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Abstract
We execute the quantum eraser, the Elitzur–Vaidman bomb, and the Hardy’s paradox
experiment using high-level programming language on a generic, gate-based
superconducting quantum processor made publicly available by IBM. The quantum
circuits for these experiments use a mixture of one-qubit and multi-qubit gates and
require high entanglement gate accuracy. The results aligned with theoretical
predictions of quantum mechanics to high confidence on circuits using up to 3
qubits. The power of quantum computers and high-level language as a platform for
experimenting and studying quantum phenomena is henceforth demonstrated.
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1 Introduction
Recent advances in quantum engineering have brought about the realization of quantum
computers that perform key quantum algorithms satisfactorily and display gigantic po-
tentials [1, 2]. This powerful Turing machine employs quantum superposition and en-
tanglement to perform calculations. By entangling multiple qubits together, techniques
such as quantum parallelism is achieved to provide exponential speedup for quantum al-
gorithms over classical ones. Despite prospective impacts, it is tremendously difficult to
build a practical quantum computer that is fault-tolerant [3]. The main technical obstacle
lies in the fact that a quantum state is fragile to noise. It is hard to engineer a quantum
system that is both well-controlled and long-lived. Termed NISQ for Noisy Intermediate
Scale Quantum [4], these prototypes are not ready for real-life applications that require
complexity and precision lying beyond our current state of the art.

At the moment, the leading candidate in hardware is perhaps superconducting circuits
[5]. At its heart, the qubit comprises a collective state of electrons, condensed into a sin-
gle quantum state, the Cooper pairs. This artificial quantum object can be freely designed
and engineered, conveniently controlled using microwave pulses, and scalable using es-
tablished nano-fabrications techniques. In this system, for example of a charge qubit [6],
the quantum superposition is realized by a microwave pulse that places the tiny supercon-
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ducting island at a potential that supports both N and N +1 number of charges at the same
time. This action is equivalent to a beamsplitter in a Mach–Zehnder interferometer (MZI)
that splits the photon’s route into two uncertain paths. In the quantum circuit language,
this is performed by a Hadamard gate with matrix form H = 1√

2

[ 1 1
1 –1

]
. In a transmon quan-

tum processor [7], such as those provided by IBM [8], the error of a Hadamard gate is in
the range of 10–3 to 10–4. Designed as a universal computing platform and programmed
using high-level language through cloud access, there is a range of remarkable works per-
formed on real devices with few qubits. They include the demonstration of important
quantum algorithms [9, 10], simulation of quantum phenomena [11–16], or reproducing
foundation quantum experiences [17–21].

Quantum physics is a generic theory that applies to any physical objects, such as pho-
tons, electrons, or artificial devices engineered in the lab. However, lying on the surface
of a chip, the superconducting qubits have limited connectivity between neighbors. It is
unclear if the entanglement of a collective quantum state induced by a metallic coupler
is the same as that of genuine nature elements. In this work, we perform three funda-
mental experiments—those at the core of quantum physics—by programming the IBM
NISQ computers. Using Python scripts written in Qiskit, we demonstrate that the quan-
tum eraser, the Elitzur–Vaidman bomb, and the Hardy’s paradox experiments can be re-
produced successfully on the same quantum processor. Originally proposed and realized
in optical apparatuses, we showed that theoretically, these optical setups are equivalent
to our quantum circuits. The quantum circuits are executed on real quantum comput-
ers with reasonable agreement [22]. The experimental deviations to the original results
are associated with the erroneousness in the performance of the superconducting devices
provided by IBM.

2 The quantum eraser
The quantum eraser experiment [23–25] is a natural extension of the double-slit ex-
periment that demonstrates the counter-intuitive nature of quantum physics—the wave-
particle duality. In Fig. 1(a, d), the duality is eavesdropped on by using the Mach–Zehnder
interferometer (MZI) apparatus with a spontaneous parametric down-conversion (SPDC)
process. Upon passing the first beamsplitter (BS), the photon splits into an upper-path
(red) and a lower-path (blue), which indicates the “which-path” information. These paths
encounter the SPDC that generates an entangled “signal-idler” photons pair for each path,
which are denoted as (s) and (i) in Fig. 1(a, d), respectively. The signals arrive at the sec-
ond BS to interfere and are detected by D1, D2 detectors. The idlers are measured by D3

and D4 detectors. In Fig. 1(a), we measure them directly after the SPDC, which reveals the
red-path or blue-path information by the clicking of D3 or D4, respectively. In this case,
both D1 and D2 click with equal probability, which implies that there is a loss of interfer-
ence in the signal photons. By observing the which-path information via idler photons,
the interference in the signal photons is deleted; in other words, they behave as “particles.”
In Fig. 1(d), the idlers are interfered with a BS before the measurement. Hence, the which-
path information is “erased.” Jointly measuring D1,2 and D3,4 yields surprising results: only
D1 and D3 click coincidentally but not for D2 and D3. It indicates that the interference
in the signal photons produces a constructive signal at D1 and a destructive signal at D2.
Inversely, only D2 and D4 click coincidentally but not for D1 and D4 detectors. The in-
terference in the signal photons generates a constructive signal at D2 and a destructive
signal at D1. Thus, by erasing the which-path information, we observe interference in sig-
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Figure 1 In the quantum eraser experiment, we recover the interference pattern by choosing an appropriate
measurement basis. (a, d) The quantum eraser experiments using a Mach–Zehnder interferometer (MZI) and
a spontaneous parametric down-conversion (SPDC), an alternative setup to the double-slit experiment: upon
entering the first beamsplitter (BS), the original photon is split into upper-path (red) and lower-path (blue).
Each path transforms into a signal-idler photons pair by passing through the SPDC. The signal photons (s)
interfere at the second BS and are measured by D1(2). The idler photons are measured by D3(4) without an
eraser in (a) and with an eraser in (d). (b, e) Quantum circuit for the experiment in (a, d), respectively.
(c, f) Experiment results obtained from the IBM Vigo quantum computer shown as blue bars and the
theoretical value showed as red lines. The device error is estimated at 3.7%, while standard error from the
mean of 8192 shots is minimal at 0.5%

nal photons; in other words, they behave as “waves.” The wave-particle duality depends
on “our action” on the entangled counterparts. Termed quantum eraser, the phenomenon
is verified for photons [25–27], or surface acoustic phonons [28].

This experiment can be written in the quantum circuit language [29] as showed in
Fig. 1(b, e). Similar to the role of a BS in an optical setup, the first Hadamard gate splits
the first qubit’s initial state |q0〉 = |0〉 into |0〉 and |1〉 to represent the which-path infor-
mation: |0〉 ↔ red-path, and |1〉 ↔ blue-path. Then, a CNOT gate entangles |q0〉 with
the target |q1〉 qubit, which simulates the function of the SPDC. By resembling |q0〉 as the
signals, a second Hadamard gate is applied on it to probe the interference patterns. The
outcome of this quantum eraser experiment relies on qubit |q1〉, which plays the role of
the idler photons. In Fig. 1(b), |q1〉 is measured right after the CNOT gate such that the
which-path information can be verified. The measurement results are shown in Fig. 1(c),
indicating no interference in both |q0〉 and |q1〉. Similarly, in Fig. 1(e), |q1〉 is measured af-
ter the action of the Hadamard gate. This is equivalent to the application of a BS on idler
photons in Fig. 1(d). The which-path information is erased and interference patterns are
detected in |q0〉, as can be seen from Fig. 1(f ). Mathematically, it is simple to verify the
equivalence between the quantum circuit and the optical MZI setup. Using matrix mul-
tiplication, it is straightforward to confirm that the circuit in Fig. 1(b) changes state |00〉
to 1

2 (|00〉 + |01〉 + |10〉 – |11〉, while the circuit in Fig. 1(e) changes |00〉 to 1√
2 (|00〉 + |11〉,

in agreement with the optical MZI setup in Fig. 1(a, d), respectively. These results are
confirmed by simulation results as solid lines on Fig. 1(c, f ) and agree with the original
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proposal in the optical apparatus. We execute these circuits on IBM’s Vigo quantum com-
puter by programming them using Qiskit [22]. In the non-erased experiment Fig. 1(c),
the measurement probabilities for |00〉, |01〉, |10〉, and |11〉 are 25.4 ± 0.9%, 25.6 ± 0.9%,
22.9 ± 0.8%, 26.1 ± 1.0%, respectively. Compared to theoretical value of 25% for each
state, the experiment results are quite closely matched. Similarly in the erased experi-
ment Fig. 1(f ), the corresponding probabilities are 47.0 ± 1.7%, 2.1 ± 0.1%, 2.0 ± 0.1%,
48.9±1.8%, which resemble the theoretical distribution of 50%, 0%, 0%, 50%. It is possible
to estimate errors from our quantum circuits in Fig. 1(b, e) due to gate and measurement
errors. Using calibration values provided by IBM [22], the uncertainty in our circuits is
3.7%. We emphasize that a classical interpretation would predict no recovery of the inter-
ference pattern in the erased case, and an equal distribution to all states in the non-erased
case; this was not found. Our result, therefore, satisfactorily demonstrate the quantum
nature of the IBM machines.

In the quantum circuit representation, the difference between (b) and (e) is the
Hadamard gate on |q1〉, which changes the measurement basis: in (b) the measurement
is performed on the z-basis, while in (e) it is on the x-basis. The wave-particle duality is
thus demonstrated by the choice of measurement basis. This is a feature of our proposed
scheme in contrast with [29], where they encoded the wave and particle behaviors into
one photon (qubit) while entangling with another ancilla photon.

3 The Elitzur–Vaidman bomb
The second experiment we address here is the interaction-free measurement, also known
as the Elitzur–Vaidman bomb [30, 31]. In an optical experiment as shown in Fig. 2(a), a

Figure 2 The Elitzur–Vaidman bomb experiment. (a) The original optical setup [30] with a light-sensitive
bomb inside a MZI. There is a non-zero probability that a single measurement detects the bomb without an
interaction, i.e., the photon takes the lower path and hits detector D1. More detail description of this
apparatus can be found in the text. (b) Quantum circuit for this experiment, where the first qubit represents
the photon and the second qubit reveals the status of the bomb. (c) Our experiments on a range of IBM
quantum computers in 2020. The dashed-dotted line at 0.33 is the theoretical value from Eq. (1). Each dot
represents an execution of the experiment on the corresponding quantum computer. The solid black lines are
the average value of dots. The device errors and standard deviations are 9.3%, 4.9%, 6.2%, 7.4%, 4.1%, 4.0%,
5.3% and 0.034, 0.047, 0.060, 0.029, 0.017, 0.025, 0.028, in order given above, from left to right
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classical object, such as a light-sensitive bomb, is placed on one path of the MZI. Due to the
non-locality of the photon’s wavefunction, there is a probability that the bomb is detected
without actually being hit by the photon, thus the name interaction-free measurement.
This experiment has been verified for photon [32], electrons [33], atoms [34], as well as
proposed for solid-state systems [35, 36].

Putting philosophical discussion aside, this experiment can be described as follows. In a
standard MZI without the bomb, the original photon splits into an upper path and a lower
path with 50% chance for each case after the first BS. It then interferes with itself at the
second BS, and always lights up the constructive detector D2. With the bomb however, if
the photon takes the upper path, it will be absorbed by the bomb, and thus produces no
clicks in the detectors. If the lower path is taken, the photon will split again with an even
chance for each possibility at the second BS, resulting in clicks at D1 and D2 with 25%
detection each. While the click on D2 is indistinguishable from the no-bomb case, a click
on detector D1 tells us that there is an active bomb residing on the upper path inside the
MZI. In the latter case, we detect the existence of the bomb without touching it, hence the
name “interaction-free” measurement.

This experiment is described using a quantum circuit containing two Hadamard gates
together with a CNOT gate. In our setup as shown in Fig. 2(b), the first qubit represents
the photon in the MZI, and the two Hadamard gates simulate the two BSs. Like the bomb
that detects the photon’s quantum state inside the MZI, a CNOT gate between the two
H gates is targeted on a second qubit. The value of this second qubit |q1〉 indicates if the
bomb has been touched or not. Let |q1〉 = |1〉 means the bomb is touched, we summarize
what happens in the circuit via a diagram as follows:

Even though there is a 50% probability of explosion, this scheme allows us to probe the
existence of a classical object in an interaction-free manner. The efficiency rate η can be
expressed by a measurement on the two-qubit system [32]

η =
Pdet

Pdet + Pabs
=

P|10〉
P|10〉 + P|01〉 + P|11〉

=
P|10〉

1 – P|00〉
. (1)

Here, Pdet is the probability of detecting the bomb without touching it, and Pabs is the prob-
ability that the bomb explodes; or in other words, the photon is absorbed. With a 50:50
beamsplitter, the efficiency rate η = 1/4

1/4+1/2 = 1
3 . We execute the quantum circuit using a

virtual quantum machine and obtain an exact value of 1/3, shown as a dashed-dotted line
in Fig. 2(c). The same circuit running on real IBMQ quantum hardware at various times
in August 2020 yields results that differ from each other and deviate from the theoretical
value 1/3. We learn that even when mitigation error correction [37] is applied, most sys-
tems have large errors as shown with error bars in Fig. 2(c), see Table 1 for more detail for
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Table 1 Performance of IBM’s quantum devices in our Elitzur–Vaidman bomb experiments. The
averaged efficiency η for all machines are listed in the first row, differ from the theoretical efficiency
η = 1/3. The absolute error is calculated as |η – 1/3|, relative error is |1/3–η|

1/3 , and standard deviation is√∑n
i=1

(ηi–η)2
n , with n is the total number of runs and ηi is the efficiency of the ith run. Device error is

calculated using the fidelity of a circuit, which is estimated as the product of fidelities of the circuit’s
component gates. This information from IBM can be found in our Github [22] for the time that we ran
these experiments

Essex Ourense Burlington London Vigo Valencia x2

η 0.417 0.387 0.303 0.306 0.356 0.325 0.309
Absolute error 0.084 0.054 0.031 0.027 0.022 0.008 0.024
Relative error 25.1% 16.2% 9.2% 8.1% 6.7% 2.5% 7.3%
Standard deviation 0.034 0.047 0.060 0.029 0.017 0.025 0.028
Relative device error 9.3% 4.9% 6.2% 7.4% 4.1% 4.0% 5.3%
Absolute device error 0.039 0.019 0.019 0.023 0.015 0.013 0.016

Essex, Ourense, Burlington, London, Vigo, Valencia, and x2. Especially, IBM Essex is sys-
tematically off to one side, while IBM London is off to the other side of the average value.
Of all devices, the IBM Vigo and IBM Valencia achieve the best result with the smallest
errors in all aspects. We emphasize that these results are obtained from an identical set of
codes, and thus imply large variations in IBM’s hardware. Even with a shallow circuit as
shown in Fig. 2(b), one need to be cautious and choose a proper backend for their calcu-
lations.

To qualify for “interaction-free measurement” [32], the efficiency η needs to reach 100%.
In the optical setup, this efficiency can be obtained by a series of connected MZIs such that
the photon repeatedly detects the bomb multiple times. In a setup with N BSs, each with
reflectivity R = cos2(π/2N), the photon gradually transfers from the lower to the upper
halves, as shown in Fig. 3(a). After every beamsplitter, there is a dominant chance that the
photon takes the lower path and avoids the bomb, and every time it does so the quantum
state collapses and fully recovers at the lower path before continuing to evolve unitarily
[31, 38]. After N –1 stages with N beamsplitters, the probability that the photon only takes
the lower path becomes [cos2(π/2N)]N . Following Eq. (1), the efficiency η [32] is

η =
cos2N ( π

2N )
1 – sin2( π

2N ) cos2(N–1)( π
2N )

. (2)

The quantum circuit that simulates the series of MZIs in Fig. 3(a) is shown in Fig. 3(b)
for the case N = 5, which is a natural expansion from the circuit shown in Fig. 2(b). The
first qubit represents the chain of MZI and the photon that pass through it. The Hadamard
gate is now replaced by rotation gates in the y-axis Ry(θ ) =

[ cos(θ/2) – sin(θ/2)
sin(θ/2) cos(θ/2)

]
. We assume an

arbitrary angle for these rotations Ry,i(θi), with i ∈ [1, N]. These angles need to satisfy the
condition

N∑

i=1

θi = π , (3)

such that the measurement is performed on the original basis after all these rotations.
In contrast to Hadamard gates, a chain of Ry(θi) satisfying Eq. (3) interferes |0〉 → |1〉,
instead of |0〉 → |0〉. To detect the status of the photon, a chain of CNOT gates is added in
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Figure 3 The general Elitzur–Vaidman bomb experiment. (a) The original optical setup [32] used a series of
MZIs to detect the bomb multiple times. (b) Quantum circuit for the experiment. The Ry (θi) replaces the H
gate for control over the reflectivity; an extension from Fig. 2(b). (c) Our experiment data from the IBMQ
Valencia. Since Valencia is a 5-qubit computer, the experiment extends to 4 stages. Device errors are 7.2%,
10.3%, 13.8%, 19.0% for stage n = 2, 3, 4, 5, respectively. Standard deviations for all points are shown as error
bars, with the largest at 0.087

between these rotation Ry. If any of these target qubits change their value to |1〉, the photon
is absorbed and the bomb explodes. The state of interested is |00..00〉; it indicates that the
photon has successfully passed through the circuit without exploding the bomb. Here, we
post-select out the explosion cases, i.e., the target qubits turn to |1〉. Since the CNOTs do
not change the value of their control qubit q0, the coefficient for state |00..00〉 and |10..00〉
are

∏N
i=1 cos(θi/2) and sin(θN /2)

∏N–1
i=1 cos(θi/2), respectively. From Eq. (1), η = Pdet

Pdet+Pabs
, the

efficiency becomes

η =
P|00..00〉

1 – P|10..00〉
=

∏N
i=1 cos2( θi

2 )
1 – sin2( θN

2 )
∏N–1

i=1 cos2( θi
2 )

. (4)

It is easy to see that Eq. (2) is a special case of our result when all θi are equal π
N .

To simplify Eq. (4), we set θN = θ . Then from Eq. (3), we have θi = π–θ
N–1 for i ∈ [1, N – 1].

Following the result in Fig. 2(c), the circuit is executed on the Valencia quantum computer
provided by IBMQ [8, 22]. In Fig. 3(c) we show theoretical curves from Eq. (4) in solid
gray, and simulations of the quantum circuit in Fig. 3(b) using a virtual machine as red
dots. Experiment data from the Valencia device is shown as circular dots in different col-
ors for N = 2, 3, 4, 5, with device errors expected at 7.2%, 10.3%, 13.8%, 19.0%, respectively.
The code is executed 10 times, each with 8192 shots, and error bars are calculated based
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Figure 4 The Hardy’s paradox experiment. (a) The original optical setup [39] where two MZIs are combined.
(b) The quantum circuit, where each particle passing through its BS is represented by a qubit evolves under
the action of a Ry (θi) and a Ry (π – θi) gate. The annihilation cases are marked by the Toffoli gate. (c) Data from
the IBM Vigo in direct comparison with theory when θ = θ0 = θ1. (d) The nonlocal probability as calculated
from Eq. (6) showed in percentage. (e) Experiment data for the nonlocal probability obtained from the IBMQ
Vigo quantum computer with a maximum of γ = 0.119 at θ = 0.533π , close to Hardy’s result [40]. The relative
device error is estimated at 12.1% giving an absolute device error of 0.014, while the largest standard
deviation is 0.015

on these deviations. The measurement data fit pretty well to theory for a small number of
BSs, at N = 2 and 3. However, running the same quantum circuit on other systems, such as
London or Ourense, yields substantial errors, even with N = 2 (data not shown). At larger
N = 4 or 5, the experiment requires entanglement of more qubits that demands a “deeper”
circuit and more gates. Our data are quite off compared to theoretical and simulation re-
sults. This is not a surprising result, as the IBM’s NISQ computers are known for noises
and mostly limit to shallow circuits [9, 10, 16–21]. Finding the origin for these errors is
outside the scope of this work, as it requires in-depth information from the chip design,
fabrication process, microwave setup, cryostat, and their inter-connections. Although be-
ing unreliable with quite many errors, it is impressive that these computers reach η > 0.64
for N = 3 with θ around 0.6 π , and thus satisfactorily demonstrate the interaction-free
measurement. At the classical limit, we expect η = 0, for such an effect should be impos-
sible.

4 The Hardy’s paradox
The original Elitzur–Vaidman bomb can be extended to illustrate the Hardy’s paradox
[39, 40] with the optical setup showed in Fig. 4(a). Here, the classical bomb is replaced with
two quantum objects, an electron and a positron. They enter two MZIs arranged so that
their path crosses, which would lead to an annihilation typically. Without the positron,
the electron would always go to its constructive interference detector D1, and similarly
for the case of the positron that light up detector D4. A detection at the destructive in-
terference detectors D2 or D3 indicates that a counterpart is sent through the MZI. The
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interesting case occurs when both D2 and D3 click, which indicates that the electron and
the positron collide at the crossing point. According to their nature, they must annihi-
late and can not trigger D2,3 detectors. The coincident clicks are a paradox that a local
hidden-variable theory cannot explain [39]. Nevertheless, the Hardy’s paradox has been
theoretically explained in terms of weak values [41–43] and experimentally verified [44–
46]. Hardy’s paradox indicates the nonlocality feature of the quantum state inside the two
MZIs [47]. Nonlocality is an intriguing topic that has been realized in photons [48–51],
atoms [52, 53], or superconducting circuits [54, 55].

In Fig. 4(b), the quantum circuit for this experiment is built similarly to the two previous
experiments. Two qubits represent the two MZIs with rotation gates also satisfying Eq. (3)
to put the qubits into their superpositions. In between the rotations, a Toffoli gate is tar-
geted on the third qubit, revealing the quantum state of the control qubits when they are
both at |1〉. Finally, the qubits are rotated back to the original basis for the measurement.
With the original state denoted as |ψ〉 = |000〉, the final state after the quantum circuit is

|ψf 〉 = –
1
4

sin θ1 sin θ0|000〉

+
1
2

sin θ1 sin2 θ0

2
|100〉 +

1
2

sin2 θ1

2
sin θ0|010〉

+
1
4

(
2 cos θ1 sin2 θ0

2
+ cos θ0 + 3

)
|110〉

+
1
4

sin θ1 sin θ0|001〉 –
1
2

sin2 θ0

2
sin θ1|101〉

–
1
2

sin2 θ1

2
sin θ0|011〉 + sin2 θ1

2
sin2 θ0

2
|111〉. (5)

Here, θi is the rotation angle of the ith qubit, i = [0, 1]. The state of interest, called the non-
local state, corresponds to the case when the electron and the positron enter the cross-link
without an annihilation. In our setup using a Ry(θi) and a Ry(π – θi), it is state |000〉 where
the first two-qubit has value |q0 = 0, q1 = 0〉 and the last qubit is 0: |q2 = 0〉. To resemble the
electron-positron annihilation in the quantum circuit, we reject all states with |q2 = 1〉 in
Eq. (5) and obtain the remain probabilities from which the nonlocal probability for |000〉 is

γ =
P(|000〉)

P(|000〉) + P(|100〉) + P(|010〉) + P(|110〉)

=
sin2 θ1 sin2 θ0

4(2 cos θ1 sin2 θ0
2 + cos θ0 + 3)

(6)

=
2 sin4 θ

2 cos2 θ
2

3 – cos θ
. (7)

Equation (7) is obtained from Eq. (6) by choosing θ1 = θ0 = θ , i.e., the two MZIs are set up
identically. To show that our result is equivalent to Hardy’s original probability, we change
to new variables: sin θ

2 =
√

αβ√
1–|αβ| and cos θ

2 = |α|–|β|√
1–|αβ| . Equation (7) becomes

γ = –2
[ |αβ|(|α| – |β|)

1 – |αβ|
]2 1

(|α| – |β|)2 + 2|αβ| – 3

=
[ |αβ|(|α| – |β|)

1 – |αβ|
]2

, (8)
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which is Eq. 20 in Ref. [40]. The two approaches: the original calculation [40] and the
quantum circuit, are indeed equivalent, which yield a maximum value γ = 1

2 (5
√

5 – 11) ≈
0.090 at θ = 0.575π . In Fig. 4(c), data from IBMQ Vigo are directly compared to theoretical
result Eq. (6), which show similar shapes of quite large error bars. These results are fully
plotted in 3D as a function of the two beamsplitters’ angles in Fig. 4(d) for theory and (e) for
experiment. The maximum nonlocality probability γ measures at 0.119 ± 0.015 around
θ0 = θ1 = θ = 0.533π , slightly larger than the value 0.090 estimated by Eq. (8) at θ0 = θ1 =
θ = 0.575π . This is the best result obtained by executing the quantum circuit in Fig. 4(b)
multiple time on various IBM’s quantum devices. Once again, the IBM quantum computer
reproduces the Hardy’s paradox reasonably well with decent precision, especially with a
Toffoli gate that demands complicated technical details.

5 Discussion and conclusion
The three chosen experiments all stemmed from the seeming non-definiteness of quan-
tum observables [30, 41, 56, 57]. Inside an MZI where the photon’s route is uncertain,
it is the premise for restoration of the interference patterns in the eraser experiment,
for the detection without interaction with the bomb, and for the collision at the cross-
link of the electron-positron pair without an annihilation. As shown in Fig. 1(a), Fig. 2(a),
Fig. 4(a), these MZI apparatus are quite similar, but a slight variation in the experiment
setup reveals profound quantum phenomena. Using an equivalent language, the quantum
circuits showed in Fig. 1(b), Fig. 2(b), Fig. 4(b) are also quite similar. Indeed, Fig. 1(b) and
Fig. 2(b) are identical, implying a connection between the quantum eraser experiment and
the Elitzur–Vaidman bomb. To see the similarity between the optical setup and a super-
conducting quantum processor, we should think of photon travels inside the MZI as a
function of time. In the quantum circuit model, the quantum state evolves as a function
of time under a series of gate actions, as we read it from left to right. In the original optical
setup, these experiments explore the nonlocality of the photon path. In the superconduct-
ing setup, there is no spatial separation between the two eigenstates. Instead, the variable
here is the charge number for charge qubits.

In 2020, our experiments are performed on some of IBM’s quantum backends, namely
Athens, Burlington, Essex, London, Ourense, Valencia, Vigo, and x2. These 5 qubit pro-
cessors are of standard transmon design [7, 8] with lifetime T1 and decoherence time T2
are in the range of 50–150 μs, see Table 2 for more detail. They are equipped with an
universal set of gates with fidelity in the range of 99%. In their most popular layout, the
center qubit in the T-shape processors like Vigo or Valencia has the most connectivity: it
is in direct connection to three other ones. Although our quantum circuits are compiled
from standard gates such as H, CNOT, or Ry, they are translated into the devices’ physi-
cal gates denoted U1, U2, and U3. As noise arise from any possible sources, performance
of these devices complicatedly depends on the chip design, fabrication process, cryostat
setup, which are not available to end users. An in-depth analysis of these error is outside
the scope of our work, but we do employ certain techniques to manage error and achieve
reasonable results. Firstly, the fidelity of a circuit is estimated as the product of fidelities of
applied gates given in that run, and the error of an experiment can be deduced thereafter.
Secondly, the quality are tightly controlled as performances of these devices can fluctuate.
Although calibrated daily, the data can suddenly be bad. Thirdly, the best qubits of the
best machine are hand-picked for our circuit. Not all qubits are equal, and their qualities
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Table 2 IBM quantum devices used in our experiments. “Date” indicates the time that we execute
our codes, which can be found on Github [22]. All other column including the lifetime T1,
decoherence time T2, gate errors, readout errors are recorded at the time of the experiments. Their
values are averaged over all 5 qubits. Connectivity denote the layout of the chip. Most of them are
designed as T shape, which mean the center qubit connects to three other qubits

Name Date
mm/yy

T1
(μs)

T2
(μs)

CNOT
error (%)

Readout
error (%)

Connectivity

Burlington 08/20 84.88 67.36 1.50 4.64 T
Essex 08/20 104.31 123.7 1.76 3.59 T
London 08/20 61.45 62.74 1.75 4.40 T
Ourense 08/20 93.15 66.43 0.92 2.96 T
Valencia (Fig. 2) 08/20 84.18 62.78 1.11 2.32 T
Valencia (Fig. 3) 09/20 100.00 80.49 1.10 2.52 T
Vigo (Figs. 1, 2) 08/20 73.28 50.73 1.07 1.66 T
Vigo (Fig. 4) 09/20 107.64 74.04 0.94 1.96 T
x2 08/20 57.08 45.40 1.82 3.18

�

�

vary as IBM constantly updates their system. Finally, we applied mitigation error correc-
tion [37] extensively. Many times, this error-correction scheme can vastly improve our
results. In any case, IBM’s quantum computers are state of the art devices that offer an
unprecedented opportunity to study the quantum world.

A central issue with gedanken quantum experiments is that they are difficult to verify
on physical systems. The three experiments in our work have been realized on optical or
atomic setups, the popular testbeds for foundation quantum experiments. However, we
are unaware of any work that reproduces them on superconducting circuits, where the
quantum object is the macroscopic collective state of condensates electron pairs. Repli-
cating these experiments on the IBM quantum computers identifies two important as-
pects. First, it benchmarks the quantum nature of the IBM machines. Our results show
that all experiments are reproduced with decent precision. The quantum eraser achieves
pretty high accuracy, while the original bomb experiments yield results that fluctuate with
devices, with the best machines being IBMQ Vigo and IBMQ Valencia. However, the accu-
racy is lost when the quantum circuit contains more than 4 qubits. Using the same codes
and quantum circuit, we could not reproduce the Elitzur–Vaidman bomb in the general
case when the qubit number is larger than 3. Apparently, we need gates with high fidelity,
especially the 2 qubit gates that produce entanglement. Second, the IBM machines provide
a general-purpose testbed for quantum experiments. Remotely controlled using a high-
level language, we can reproduce a range of core quantum experiments in one run. By
submitting a single job to the IBM quantum cloud, we execute both the quantum eraser,
the Elitzur–Vaidman bomb, and the Hardy’s paradox at once on a single solid-state de-
vice. More specially, we tune a wide range of parameters and thus verify our calculations
as shown in the general bomb experiment in Fig. 3(c). Similarly, in the Hardy’s paradox
experiment, our result spans the full range of θ0, θ1, which requires a tremendous amount
of work in the optical setup. Previously, such experiments needed weeks for the demon-
stration. As shown in our calculations above, we emphasize the equivalent between the
quantum circuit language and the traditional analysis.

In summary, we present quantum circuits for the quantum eraser, the Elitzur–Vaidman
bomb, and the Hardy’s paradox experiments and prove that they are equivalent to the
original setups using optical apparatuses. We further execute them on the IBM quan-
tum computers and obtain reasonable results. While the current NISQ devices allow for
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the implementation of these experiments with few qubits, it is reasonable to demonstrate
these proof-of-principle experiments as the testbed for testing quantum mechanics using
noisy quantum computers.
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