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Abstract Two methods for fast Fourier transforms are used in a quantum context. The first method is for systems with dimension
of the Hilbert space D � dn with d an odd integer, and is inspired by the Cooley-Tukey formalism. The ‘large Fourier transform’ is
expressed as a sequence ofn ‘small Fourier transforms’ (together with some other transforms) in quantum systems with d-dimensional
Hilbert space. Limitations of the method are discussed. In some special cases, the n Fourier transforms can be performed in parallel.
The second method is for systems with dimension of the Hilbert space D � d0...dn−1 with d0, ..., dn−1 odd integers coprime to
each other. It is inspired by the Good formalism, which in turn is based on the Chinese reminder theorem. In this case also the ‘large
Fourier transform’ is expressed as a sequence of n ‘small Fourier transforms’ (that involve some constants related to the number
theory that describes the formalism). The ‘small Fourier transforms’ can be performed in a classical computer or in a quantum
computer (in which case we have the additional well known advantages of quantum Fourier transform circuits). In the case that
the small Fourier transforms are performed with a classical computer, complexity arguments for both methods show the reduction
in computational time from O(D2) to O(D log D). The second method is also used for the fast calculation of Wigner and Weyl
functions, in quantum systems with large finite dimension of the Hilbert space.

1 Introduction

The fast implementation of large Fourier transforms is very important for many technological applications. Roughly speaking in
this paper we express the Fourier transform in a Hilbert space of large dimension, as a combination of many Fourier transforms in
Hilbert spaces of small dimension. This is a fast Fourier transform, because performing many ‘small’ Fourier transforms instead of
one ‘large’ Fourier transform, is computationally beneficial. The ‘small’ Fourier transforms can be performed in a classical computer
or as quantum Fourier transforms in a quantum computer. In the latter case, we will also have an additional well known reduction
of the computational time by quantum Fourier transform circuits (e.g., [1, 2]). Our methodology (and the associated reduction of
computational time) is applicable to the calculation of other quantities also, like the Wigner and Weyl functions.

Two important approaches are the Cooley-Tukey formalism [3, 4], and the Good formalism [5–7] which is based on the Chinese
remainder theorem. There are also many variations of these schemes (reviewed in [8–10]). In this paper we study the implementation
of fast Fourier transforms in quantum systems with large dimension of the Hilbert space. We also study the fast calculation of the
Wigner and Weyl functions. This is an important application of the physics of quantum systems with finite -dimensional Hilbert
space(e.g. [11]).

We consider a finite quantum system �(D) with variables in Z(D) (the ring of integers modulo d) where D is an odd integer.
This system is described by the D-dimensional Hilbert space H(D). There are well known technical differences between quantum
systems with odd dimension D and even dimension D (e.g., [12–14]). In this paper we consider systems with odd dimension D. We
discuss the fast implementation of the Fourier transform F in �(D), using two methods described briefly below.

1.1 First method for the case D � dn with d an odd integer

The fast implementation of the Fourier transform F in �(D), is using a sequence of n Fourier transforms (together with some other
transforms) in a multipartite system �n(d) comprised of n components each of which is described with variables in Z(d). Positions
and momenta in �n(d) take values in [Z(d)]n � Z(d)× ...Z(d) and the corresponding Hilbert space is HA � H (d)⊗ ...⊗H (d). The
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Hilbert spaces H(D) and HA are isomorphic (they have the same dimension), and in this sense �(D) and �n(d) are two different
descriptions of the same system. However, Fourier transforms and other phase space methods are different in these two cases [15].

Mathematically, this approach is inspired by the Cooley-Tukey formalism [3] for fast Fourier transforms (see also [8–10]), and
is used here in a quantum context. But we note that the most popular Cooley-Tukey algorithm is for D � 2n , whilst in our approach
D is a power of an odd number.

A quantum circuit for the implementation of this fast Fourier transform is given in Fig. 1. In some special cases, the various
operations can be performed in parallel (parallel computing).

We discuss the complexity of this method and show that the computational time is reduced from O(D2) to O(D log D). We also
present numerical work that supports this.

A limitation of the method is the fact that the ring Z(D) (with D � dn) is not isomorphic to the ring [Z(d)]n . Although there is
a bijective map between them, sum and products do not correspond to sums and products (Sect. 2.A). The implications of this are
discussed in Sect. 4.C. For example, this method cannot be used in Eq. (63) below, for the fast calculation of the Wigner and Weyl
functions.

1.2 Second method for the case D � d0...dn−1 with d0, ..., dn−1 odd integers coprime to each other

The fast implementation of the Fourier transform F, is using a multipartite system �(d0, ..., dn−1) comprised of n components, which
are described with variables in Z(d0), ..., Z(dn−1). Positions and momenta in �(d0, ..., dn−1) take values in Z(d0) × ... × Z(dn−1)
and the corresponding Hilbert space is HB � H (d0) ⊗ ... ⊗ H (dn−1). The Hilbert spaces H(D) and HB are isomorphic (they have
the same dimension), and in this sense �(D) and �(d0, ..., dn−1) are two different descriptions of the same system.

Fig. 1 Circuit for the fast
calculation of the Fourier
transform F, using Eqs. (31)–(34).
Here D � dn
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Fig. 2 T (D)
D2 for the ‘normal’

Fourier transform of a random
vector (Eq. (38)), as a function of
D � d2 where d � 51, 53, ...,
101 is an odd integer. The result is
a horizontal line, and this confirms
that the computational time for the
normal Fourier transform is
O(D2). The Fourier transform of
different random vectors give
similar results

Fig. 3
T f (D)
D log D for the fast Fourier

transform of a random vector(Eqs.
(39) and (40)), as a function of
D � d2 where d � 51, 53, ...,
101 is an odd integer. The result is
a slightly ascending line, and this
confirms that a lower bound for
the computational time for the fast
Fourier transform is
approximately O(D log D). The
Fourier transform of different
random vectors give similar results

Fig. 4 The CPU times T (D) and
T f (D) for the normal Fourier
transform (Eq. (38)) and the fast
Fourier transform (Eqs. (39), (40))
correspondingly, of a random
vector, as a function of D � d2

where d � 51, 53, ..., 101 is an
odd integer. It is seen that T f (D)
is much smaller than T (D).
Different random vectors give
similar results

Mathematically, this approach is inspired by the Good formalism [5–7] for fast Fourier transforms (see also [8–10]), which in
turn is based on the Chinese remainder theorem, and is used here in a quantum context. A quantum circuit for the implementation
of this fast Fourier transform is given in Fig. 5.

The complexity of the method is discussed, and it is shown that the computational time is reduced from O(D2) to O(D log D).
This is supported with numerical work.

A strength of the method is the fact that the ring Z(D) is isomorphic to the ring Z(d0) × ... × Z(dn−1) (Sect. 2.B). Because of
this the method is used for the fact calculation of Wigner and Weyl functions in Sect. 6.
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Fig. 5 Circuit for the fast
implementation of the Fourier
transformf using Eqs. (58)–(60).
Here D � d0...dn−1 with coprime
d0, ..., dn−1. The constants bν are
defined in Eq. (9)

Fig. 6 T (D)
D2 for the ‘normal’

Fourier transform of a random
vector (Eq. (38)), as a function of
D � d1d2 where d1 � 53 and
d2 � 55, 57, ..., 101 (the d1, d2
are coprime). The result is a
horizontal line, and this confirms
that the computational time for the
normal Fourier transform is
O(D2). The Fourier transform of
different random vectors give
similar results

Fig. 7
T f (D)
D log D for the fast Fourier

transform of a random vector(Eqs.
(39) and (40)), as a function of
D � d1d2 where d1 � 53 and and
d2 � 55, 57, ..., 101 (the d1, d2
are coprime). The result is
approximately a horizontal line,
and this confirms that the
computational time for the fast
Fourier transform is
approximately O(D log D). The
Fourier transform of different
random vectors give similar results
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Fig. 8 The CPU times T (D) and
T f (D) for the normal Fourier
transform (Eq. (38)) and the fast
Fourier transform (Eqs. (39) and
(40)) correspondingly, of a
random vector, as a function of
D � d1d2 where d1 � 53 and and
d2 � 55, 57, ..., 101 (the d1, d2
are coprime). It is seen that T f (D)
is much smaller than T (D).
Different random vectors give
similar results

Fig. 9 Circuit for the fast
calculation of the Weyl function,
using Eqs. (67)–(69). Here
D � d0...dn−1 with coprime d0,
..., dn−1. The constants bν are
defined in Eq. (9)

1.3 Contents

The work is complementary to the work on quantum Fourier transforms. It reduces a large Fourier transform to many small Fourier
transforms, and this reduces the computational time. The small Fourier transforms can be preformed with a classical computer, or
(if available) with a quantum computer so that we have the additional (and well known) advantages of quantum Fourier transforms
[1, 2].

In Sect. 2 we discuss the number theory related to the two methods. In Sect. 3 we consider a quantum system �(D) with variables
in Z(D) where D is an odd integer, described by the D-dimensional Hilbert space H(D). In Sect. 4 we present the first method for
the case where D � dn . In Sect. 5 we present the second method for the case where D � d0...dn−1 with d0, ..., dn−1 odd integers
coprime to each other. In Sect. 6 we use the second method for the fast calculation of the Wigner and Weyl functions. We conclude
in Sect. 7 with a discussion of our results.
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2 Number theory for the two fast Fourier transforms

2.1 A bijective map between the non-isomorphic rings [Z(d)]n and Z(D) when D � dn

Z(D) is the ring of integers modulo D, where D is an odd integer. We take D � dn (where d is an odd integer) and consider a
bijective map between [Z(d)]n � Z(d)× ...×Z(d) and Z(D). We use upper case letters for elements in Z(D), and lower case letters
for elements in Z(d). We also take jr ∈ Z(d) and J ∈ Z(D) in the ‘periods’[

−d − 1

2
,
d − 1

2

]
;

[
−D − 1

2
,
D − 1

2

]
, (1)

correspondingly.
We introduce the following bijective map between the sets [Z(d)]n and Z(D)

( j0, ..., jn−1) ↔ J � j0 + j1d + ... + jn−1d
n−1. (2)

Given J , we can find the j0, ..., jn−1 as the remainders in the following sequence of divisions:

• We divide J by d and we get j1 + j2d + ... jn−1dn−2 and remainder j0.
• We divide j1 + j2d + ... jn−1dn−2 by d and we get j2 + j3d + ... jn−1dn−3 and remainder j1.
• e.t.c.

We note that the [Z(d)]n as a ring (with addition and multiplication componentwise), is not isomorphic to the ring Z(D) because
addition and multiplication is different [15]. Indeed

( j0, ..., jn−1) + (k0, ..., kn−1) � ( j0 + k0, ..., jn−1 + kn−1) (3)

does not correspond to J + K . The sum in Z(D) has the ‘carry’ rule and the r-component might be jr + kr + 1 rather than jr + kr .
In contrast, there is no ‘carry’ rule in [Z(d)]n . Also the multiplication in Z(D)

J K � j0k0 + d( j1k0 + k1 j0) + ... + dn−1( j0kn−1 + ... + jn−1k0), (4)

does not correspond to the componentwise multiplication in [Z(d)]n

( j0, ..., jn−1) · (k0, ..., kn−1) � ( j0k0, ..., jn−1kn−1). (5)

Due to the non-isomorphism of the rings Z(D) and [Z(d)]n , there is a limitation (see subsection 4.C) of the corresponding fast
Fourier transform method in Sect. 4.

We use the notation

ωr (s) � exp

(
i

2πs

r

)
. (6)

For later use, we use Eq. (4) and we get

ωD(J K ) � ωdn ( j0k0)ωdn−1 ( j1k0 + k1 j0)...ωd ( j0kn−1 + ... + jn−1k0). (7)

Example 2.1 We consider the bijective map between the sets [Z(3)]2 and Z(9):

( j0, j1) ↔ J � j0 + 3 j1; jν � −1, 0, 1; J � −4, ..., 4. (8)

Then (1, 1) corresponds to 4 ∈ Z(9). Addition in [Z(3)]2 gives (1, 1) + (1, 1) � (−1, −1) which corresponds to −4 ∈ Z(9). The
corresponding addition in Z(9) gives 4 + 4 � −1.

2.2 The isomorphic rings Z(d0) × ... × Z(dn−1) and Z(D) when D � d0...dn−1 and the d0, ..., dn−1 are coprime

A different method for Fast Fourier transforms is the Good method [5–7] which is based on the Chinese remainder theorem. In a
quantum context it has been used in [11, 16].

If d0, ..., dn−1 are coprime, then the ring Z(d0) × ...×Z(dn−1) is isomorphic to Z(D) where D � d0 × ...×dn−1. We first define
the integers

aν � D

dν

; aνbν � 1(mod dν) (9)

bν is the inverse of aν within Z(dν), and it exists because the aν , dν are coprime. We also define the cν � aνbν as an element of
Z(D), which is an integer multiple of dν plus one (Ndν + 1).
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Lemma 2.2

aνaμ � a2
νδμν(mod D); cνcμ � cνδμν(mod D); aνcμ � aνδμν(mod D). (10)

Proof In the first relation, for ν �� μ we get a multiple of D, which is 0(mod D).
In the second relation, we get

cνcμ � aνbνaμbμ � (aνbν)2δνμ � c2
νδνμ � cν(Ndν + 1)δνμ � cνδνμ + Nbν(aνdν)

� cνδνμ + NbνD � cνδνμ (mod D). (11)

In the third relation, we get

aνcμ �aνaμbμ � a2
νbνδνμ � aνcνδνμ � aν(Ndν + 1)δνμ � aνδνμ + ND

�cνδνμ (mod D). (12)

�

We define a bijective map between Z(d1) × ... × Z(dn) and Z(D) as follows:

( j0, ..., jn−1) ↔ J ; jν � J (mod dν) ∈ Z(dν); J �
∑

jνcν ∈ Z(D). (13)

The Chinese remainder theorem ensures that this map is bijective. Using Eq. (12), we prove that

( j0 + j ′0, ..., jn−1 + j ′n−1) ↔ J + J ′;
( j0 j

′
0, ..., jn−1 j

′
n−1) ↔ J J ′. (14)

and therefore the ring Z(d0) × ... × Z(dn−1) is isomorphic to Z(D).
We also define a different bijective map

( ĵ0, ..., ĵn−1) ↔ J ; ĵν � Jbν(mod dν) ∈ Z(dν); J �
∑

ĵνaν ∈ Z(D). (15)

From Eqs. (13) and (15) we find the relationship between jν and ĵν :

ĵν � jνbν(mod dν); jν � ĵνaν(mod dν). (16)

Using Eqs. (12), (13) and (15) we prove that

J K � ĵ0k0a0 + ... + ĵn−1kn−1an−1. (17)

It then follows the important relation:

ωD(J K ) �ωd0 ( ĵ0k0)...ωdn−1 ( ĵn−1kn−1)

�ωd0 ( j0b0k0)...ωdn−1 ( jn−1bn−1kn−1) (18)

Example 2.3 Let d0 � 3 and d1 � 5. Then D � 15 and

a0 � 5; b0 � 2; c0 � 10

a1 � 3; b1 � 2; c1 � 6. (19)

Then

J � 10 j0 + 6 j1 � 5 ĵ0 + 3 ĵ1 (20)

As an example, we take J � 11 and we find the corresponding ( j0, j1) � (2, 1) and ( ĵ0, ĵ1) � (4, 2). We confirm Eq. (16):

j0b0 � 2 × 2 � 4 � ĵ0; j1b1 � 1 × 2 � ĵ1

ĵ0a0 � 4 × 5 � 2(mod 3) � j0; ĵ1a1 � 2 × 3 � 1(mod 5) � j1. (21)
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3 A quantum system �(D) with variables in Z(D)

We consider a quantum system �(D) with variables in the ring Z(D), where D is an odd integer. H(D) is the D-dimensional Hilbert
space describing this system.

Let |X ; J 〉 where J ∈ Z(D) be an orthonormal basis in H(D). The X in the notation is not a variable, it simply indicates ‘position
states’. The finite Fourier transform F is given by [17]

F � 1√
D

∑
J ,K

ωD(J K )|X ; J 〉〈X ; K |; A, J , K ∈ Z(D)

F4 � 1; FF† � 1. (22)

We act with F† on position states and get the dual basis

|P; J 〉 � F†|X ; J 〉 � 1√
D

∑
K

ωD(−J K )|X ; K 〉. (23)

The P in the notation is not a variable, it simply indicates ‘momentum states’. A state |s〉 in H(D) can be written as

|s〉 �
∑

s(J )|X ; J 〉 �
∑

s̃(J )|P; J 〉

s̃(J ) � 1√
D

∑
K

ωD(J K )s(K ) (24)

Below we study the fast implementation of this Fourier transform.

4 The case D � dn

4.1 A multipartite system �n(d) with variables in [Z(d)]n

We consider a multipartite system �n(d) comprised of n components each of which is described with variables in Z(d). Positions
and momenta take values in [Z(d)]n . This system is described with the dn-dimensional Hilbert space HA � H (d) ⊗ ... ⊗ H (d). We
consider the basis

|X ; j0, ..., jn−1〉 � |X ; j0〉 ⊗ ... ⊗ |X ; jn−1〉; jr ∈ Z(d). (25)

An arbitrary state is written as

|s〉 �
∑

s( j0, ..., jn−1)|X ; j0, ..., jn−1〉;
∑

|s( j0, ..., jn−1)|2� 1. (26)

Fourier transforms are defined as:

FA � F ⊗ ... ⊗ F ; F � 1√
d

∑
j ,k

ωd ( jk)|X ; j〉〈X ; k|

F4
A � 1; FAF

†
A � 1; j , k ∈ Z(d). (27)

We assume that D � dn and compare and contrast the systems �n(d) and �(D). Then HA is isomorphic to H(D) (because they both
have the same dimension), and therefore �(D) and �n(d) are two different descriptions of the same system. However as discussed
in ref [15], Fourier transforms and phase space methods (displacement operators, Wigner and Weyl functions, etc) are different in
�(D) and �n(d) (F is different from FA). This is because in these techniques we use addition and multiplication and as we explained
above, the rings [Z(d)]n and Z(D) are not isomorphic to each other. Furthermore (proposition 4.4 in ref [15]), depending on the
d, n, the Fourier transforms in �n(d) and �(D) are unitarily inequivalent or unitarily equivalent.

Below we explain how the equivalent of the Fourier transform F in �(D), is a sequence of transformations in �n(d) that involve
Fourier transforms in the various components together with some other transformations. The latter is a fast Fourier transform in a
quantum context.

4.2 Fast Fourier transform F in �(D) as a sequence of transformations in �n(d) with D � dn

We use the following dual notation for functions and states in �(D), based on the bijective map in Eq. (2):

s(K ) � s(k0, ..., kn−1). (28)
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The matrix elements of the Fourier transform F in �(D) (Eq. (22)) as:

F( j0, ..., jn−1|k0, ..., kn−1) � 〈 j0, ..., jn−1|F |k0, ..., kn−1〉
� 1√

dn
ωdn [ j0k0 + d( j1k0 + k1 j0) + ... + dn−1( j0kn−1 + ... + jn−1k0)]

� A(kn−1)A(kn−2)A(kn−3)...A(k0) (29)

where

A(kn−1) � 1√
d

ωd ( j0kn−1)

A(kn−2) � 1√
d

ωd ( j1kn−2)ωd2 ( j0kn−2)

A(kn−3) � 1√
d

ωd ( j2kn−3)ωd2 ( j1kn−3)ωd3 ( j0kn−3)

......

A(k0) � 1√
d

ωd ( jn−1k0)ωd2 ( jn−2k0)....ωdn ( j0k0) (30)

Using this we implement the Fourier transform in Eq. (24), as a sequence of transforms in the system �n(d). It involves the following
steps (shown also in the quantum circuit in Fig. 1):

• A Fourier transform of s(K ) � s(k0, ..., kn−1) with ωd ( j0kn−1) that involves summation over kn−1:

s1( j0|k0, .., kn−2) � 1√
d

∑
kn−1

ωd ( j0kn−1)s(k0, ..., kn−1) (31)

• We first multiply s1( j0|k0, .., kn−2) by ωd2 ( j0kn−2) (this is the analogue of ‘twiddle factors’ [18] in the present context). Then
we perform a Fourier transform of ωd2 ( j0kn−2)s1( j0|k0, .., kn−2) with ωd ( j1kn−2), that involves summation over kn−2:

s2( j0, j1|k0, .., kn−3) � 1√
d

∑
kn−2

ωd ( j1kn−2)[ωd2 ( j0kn−2)s1( j0|k0, .., kn−2)] (32)

• We first multiply s2( j0, j1|k0, .., kn−2) by ωd2 ( j1kn−3)ωd3 ( j0kn−3). Then we perform a Fourier transform of
ωd2 ( j1kn−3)ωd3 ( j0kn−3)s2( j0, j1|k0, .., kn−2) with ωd ( j2kn−3), that involves summation over kn−3:

s3( j0, j1, j2|k0, .., kn−4) � 1√
d

∑
kn−3

ωd ( j2kn−3)[ωd2 ( j1kn−3)ωd3 ( j0kn−3)s2( j0, j1|k0, .., kn−2)] (33)

• We continue in this way and the n-step is a Fourier transform with ωd ( jn−1k0) that involves summation over k0:

s̃(J ) � s̃( j0, ..., jn−1) � 1√
d

∑
k0

ωd ( jn−1k0)[ωd2 ( jn−2k0)....ωdn ( j0k0)sn−1( j0, ..., jn−2|k0)] (34)

We note that:

•
∑

|s(k0, ..., kn−1)|2�
∑

|s1( j0|k0, .., kn−2)|2� ... �
∑

|̃s( j0, ..., jn−1)|2� 1. (35)

• Starting from sr ( j0, ..., jr−1|k0, .., kn−r−1) with a series of inverse Fourier transforms we get the original wavefunction s(k0, ...,
kn−1). For example from s̃( j0, ..., jn−1) we go to sn−1( j0, ..., jn−2|k0)] as follows:

sn−1( j0, ..., jn−2|k0)] � [ωd2 (− jn−2k0)....ωdn (− j0k0)]
1√
d

∑
j0

ωd (− jn−1k0)̃s( j0, ..., jn−1) (36)

In a similar way we go backwards in all above steps. Therefore all the sr ( j0, ..., jr−1|k0, .., kn−r−1) contain the same information
as the original wavefunction s(k0, ..., kn−1).

Example 4.1 For n � 2, Eq. (29) becomes

F( j0, j1|k0, k1) � 1√
d2

ωd2 [ j0k0 + d( j1k0 + k1 j0)]. (37)

Acting on a vector s(K ) � s(k0, k1) we get

s̃(J ) � s̃( j0, j1) � 1√
d2

∑
k0,k1

ωd2 [ j0k0 + d( j1k0 + k1 j0)]s(k0, k1). (38)
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In this case the fast Fourier transform given above becomes

s̃(J ) � s̃( j0, j1) � 1√
d

∑
k0

ωd ( j1k0)[ωd2 ( j0k0)s1( j0|k0)] (39)

with

s1( j0|k0) � 1√
d

∑
k1

ωd ( j0k1)s(k0, k1) (40)

4.3 Limitation of the method

We have calculated the Fourier transform of the function s(K ) � s(k0, ..., kn−1). For other functions it is not easy to apply this
method. For example in the Weyl function in Eq. (63) below, we want to calculate the Fourier transform of the function s(K )s∗(B+K ).
Because the rings [Z(d)]n and Z(D) (with D � dn) are not isomorphic to each other, if

(k0, ..., kd−1) ↔ K � k0 + k1d + ... + kn−1d
n−1

(b0, ..., bd−1) ↔ B � b0 + b1d + ... + bn−1d
n−1. (41)

the (k0 + b0, ..., kn−1 + bn−1) does not correspond to K + B. It is then difficult to apply directly the above formalism to Eq. (63) for
the fast calculation of the Weyl and Wigner functions.

In general, this fast Fourier transform is not directly applicable to functions which involve various sums and products of the
variables. The fact that the rings [Z(d)]n and Z(D) are not isomorphic to each other, limits the practical use of the method.

4.4 Parallelism in the special case of factorisable states

We consider the factorisable state

s(K ) � s(k0, ..., kn−1) � g0(k0)g1(k1)...gn−1(kn−1);
∑
kν

|gν(kν)|2� 1. (42)

In this case

s1( j0|k0, .., kn−2) � g0(k0)...gn−2(kn−2)̃gn−1( j0)

g̃n−1( j0) � 1√
d

∑
kn−1

ωd ( j0kn−1)gn−1(kn−1) (43)

Also

s2( j0, j1|k0, .., kn−3) � g0(k0)...gn−3(kn−3)G̃n−2( j0, j1)̃gn−1( j0)

G̃n−2( j0, j1) � 1√
d

∑
kn−2

ωd ( j1kn−2)[ωd2 ( j0kn−2)gn−2(kn−2)] (44)

Also

s3( j0, j1, j2|k0, .., kn−4) � g0(k0)...gn−4(kn−4)G̃n−3( j0, j1, j2)G̃n−2( j0, j1)̃gn−1( j0)

G̃n−3( j0, j1, j2) � 1√
d

∑
kn−3

ωd ( j2kn−3)[ωd2 ( j1kn−3)ωd3 ( j0kn−3)gn−3(kn−3)] (45)

etc. The last one is

s̃( j0, ..., jn−1) � G̃0( j0, ..., jn−1)G̃1( j0, ..., jn−2)...G̃n−2( j0, j1)̃gn−1( j0)

G̃0( j0, ..., jn−1) � 1√
d

∑
k0

ωd ( jn−1k0)[ωd2 ( jn−2k0)....ωdn ( j0k0)g0(k0)] (46)

We note that for factorisable functions, we can calculate independently each of the n factors G̃0( j0, ..., jn−1), G̃1( j0, ..., jn−2), ...,
g̃n−1( j0) and multiply them at the end. Therefore this scheme is suitable for parallel computation. The calculation in the previous
subsection for general functions, needs to be done sequentially.

Example 4.2 For n � 2 we consider the factorisable state

s(K ) � s(k0, k1) � g0(k0)g1(k1) (47)
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In this case

s̃(J ) � s̃( j0, j1) � G̃0( j0, j1)̃g1( j0)

g̃1( j0) � 1√
d

∑
k1

ωd ( j0k1)g1(k1)

G̃0( j0, j1) � 1√
d

∑
k0

ωd ( j1k0)[ωd2 ( j0k0)g0(k0)] (48)

The two factors G̃0( j0, j1) and g̃1( j0) can be calculated in parallel.

Remark 4.3 The ‘parallel formalism’ of this section is limited to special cases where we know that the factorisation in Eq.(42) holds.
Given s(K ) � s(k0, ...kn−1), we give a necessary (but not sufficient) condition for the factorisation to hold.

We define the

|g(kν)|2�
∑
��kν

|s(k0, ...kn−1)|2. (49)

Here we have a summation over all indices, except one. A necessary (but not sufficient) condition for Eq. (42) to hold, is that

|s(k0, ...kn−1)|� |g(k0)|...|g(kn−1)| (50)

4.5 Time complexity of the Fourier transform: counting the number of multiplications

The estimate of the computational time is usually based on the number of multiplications, because they require more computational
time than additions. It is easily seen that the number of multiplications for ‘normal’ Fourier transform is O(D2) (it is a multiplication
of a D× D matrix with a D-dimensional vector). For the fast Fourier transform it is known that a lower bound for the computational
time is O(D log D), and we now give an approximate estimate for this.

In the fast transform in Sect. 4.2, the first step in Eq. (31) is a Fourier transform in a d-dimensional space and it requires d2

multiplications. This needs to be repeated for all values of the n − 1 variables k0, .., kn−2 which take d values each, therefore
the number of multiplications is d2dn−1 � Dd . The second step in Eq. (32) involves another Dd multiplications (plus some extra
multiplications which we ignore because we are interested in a lower limit). In this way we find that a lower bound for the number
of multiplications is

Dnd ≥ Dn log d � D log D. (51)

Many authors pointed out that this is a lower bound and that ‘real’ numerical fast Fourier transforms take a bit more time than that.
We consider a Hilbert space H(D) with D � d2, where d that takes all the odd values 51, ...., 101. Using a random vector

s(K ) � s(k0, k1) (produced by qiskit [19]), we calculated s̃(J ) � s̃( j0, j1) using both Eq. (38) (that involves the multiplication of a
D × D matrix times a D-dimensional vector) and also the fast Fourier transform in Eqs(39), (40). We call T (D) the computational
time for the calculation of all components s̃( j0, j1) with the ‘normal’ Fourier transform in Eq.(38), and T f (D) the computational
time for the calculation with the fast Fourier transform in Eqs(39), (40). In Figs. 2 and 3 we plot

T (D)

D2 ;
T f (D)

D log D
; D � d2. (52)

The result for T (D)
D2 in Fig. 2 is a horizontal line and this confirms that the computational time for the normal Fourier transform is

O(D2).
The result for

T f (D)
D log D in Fig. 3 is a slightly ascending line and this confirms that a good lower bound for the computational time

of the fast Fourier transform is approximately O(D log D).
In Fig. 4 we compare T (D) with T f (D). It is seen that T f (D) is much smaller than T (D). We checked that the Fourier transform

of different random vectors give similar results.

5 The case D � d0...dn−1 with coprime d0, ..., dn−1

5.1 A multipartite system �(d0, ..., dn−1) with variables in Z(d0) × ... × Z(dn−1).

In this section D � d0...dn−1 with d0, ..., dn−1 odd integers coprime to each other. We consider a multipartite system �(d0, ..., dn−1)
comprised of n components, which are described with variables in Z(d0), ..., Z(dn−1). Positions and momenta in the multipartite
system take values in Z(d0) × ... × Z(dn−1) and the corresponding Hilbert space is HB � H (d0) ⊗ ... ⊗ H (dn−1). The Hilbert
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spaces H(D) and HB are isomorphic (they have the same dimension), and therefore �(D) and �(d0, ..., dn−1) are two different
descriptions of the same system.

We consider the basis

|X ; j0, ..., jn−1〉 � |X ; j0〉 ⊗ ... ⊗ |X ; jn−1〉; jν ∈ Z(dν). (53)

An arbitrary state is written as

|s〉 �
∑

s( j0, ..., jn−1)|X ; j0, ..., jn−1〉;
∑

|s( j0, ..., jn−1)|2� 1. (54)

Fourier transforms in �(d0, ..., dn−1) are defined as:

FB � F0 ⊗ ... ⊗ Fn−1; Fν � 1√
d

∑
jν ,kν

ωdν ( jνkν)|X ; jν〉〈X ; kν |

F4
B � 1; FBF

†
B � 1; jν , kν ∈ Z(dν). (55)

Clearly F is very different from FB .

5.2 Fast Fourier transform F in �(D) as a sequence of transformations in �(d0, ..., dn−1) with D � d0...dn−1

We use the following dual notation for all functions and states in �(D), based on the bijective map in Eq. (13):

s(K ) � s(k0, ..., kn−1); kν ∈ Z(dν). (56)

Using Eq. (18) we express the matrix elements of the Fourier transform F in �(D) (Eq. (22)) as:

F( j0, ..., jn−1|k0, ..., kn−1) � 〈 j0, ..., jn−1|F |k0, ..., kn−1〉
�

[
1√
d0

ωd0 ( j0b0k0)

]
...

[
1√
dn−1

ωdn−1 ( jn−1bn−1kn−1)

]
(57)

The constants bν have been defined in Eq. (9). Using this we implement the Fourier transform in Eq. (24), as a sequence of transforms
in the system �(d0, ..., dn−1). It involves the following steps (shown also in the quantum circuit in Fig. 5):

• A Fourier transform of s(K ) � s(k0, ..., kn−1) with ωdn−1 ( jn−1bn−1kn−1) (we note here the constant bn−1) and summation over
kn−1:

s1( jn−1|k0, .., kn−2) � 1√
dn−1

∑
kn−1

ωdn−1 ( jn−1bn−1kn−1)s(k0, ..., kn−1) (58)

• A Fourier transform of s1( jn−1|k0, ..., kn−2) with ωdn−2 ( jn−2bn−2kn−2) (we note here the constant bn−2) and summation over
kn−2:

s2( jn−2, jn−1|k0, .., kn−3) � 1√
dn−2

∑
kn−2

ωdn−2 ( jn−2bn−2kn−2)s1( jn−1|k0, .., kn−2), (59)

etc. The last step is
• s̃(J ) � s̃( j0, ..., jn−1) � 1√

d0

∑
k0

ωd0 ( j0b0k0)sn−1( j1, ..., jn−1|k0) (60)

Similarly to the previous method, for factorisable functions these n steps can be done in parallel. But for general functions, they
need to be done sequentially.

5.3 Time complexity of the Fourier transform: counting the number of multiplications

We first give an approximate estimate that a lower bound for the computational time in the present scheme, is O(D log D).
In the fast transform in Sect.5.2, the first step in Eq. (58) is a Fourier transform in a dn−1-dimensional space and it requires d2

n−1
multiplications. This needs to be repeated for all values of the n − 1 variables k0, .., kn−2, therefore the number of multiplications
is d1...dn−2d2

n−1 � Ddn−1. The second step in Eq. (59) involves another Ddn−2 multiplications. In this way we find that a lower
bound for the number of multiplications is

D(d0 + ... + dn−1) ≥ D(log d0 + ... + log dn−1) � D log D. (61)

We consider Hilbert spaces H (d1d2) where d1 � 53 and d2 takes the odd values 55, 57, ...., 101. Since 53 is a prime number the d1,
d2 are coprime. As in Sect. 4.5 we used a random vector s(K ) � s(k0, k1) (produced by qiskit [19]), we calculated s̃(J ) � s̃( j0,
j1). In Figs. 6 and 7 we plot

T (D)

D2 ;
T f (D)

D log D
; D � d1d2. (62)
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The result for T (D)
D2 in Fig. 6 is a horizontal line and this confirms that the computational time for the normal Fourier transform is

O(D2). The result for
T f (D)
D log D in Fig. 7 is also a horizontal line and this confirms that a good lower bound for the computational time

of the fast Fourier transform is approximately O(D log D).
In Fig. 8 we compare T (D) with T f (D). It is seen that T f (D) is much smaller than T (D). We checked that the Fourier transform

of different random vectors give similar results.

6 Fast Wigner and Weyl functions using the second method

Phase space methods for the system �(D) (Wigner and Weyl functions, etc) rely heavily on Fourier transforms. Therefore fast
Fourier transforms can be used for the fast calculation of various quantities within the phase space formalism.

As an example, we consider the Weyl function W̃ (A, B) and the Wigner function W (A, B) for the state |s〉 � ∑
K s(K )|X ; K 〉

of the system �(D). They are given by the following Fourier transforms(e.g., [20]):

W̃ (A, B) � ωD(2−1AB)
∑
K

ωD(AK )s(K )s∗(B + K ); A, B ∈ Z(D)

W (A, B) � ωD(2AB)
∑
K

ωD(−2AK )s(K )s∗(2B − K ) (63)

The 2−1 � D+1
2 (mod D) for odd D.

We explained in Sect. 4.3 that the first method for fast Fourier transforms (in the case D � dn) is not directly applicable to Eq.
(63), for the fast calculation of these functions. This is related to the fact that the rings [Z(d)]n and Z(D) (with D � dn) are not
isomorphic to each other.

The second method for fast Fourier transforms (in the case D � d0...dn−1 with coprime d0, ..., dn−1) is directly applicable in
the fast calculation of the Weyl and Wigner functions. We present in detail the fast Weyl function. We use the bijective map in Eq.
(13), and express K , B as

K ↔ (k0, ..., kn−1); kν ∈ Z(dν)

B ↔ (b0, ..., bn−1); bν ∈ Z(dν)

A ↔ (a0, ..., an−1); aν ∈ Z(dν) (64)

The rings Z(D) and Z(d0) × ... × Z(dn−1) are isomorphic and therefore

K + B ↔ (k0 + b0, ..., kn−1 + bn−1). (65)

Consequently

s(K )s∗(B + K ) � s(k0, ..., kn−1)s∗(k0 + b0, ..., kn−1 + bn−1). (66)

We now give briefly the basic steps for the fast Weyl function (shown also in the quantum circuit in Fig 9).

• A Fourier transform of s({kr })s∗({kr +br }) with ωdn−1 (an−1bn−1kn−1) (we note here the constant bn−1) and summation over kn−1:

W̃1(an−1|k0, .., kn−2|{br }) �
∑
kn−1

ωdn−1 (an−1bn−1kn−1)s({kr })s∗({kr + br }). (67)

• A Fourier transform of W̃1(an−1|k0, .., kn−2|{br }) with ωdn−2 (an−2bn−2kn−2) (we note here the constant bn−2) and summation
over kn−2:

W̃2(an−2, an−1|k0, .., kn−3|{br }) �
∑
kn−2

ωdn−2 (an−2bn−2kn−2)W̃1(an−1|k0, .., kn−2|{br }), (68)

etc. The last step is
• W̃ (A, B) � W̃ ({ar , br }) � ωD(2−1AB)

∑
k0

ωd0 (a0b0k0)W̃n−1(a1, ..., an−1|k0|{br }). (69)

Similarly to the previous methods, for factorisable functions s(k0, ..., kn−1) these n steps can be done in parallel. But for general
functions, they need to be done sequentially.

Analogous algorithm can be given for the Wigner function.
We note that the Fourier transform requires O(D2) multiplications, but it needs to be performed for all values of A, B. Therefore

the complexity of the calculation of the Wigner or Weyl function is O(D4), and with the fast Fourier transforms discussed above it
is reduced to O(D3 log D).
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As an example we consider the case D � 21 × 23 � 3 × 7 × 23 and calculated the Weyl function of a random vector (produced
by qiskit [19]) with the normal Fourier transform and with the fast method given above. We found numerically that the ratio of the
corresponding computational times is T/T f � 14.7 (with the D � 21×23 factorisation), and T/T f � 17.6 (with the D � 3×7×23
factorisation).

7 Discussion

We have presented a fast implementation of the Fourier transform F in a large quantum system. This replaces the large Fourier
transform with many small Fourier transforms. The small Fourier transforms can be performed classically or (if available) in a
quantum computer in which case we have the well known additional advantages of quantum Fourier transforms. We used two
methods.

The first method is for the case D � dn with d an odd integer. This is based on the bijective map between the sets Z(D) and
[Z(d)]n in Eq. (2). The algorithm is described in Eqs. (31)–(34) and the relevant quantum circuit is shown in Fig. 1.

The complexity (based on the number of multiplications) of the normal Fourier transform is O(D2) and of the fast Fourier
transform O(D log D). This has been supported with numerical work shown in Figs 2 and 3. As expected the fast Fourier transform
is much faster than the normal Fourier transform (Fig. 3). A limitation of the method is the fact that the ring Z(D) (with D � dn)
is not isomorphic to the ring [Z(d)]n . Consequently, this method cannot be used with Eq. (63) for the fast calculation of the Wigner
and Weyl functions.

The second method is for the case D � d0...dn−1 with d0, ..., dn−1 odd integers coprime to each other. This is based on
the bijective map between the rings Z(D) and Z(d0), ..., Z(dn−1) in Eq. (13). These two rings are isomorphic. The algorithm is
described in Eqs. (58)–(60) and the relevant quantum circuit is shown in Fig. 5. Numerical work shown in Figs. 6 and 7 confirm
that the complexity of the normal Fourier transform is O(D2) and of the fast Fourier transform O(D log D). Figure 8 shows that the
fast Fourier transform requires much less computational time than the Normal Fourier Transform.

This second method can be used with Eq. (63) for the fast calculation of the Wigner and Weyl functions. The algorithm for the
Weyl function is given in Eqs. (67)–(69) and the relevant quantum circuit is shown in Fig. 9.
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