactly zero (see Fig. 3b). The bound-
aries of the confidence interval (amin

i , amax
i ), when shifted and then expressed in terms of

the corresponding angles, become:

αmax
i = arcsin

(
amax

i – amin
i
)

= arcsin
(
2εa

i
)
,

αmin
i = 0.

(10)
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Figure 3 Graphical representation of the steps performed in the i + 1 iteration. The solid grey line represents
the unknown target value (which is not necessarily the center of the confidence interval). The dashed lines
represent the bounds obtained at the i-th step, while the dotted lines represent the bounds obtained at step
i + 1

The angular region αmin
i ≤ αi ≤ αmax

i represents the confidence interval and we refer to it
as confidence fan.

The next step takes advantage of the Grover operator, defined as

G = –AbR|0〉A†
bR|φ〉, (11)

where

R|0〉 = 1 – 2|0〉〈0|,
R|φ〉 = 1 – 2

∣∣φ
〉〈φ∣∣,

(12)

and Ab is the oracle defined in (2). The Grover operator applied ki+1 times transforms the
generic angle θ into (2ki+1 + 1)θ , see Fig. 3c. Hence, the state |ψi+1〉+ is transformed to:

|ψi+1〉+ = (a + bi+1)|φ〉 + ci|φ⊥〉 =
(
a – amin

i
)|φ〉 + ci|φ⊥〉 ≡ sin(θi+1)|φ〉 + cos(θi+1)|φ⊥〉

Gki+1−−−→ sin
(
(2ki+1 + 1)θi+1

)|φ〉 + cos
(
(2ki+1 + 1)θi+1

)|φ⊥〉, (13)

where the sub-index “+” is employed as in (5), Gki+1 indicates the Grover operator ap-
plied ki+1 times and, in the second equality, we use (9). Moreover, in (13) we have implic-
itly defined the angle θi+1 ≡ arcsin(a – amin

i ) for which we will use the synonym notation
θa–amin

i
= θi+1, according to convenience of presentation.
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In order to avoid ambiguities due to the lack of a bijective correspondence an-
gle/amplitude, when measuring amplified probabilities, we cannot allow the ampli-
fied angles to go beyond [0, π

2 ]. Namely, we need the amplified confidence fan to stay
within the first quadrant. Relying on (10), we choose the Grover amplification exponent
as:

ki+1 =
⌊

π

4 arcsin(2εa
i )

–
1
2

⌋
, (14)

so that we maximize the amplification factor while respecting the angle constraint.
Now, we measure the state |ψi+1〉 in the amplified space, obtaining the empirical proba-

bility

p̂i+1 ≈ sin2((2ki+1 + 1)θi+1
)
, (15)

with the statistical error ε
p
i+1, and define:

pmax
i+1 := min

(
p̂i+1 + ε

p
i+1, 1

)
,

pmin
i+1 := max

(
p̂i+1 – ε

p
i+1, 0

)
, (16)

pi+1 :=
pmax

i+1 + pmin
i+1

2
,

where the max and min functions play an analogous role as in Sect. 2.1 (see Fig. 3d).
In the next step we transform the angles corresponding to pmax

i+1 and pmin
i+1 to the non-

amplified space:

θmax
i+1 =

arcsin
(√

pmax
i+1
)

2ki+1 + 1
,

θmin
i+1 =

arcsin(
√

pmin
i+1 )

2ki+1 + 1
.

(17)

In other words, we have just “undone” the amplification (see Fig. 3e).
Finally, we have to undo the shift (9), actually performing an opposite shift (see Fig. 3f ).

Using definitions analogous to those given in (8), we finally obtain:

amax
i+1 = sin

(
arcsin

(√
pmax

i+1
)

2ki+1 + 1

)
– bi+1,

amin
i+1 = sin

(arcsin(
√

pmin
i+1 )

2ki+1 + 1

)
– bi+1,

ai+1 =
amax

i+1 + amin
i+1

2
,

εa
i+1 =

amax
i+1 – amin

i+1
2

=
1
2

sin

(
arcsin(

√
pmax

i+1 )
2ki+1 + 1

)
–

1
2

sin

(arcsin(
√

pmin
i+1 )

2ki+1 + 1

)
.

(18)
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Recall that the goal is to reduce the width of the confidence interval until the desired
precision ε is reached. To this sake, one has to repeat the iteration just described until the
goal is met.

Remark 2.1 Throughout this section we have addressed the general structure of the al-
gorithm. Nevertheless, we have not specified the values of all the parameters involved.
More specifically, we have not discussed how ε

p
i is obtained. This parameter strictly

depends on the number of shots on each iteration, Ni, and the confidence required
on each iteration, 1 – γi, through a set of bounds such as Hoeffding’s inequality or
Clopper-Pearson bound (see [19, 20]). In Sect. 3, more insight about these choices is pro-
vided.

3 RQAE: configuration and properties
As mentioned before, in order to complete the RQAE method, we need to incorporate a
particular choice for the parameter ε

p
i and, thus, the parameters involved in its compu-

tation, i.e., Ni and 1 – γi, the number of shots and confidence level of the i-th iteration,
respectively. With the aim of being able to theoretically characterize the algorithm, we
propose to take, ∀i, the following constant values:

Ni(q, ε,γ ) =
⌈

1
2εp(q)2 log

(
2T(q, ε)

γ

)⌉
,

γi(q, ε,γ ) =
γ

T(q, ε)
,

b1(q) =
1
2

sin

(
π

2(q + 2)

)
,

where

εp(q) =
1
2

sin2
(

π

2(q + 2)

)
and T(q, ε) = logq

(
q2 arcsin(

√
2εp(q))

arcsin(2ε)

)
.

Once the free parameters are selected, the RQAE is completed and ready to be used. Of
course, other choices can be made. In Algorithm 1, the RQAE algorithm is schematically
described. Note that our selection of the parameters is uniquely determined by the input
quantities q, ε and γ . As we will see in Sect. 3.1, the choice considered here presents several
interesting properties.
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Algorithm 1 RQAE pseudocode
Input:

ε // Required precision
γ // 1 – γ is the confidence level
q // Amplification policy
A // Oracle

Output:
a // Estimated amplitude with sign

Algorithm:

// Define relevant parameters
Set εp = 1

2 sin2
(

π
2(q+2)

)

Set T = logq

(
q2 arcsin(

√
2εp)

arcsin(2ε)

)

Set γi = γ

T // Confidence for each iteration
Set Ni =

⌈
1

2(εp)2 log( 2T
γ

)
⌉

// Number of shots for each iteration

Set ε
p
i =
√

1
2Ni

log( 2
γi

)

Set kmax =
⌈

1
2

arcsin(
√

2εp)
arcsin(2ε) – 1

2

⌉

// First Iteration
Set b = 1

2 sin
(

π
2(q+2)

)
// Shift

Measure psum and pdiff

amax = min

(
p̂sum–p̂diff

4b + ε
p
i

|2b| , 1
)

amin = max

(
p̂sum–p̂diff

4b – ε
p
i

|2b| , –1
)

a = amax+amin

2
εa = amax–amin

2
// Following Iterations

while εa > ε do
Set b = –amin // Shift
Set k =

⌊
π

4 arcsin(2εa) – 1
2

⌋
// Number of amplifications

if k > kmax then
k = kmax

end if
Measure p // Shifted probability with k amplifications
pmax = min(p + ε

p
i , 1)

pmin = max(p – ε
p
i , 0)

θmax = arcsin(
√

pmax)
2k+1

θmin = arcsin(
√

pmin)
2k+1

amax = sin(θmax) – b
amin = sin(θmin) – b
a = amax+amin

2
εa = amax–amin

2
end while
return a
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3.1 Properties
Given the proposed configuration in Algorithm 1, the RQAE algorithm presents several
properties which are listed in the next theorem.

Theorem 3.1 Given ε, γ and q, and taking the parameters:

Ni(q, ε,γ ) =
⌈

1
2εp(q)2 log

(
2T(q, ε)

γ

)⌉
, (19)

γi(q, ε,γ ) =
γ

T(q, ε)
, (20)

b1(q) =
1
2

sin

(
π

2(q + 2)

)
, (21)

with

εp(q) =
1
2

sin2
(

π

2(q + 2)

)
, (22)

T(q, ε) = logq

(
q2 arcsin(

√
2εp(q))

arcsin(2ε)

)
, (23)

then,
1. The error at each iteration is bounded by:

ε
p
i ≤ εp. (24)

2. We get the amplification policy:

qi =
2ki+1 + 1
2ki + 1

≥ q. (25)

3. The depth of the circuit is bounded by:

kI ≤
⌈

1
2

arcsin(
√

2εp)
arcsin(2ε)

–
1
2

⌉
= kmax. (26)

4. The algorithm finishes before T(q, ε) iterations:

T > I. (27)

5. The algorithm obtains a precision ε with confidence 1 – γ (Proof of Correctness):

P
[
a /∈ (amin

I , amax
I
)]≤ γ . (28)

6. The total number of calls to the oracle is bounded by:

Noracle <
1

sin4
(

π
2(q+2)

) log

⎡

⎣
2
√

e logq

(
q2π

2(q+2) arcsin(2ε)

)

γ

⎤

⎦

·
(

π

2(q + 2) arcsin(2ε)
+ 2
)(

1 +
q

q – 1

)
. (29)
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Figure 4 Theoretical maximum depth of the circuit kmax in terms of the precision ε

The proof of Theorem 3.1 can be found in Appendix A.
The first important feature is the fourth property, where we see that the algorithm

achieves the desired precision ε with confidence at least 1 – γ , which was our goal in
the beginning (see Equation (3)). Property number two justifies why we call the parameter
q the “amplification policy”. The reason for this is that q is indeed the minimum ratio of
the amplification of an iteration with respect to the previous, thus controlling the ampli-
fication policy. The depth of the circuit is intimately related with the amplification policy.
In property number three we have a clear bound kmax for the depth. To get a clearer idea
of this bound, in Fig. 4 we depict the maximum depth of the circuit kmax in terms of the
precision ε for different amplification policies q. As we see, the depth decreases with q,
but at the cost of increasing the number of shots at each iteration (see Equation (19)). This
directly leads to the question about what is more relevant in relation to the total number
of shots: either performing more shots for each iteration with less iterations (and thus less
circuit depth) or performing less shots at the cost of increasing the total number of itera-
tions. This question is directly answered with the sixth property, where we have a bound
for the number of shots in terms of the required precision ε, the confidence 1 – γ and the
amplification policy q. To facilitate the interpretation of the expression, in Fig. 5 we rep-
resent the theoretical number of calls to the oracle in terms of the precision ε for different
amplification policies q and a fixed confidence level of 1 – γ = 0.95. The dash dotted line,
the black solid thin line and the gray solid thin lines are there for comparison purposes.
We know that, without amplification, the number of executions of the circuit needed to
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Figure 5 Theoretical maximum number of calls to the oracle Noracle in terms of the precision ε for different
values of the amplification policy q and a fixed confidence level 1 – γ = 0.95. Lines 1/ε and 1/ε2 are depicted
for comparison purposes

achieve a precision ε grows as:

Noracle ∼ 1
ε2 ,

as it is given by classical bounds such as Chebysev or Clopper-Pearson. A quadratic
speedup would then be obtaining the same precision with a total number of oracle calls:

Noracle ∼ 1
ε

.

As we see in Fig. 5 the number of calls needed in our method to achieve a precision ε

grows approximately as 1/ε. This means that we have approximately achieved a quadratic
speedup compared with unamplified sampling. Furthermore, we see that it is more effi-
cient in terms of the total number of calls to the oracle to use lower amplification policies.

In general, the appropriate amplification policy depends on each specific case. On the
one hand, the optimal q depends both on the precision ε and the confidence level 1 – γ .
On the other hand, in real hardware it could be more interesting to choose higher values
of q, as we can not run arbitrarily long circuits.

Last, we have depicted the theoretical bound for the IQAE algorithm which, to our
knowledge, represents the state of the art. As we see, the RQAE performance is better than
that of the IQAE for some values of q. Note that the comparison with IQAE is not direct
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since they are estimating the probability and we are estimating the amplitude. However,
in Appendix C we show that, under some weak assumptions, this bounds are comparable.

3.2 Empirical performance
The sixth property of Theorem 3.1 gives us an upper bound to the number of calls to the
oracle. However, it is always interesting to see how this theoretical bound compares with a
real execution of the algorithm. Using the Quantum Learning Machine (QLM) developed
by Atos we build a circuit with a total of 5 qubits and we estimate one of the amplitudes
encoded in the circuit with our method. Our algorithm is executed with a confidence level
of 1 – γ = 0.95 and different amplification policies q ∈ {2, 10, 20}. For each level of preci-
sion ε we perform 100 experiments. As we see in Fig. 6 the theoretical bound for the total
number of calls to the oracle is respected by the experiments and it is not too loose. Fur-
thermore, also the empirical behavior of Noracle with respect to ε follows the qualitative
trend expected theoretically.

In Fig. 7 we see the empirical result and the theoretical bounds for the amplification in
the last iteration and the number of rounds performed. To explain the behaviour we will
focus in the results for q = 20. The first five points corresponds to I = 1 as we can see in
the right picture. That is the same as saying that for the first five points kI = 0. As the y-
axis of the left picture is in log scale we cannot see the points. This phenomena occurs

Figure 6 Number of calls to the oracle Noracle versus the required precision ε . The picture is in a log-log scale
with the x-axis inverted. The experimental points (circles, squares and diamonds) represent the mean number
of oracle calls obtained by the experiments while the error bars stretch from the maximum to the minimum
value obtained in the same experiments. The lines are the corresponding theoretical bounds from Equation
(29)
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Figure 7 In the left figure we plot the amplification of the last iteration kI versus the target precision ε . In the
right figure we plot the number of rounds I versus the target precision ε . The left picture is in a log-log scale
with the x-axis inverted. The right picture is in a x-log scale with the x-axis inverted. Each experimental point
(circles and diamonds) represent the mean for the last amplification and number of rounds of 100
experiments. The error bars stretch from the maximum to the minimum value obtained in the same 100
experiments. The lines are the corresponding theoretical bounds from Equation (26) and Equation (27). To
avoid clutter, we have omitted the results for q = 10

when the first estimation εa
1 is lower than the required ε. In this situation the algorithm

does not need to perform more than one iteration. Next, we see in the right picture that
we jump to one iteration. In the left figure we see two different regimes. In the first one
the amplification matches that of the maximum amplification kmax. In the second one we
see that it is settled to kI = 10. To give an explanation for it we first compute which is the
minimum k2 possible with q = 20:

2k2 + 1
2k1 + 1

= 2k2 + 1 = q1 ≥ 20 �⇒ k2 ≥ 9.5. (30)

As k2 can only have natural values we conclude that k2 is at least 10. Now the explanation
of the two regimes becomes more clear. As with the first iteration we do not achieve the
required precision ε we need to do another iteration. In this second iteration, as q = 20, we
are sure that k2 is at least 10. But this amplification is too much for the required precision,
so the condition in Algorithm 1 on the maximum amplification permitted is activated
matching the value of the last amplification to that of the maximum amplification needed
kI = kmax. This happens until we reach k2 = 10. At this point the maximum bound over the
number of amplifications of the last round exceeds the number of amplifications governed
by q (k2 ≈ 10) and the previous condition deactivates. This new number of amplifications
is more than enough to attain the precision required, so the algorithm maintains the same
level of amplification and the same number of rounds until the point where that number of
amplification is not enough to obtain the required precision. In that moment the algorithm
performs another iteration and the number of amplifications of the last rounds is again
fixed to that of kmax.

4 Conclusion
Throughout this paper we have proposed a new methodology for estimating an amplitude
encoded in a quantum circuit. This methodology depends on the possibility of defining
a new class of shifted oracles which are easily built, at least in some cases of practical in-
terest. For a suitable choice of parameters described in Algorithm 1, we have proven a
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set of interesting properties. They include a proof of correctness, a bound on the max-
imum depth of the algorithm and an upper bound on the total number of shots, hence
characterizing the performance of the algorithm.

If we compare RQAE to similar algorithms in the literature such as QAE, QAES and
IQAE we have three advantages and one caveat. The caveat is obviously that we are con-
strained by the possibility of constructing an appropriate oracle including the shift. The
first advantage is that we are extracting more information from the quantum circuit than
just the module of the amplitude. This feature can be of extreme importance for certain
applications where the result can be positive or negative. The second advantage is that we
can control to some extent the depth of the circuit, a crucial feature in the current NISQ
era. The third advantage is that the total number of calls to the oracle is lower to that QAES
and IQAE with an appropriate choice of the amplification policy. It is true that QAES has
a better order of convergence, however the constants involved are very large, making the
method unfeasible for most values of ε used in practice (see the comparison done in [14]).

The choice of parameters considered in the present paper is not unique and alternative
choices could be more efficient in terms, for example, of the total number of shots. In fact,
we believe it is interesting to explore different parameter settings in the future. One such
possibility consists in considering to change the number of shots on each iteration in a
dynamical manner. This is motivated by the fact that, in the early stages, q has to be large
in order to ensure that we get amplification while, as we increase the number of ampli-
fications, we can lower the value of q while still getting amplification. In this sense, we
could consider our current proposal as a “static scheme” which could be generalized to
a “dynamical” or “adaptive” scheme. Moreover, since we have observed that lower values
of q tend to be better in terms of the total number of calls to the oracle, a suitable dy-
namical strategy could further improve the performance of the method. One could even
pose a more ambitious question pursuing the scheme that minimizes the total number of
oracle calls. The generalization to a dynamical scheme is not particularly difficult neither
from the conceptual nor from the implementation viewpoint. Nonetheless, the proof of
theoretical rigorous bounds becomes more challenging than the static scheme considered
here.

Another interesting direction to extend the RQAE algorithm presented here would be
that of retrieving not only the sign but the full phase of a complex amplitude. Morally, we
would then move in the opposite direction with respect to the standard QAE. Namely,
instead of using the QPE to perform a QAE, we would use a QAE algorithm to define
an alternative QPE algorithm. Such extension would probably be challenging in terms of
proving rigorous bounds for the performance of the algorithm.

Appendix A: Proof of theorem 3.1
Here below, we prove each of the statements contained in Theorem 3.1 in order of appear-
ance.

A.1 First proposition
When finding an empirical estimate p̂ of a probability p, we can assign to it a confidence
interval (i.e. we can estimate an associated statistical error) by using Hoeffding’s inequality
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[19]:1

P
(|p – p̂| ≥ εp

)≤ 2e–nε2
p = γ , (31)

where εp is the precision, 1 – γ is the confidence level and n is the number of shots (i.e.
samplings) used for the measurement. As we fixed the values for Ni and γi in Equations
(19) and (20), using (31) we get a fixed value for ε

p
i :

P
[∣∣sin2[(2ki + 1)θi

]
– p̂i
∣
∣≥ ε

p
i
]≤ 2e–2Ni(ε

p
i )2 = γi. (32)

Rewriting the previous expression in terms of ε
p
i we have:

(
ε

p
i
)2 =

1
2Ni

log

(
2
γi

)
=

1
2�N� log

(
2
γi

)
≤ 1

2N
log

(
2
γi

)
=
(
εp)2, (33)

where we used (19) and defined

N ≡ 1
2εp(q)2 log

(
2T(q, ε)

γ

)
=

1
2εp(q)2 log

(
2
γi

)
. (34)

Then, inequality (33) descends from the trivial inequality �N� ≥ N . We have thus proven
the first proposition.

A.2 Second proposition
By definition, we have that:

qi =
2ki+1 + 1
2ki + 1

. (35)

From Equation (14), this expression can be rewritten as:

qi =
2
⌊

π
4 arcsin(2εa

i ) – 1
2

⌋
+ 1

2ki + 1
. (36)

We now consider the fact that �x� ≥ x – 1 thus obtaining:

qi ≥
π

2 arcsin(2εa
i ) – 2

2ki + 1
=

π

2 arcsin(2εa
i )(2ki + 1)

–
2

2ki + 1
. (37)

Since ki ≥ 0, we have also

qi ≥ π

2 arcsin(2εa
i )(2ki + 1)

– 2. (38)

1Although there exist tighter bounds, they are much less tractable from an analytic point of view. One such example is
Clopper-Pearson [20].
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Now we focus on the term (2ki + 1) arcsin(2εa
i ) which can be rewritten in terms of ε

p
i as

(2ki + 1) arcsin

⎡

⎢
⎢
⎣sin

⎛

⎜
⎜
⎝

arcsin

(√
min(p̂i + ε

p
i , 1)

)

2ki + 1

⎞

⎟
⎟
⎠

– sin

⎛

⎜⎜
⎝

arcsin

(√
max(p̂i – ε

p
i , 0)

)

2ki + 1

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦ ,

(39)

where we have used (18) and (16) after an obvious relabelling of the index. Next, we define
the following functions:

f
(
ε

p
i ; ki, pi

)
:= (2ki + 1) arcsin

⎡

⎢⎢
⎣sin

⎛

⎜⎜
⎝

arcsin

(√
min(p̂i + ε

p
i , 1)

)

2ki + 1

⎞

⎟⎟
⎠

– sin

⎛

⎜
⎜
⎝

arcsin

(√
max(p̂i – ε

p
i , 0)

)

2ki + 1

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦ , (40)

and

f
(
ε

p
i
)

:= arcsin

(√
min
(
2ε

p
i , 1
)
)

. (41)

The function f is useful because:

f
(
ε

p
i
)≥ f

(
ε

p
i ; ki, pi

)
, ∀k ∈N, p̂i ∈ [0, 1], (42)

and we employ it to bound expression (38):

qi ≥ π

2 arcsin(2εa
i )(2ki + 1)

– 2 ≥ π

2 arcsin(
√

min(2εp, 1))
– 2. (43)

As ε
p
i ≤ εp ≤ 1

2 then

qi ≥ π

2 arcsin(
√

min(2εp, 1))
– 2 ≥ π

2 arcsin(
√

2εp)
– 2. (44)

By the definition of εp we have that:

qi ≥ q, (45)

and we have proven the second proposition. So far, we have not treated the first iteration,
i = 1, which we now consider explicitly:

q1 =
2k2 + 1
2k1 + 1

= 2k2 + 1 = 2
⌊

π

4 arcsin(2εa
1 )

–
1
2

⌋
+ 1 ≥ π

2 arcsin(2εa
1 )

– 2, (46)
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where we have recalled that k1 = 0. We focus our attention on the term

arcsin
(
2εa

1
)

= arcsin

[
min

(
p̂sum – p̂diff

4b1
+

ε
p
1

|2b1| , 1
)

– max

(
p̂sum – p̂diff

4b1
–

ε
p
1

|2b1| , –1
)]

, (47)

where we have considered (8). Following the same strategy as before we define:

f
(
ε

p
1
)

= arcsin

[
min

(
p̂sum – p̂diff

4b1
+

ε
p
1

|2b1| , 1
)

– max

(
p̂sum – p̂diff

4b1
–

ε
p
1

|2b1| , –1
)]

. (48)

An upper bound for (48) is:

f
(
ε

p
1
)

= arcsin

(
ε

p
1

|b1|
)

≥ f
(
ε

p
1
)
, (49)

which can be directly obtained from (48). Hence, from Equation (46), we have that:

q1 ≥ π

2 arcsin( εp
|b1| )

– 2, (50)

where we have used

2εa
1 ≥ ε

p
1

|b1| , (51)

derived from (8).
Eventually, by the definition of b1 we have:

q1 ≥ q. (52)

A.3 Third proposition
Using (18), we have

εa
I
(
kmax

)
=

1
2

sin

(
arcsin(

√
pmax

I )
2kmax

I + 1

)
–

1
2

sin

(arcsin(
√

pmin
I )

2kmax
I + 1

)
. (53)

Following the same reasoning as in Equation (40) we have that:

εa
I
(
kmax

)≤ 1
2

sin

⎛

⎜⎜
⎝

arcsin
(√

2ε
p
I

)

2kmax + 1

⎞

⎟⎟
⎠≤ 1

2
sin

⎛

⎝ arcsin
(√

2εp
)

2
⌈

1
2

arcsin(
√

2εp)
arcsin(2ε) – 1

2

⌉
+ 1

⎞

⎠≤ ε, (54)

where we have used the first proposition and the definition of kmax. We have proven the
third proposition.
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A.4 Fourth proposition
In this subsection we bound the maximum number of iterations needed to achieve the
target accuracy ε. First note that, if I represents the last iteration, we have that

ε < εa
I–1 =

1
2

sin

(
arcsin(

√
pmax

I–1 )
2kI–1 + 1

)
–

1
2

sin

(arcsin(
√

pmin
I–1)

2kI–1 + 1

)
, (55)

otherwise we would be in the last iteration, and that is false by hypothesis. To write (55)
we have used (18) with I = i + 1. Using similar arguments as in the previous section, we
bound εa

I–1 by

ε < εa
I–1 ≤ 1

2
sin

⎛

⎜
⎜
⎝

arcsin

(√
2ε

p
I–1

)

2kI–1 + 1

⎞

⎟
⎟
⎠ . (56)

We can rewrite (56) as

(2k1 + 1)
I–2∏

i=1

qi = 2kI–1 + 1 <
arcsin

(√
2ε

p
I–1

)

arcsin(2ε)

≤ arcsin(
√

2εp)
arcsin(2ε)

=: (2k1 + 1)
T–2∏

i=1

q = (2k1 + 1)qT–2, (57)

where we have used ε
p
i ≤ εp and we have introduced the positive number T . Still from

(57), we obtain that

I–2∏

i=1

qi < qT–2. (58)

Using the second proposition qi ≥ q we get

T = logq

(
q2 arcsin(

√
2εp)

arcsin(2ε)

)
> I. (59)

This means that, eventually, we have an upper bound T for the number of iterations I ,
when (for each new iteration) we increase the amplification Ki = 2ki + 1 by at least a factor
q and we have proven the fourth proposition. Moreover, from (58) and qi ≥ q we have that:

I–2–j∏

i=1

qi < qT–2–j. (60)

A.5 Fifth proposition
We now want to ensure that the precision ε is met with confidence 1 – γ . In order to
achieve this, note that:

P
[
a /∈ [amin

I , amax
I
]]

= P
[
sin2[(2kI + 1)θI

]
/∈ [pmin

I , pmax
I
]]

≤ P

[ I⋃

i=1

sin2[(2ki + 1)θi
]

/∈ [pmin
i , pmax

i
]
]
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≤
I∑

i=1

P
[
sin2[(2ki + 1)θi

]
/∈ [pmin

i , pmax
i
]]

≤
I∑

i=1

γi =
I∑

i=1

γ

T
= γ

I
T

< γ ,

where we have used the definitions and the third proposition. We remind ourselves that
1 – γi represents the confidence level of the single iteration.

A.6 Sixth proposition
We want to find the necessary maximum number of calls to the oracle in order to obtain
a target precision ε with confidence 1 – γ . Suppose that we finish after I iterations, then
the number of calls to the oracle is given by

Noracle =
I∑

i=1

Niki =
I∑

i=1

Niki =
I∑

i=1

Ni
Ki – 1

2
,

As the number of shots Ni of the individual iteration is constant we have that:

Noracle =
Ni

2

I–1∑

i=1

(Ki – 1) +
NiKI

2
=

Ni

2

(

1 +
I–1∑

i=2

Ki – I

)

+
NiKI

2

=
Ni

2

(

1 + K1

I–2∑

i=1

i∏

j=1

qi – I

)

+
NiKI

2

=
Ni

2

(

1 +
I–2∑

i=1

i∏

j=1

qi – I

)

+
NiKI

2
, (61)

where we have used K1 = 1, i.e. k1 = 0. Then, using the inequality for qT in (60), we obtain

Noracle <
Ni

2

(

1 +
I–2∑

i=1

qT–I+i – I

)

+
NiKI

2
=

Ni

2

(
1 + qT–I+1 1 – qI–2

1 – q
– I
)

+
NiKI

2
, (62)

where, in order to perform the second step, we have used that q > 1. Developing the ex-
pression, we have

Noracle <
Ni

2

(
1 +

qT–I+1

1 – q
–

qT–1

1 – q
– I
)

+
NiKI

2

<
Ni

2
qT–1

q – 1
+

NiKI

2

=
Ni

2
qT–2 q

q – 1
+

NiKI

2
,

where we have used I ≥ 1 and q
q–1 qT–I > 1. Eventually, using the definition of T and de-

noting Kmax = 2kmax + 1 we obtain:

Noracle <
Ni

2
Kmax

(
1 +

q
q – 1

)
. (63)
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It is straightforward to define an upper bound for the number of shots:

Ni = �N� < N + 1 =
1

2(εp)2 log

(
2T
γ

)
+ log(e)

= log

((
2T
γ

) 1
2(εp)2

)
+ log(e) = log

(
e
(

2T
γ

) 1
2(εp)2

)
=

= log

((
e2(εp)2 2T

γ

) 1
2(εp)2

)
=

1
2(εp)2 log

(
e2(εp)2 2T

γ

)
<

<
1

2(εp)2 log

(√
e

2T
γ

)
= Nmax, (64)

Thus, we can have

Noracle <
Ni

2
Kmax

I

(
1 +

q
q – 1

)
<

Nmax

2
Kmax

I

(
1 +

q
q – 1

)

=
1

(2εp)2 log

(
2
√

eT
γ

)
Kmax

I

(
1 +

q
q – 1

)
. (65)

Finally, expressing εp in terms of q we get a bound for the number of calls to the oracle
in terms of the input parameters ε, γ and q:

Noracle <
1

sin4
(

π
2(q+2)

) log

⎡

⎣
2
√

e logq

(
q2π

2(q+2) arcsin(2ε)

)

γ

⎤

⎦

×
(

π

2(q + 2) arcsin(2ε)
+ 2
)(

1 +
q

q – 1

)
, (66)

and we have proven the sixth proposition.
We have done the proof for the case where we consider the number of calls to the oracle

as
∑I

i=1 Niki. This is the same as in IQAE (see [14]). However, here we are only computing
the number of calls to the Grover oracle and that cannot be considered a fair comparison
with the unamplified case where we are referring to the number of calls to the original
oracle A. For that reason we will show what will be the bound for the number of calls to
the oracle A when we consider A† the same as A. The number of calls would then be
defined as:

NA
oracle = N1 +

I–1∑

i=2

Ni(2ki + 1) + (2kI + 1)NI = Ni

(

1 +
I–1∑

i=2

(2ki + 1) + (2kI + 1)

)

= Ni

(

1 +
I–2∑

i=2

i∏

j=1

qi + (2kI + 1)

)

, (67)

where we have used 2ki because each time you call the Grover oracle you are calling once
to A and once to A†. The term +1 is for the first aplication of the oracle (recall that we
are calling the operator AGk). In the first iteration we do not call the Grover oracle, so
we only Ni calls to A. Following the same reasoning as before we can bound the term
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1 +
∑I–2

i=2
∏i

j=1 qi

NA
oracle = Ni

(

1 +
I–2∑

i=2

i∏

j=1

qi + (2kI + 1)

)

< Ni

(
1 + qT–2 q

q – 1
+ (2kI + 1)

)
≤ Ni

(
1 +
(

1 +
q

q – 1

)
Kmax

)
. (68)

Finally we see that:

NA
oracle ≈ 2Noracle + Ni. (69)

Appendix B: Constructing the shifted states
Given an oracle G such that:

G|0〉 = a|0〉 +
√

1 – a2
∣∣0⊥〉, (70)

we can build an oracle Aθb such that:

Aθb |0)|0〉 =
a + b

2
|0)|0〉 + · · · . (71)

We start by applying a Hadamard gate to the auxiliary register:

(H ⊗ 1)|0)|0〉 =
1√
2
(|0)|0〉 + |1)|0〉). (72)

Next, apply G controlled in the auxiliary register:

c ⊗ G
(

1√
2

(|0)|0〉 + |1)|0〉)
)

=
1√
2
(|0)|0〉 + a|1)|0〉 +

√
1 – a2|1)

∣∣0⊥〉). (73)

We continue by applying y-rotation with angle θb controlled in the auxiliary register:

c ⊗Ry(θb)
(

1√
2
(|0)|0〉 + a|1)|0〉 +

√
1 – a2|1)

∣
∣0⊥〉)

)

=
1√
2
(
cos(θb)|0)|0〉 + a|1)|0〉) + · · · . (74)

Finally, applying a Hadamard gate to the first register we get:

(H ⊗ 1)
(

1√
2
(
cos(θb)|0)|0〉 + a|1)|0〉) + · · ·

)

=
a + cos(θ )

2
|0)|0〉 +

–a + cos(θ )
2

|1)|0〉 + · · · . (75)

Appendix C: Estimation of the probability
In Appendix A we have proven some bounds for the amplitudes. However, in the literature
one typically finds analogous bounds proven for the probabilities (i.e. for the square of the
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amplitudes). In this Appendix we show that, under some restrictions, given an estimation
for the amplitudes (amin, amax) such that amax – amin ≤ 2ε, we can build a pair of bounds for
the probabilities (pmin, pmax) such that pmax – pmin ≤ 2ε. So, we can indistinctly refer to the
properties of the method when estimating amplitudes or estimating probabilities.

1. Case 1: amax > 0 and amin > 0.
We build the bounds for the probability as pmax = a2

max, pmin = a2
min.

pmax – pmin = a2
max – a2

min = (amax + amin)(amax – amin)

≤ (amax – amin) ≤ 2ε, (76)

where we have used that |amax| ≤ 0.5, |amin| ≤ 0.5.
2. Case 2: amax < 0 and amin < 0.

We build the bounds for the probability as pmax = a2
min, pmin = a2

max.

pmax – pmin = a2
min – a2

max = (–amax – amin)(amax – amin)

≤ (amax – amin) ≤ 2ε, (77)

where we have used that |amax| ≤ 0.5, |amin| ≤ 0.5.
3. Case 3: amax > 0 and amin < 0 and |amax| > |amin|

We build the bounds for the probability as pmax = a2
max, pmin = 0.

pmax – pmin = a2
max ≤ amax – 0 ≤ amax – amin ≤ 2ε. (78)

4. Case 4: amax > 0 and amin < 0 and |amax| < |amin|
We build the bounds for the probability as pmax = a2

min, pmin = 0.

pmax – pmin = a2
min ≤ |amin| ≤ amax – amin ≤ 2ε. (79)
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