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Abstract The availability of increasingly abundant mobility data in recent years has opened up new avenues for researchers to
unravel human mobility patterns. Data aggregation methods have been introduced to gain a quantitative understanding of collective
individual movements using these data. Nevertheless, the widely adopted origin—destination (OD) aggregation method for human
mobility data lacks an essential piece of information: home location, which plays a vital role in characterizing individual movement
patterns. In this study, we propose a novel data aggregation approach called home—origin—destination (HOD) with the aim of
improving the accuracy of human mobility estimation. We compare the performance of various data aggregation methods for
estimating population distribution. Our experimental results reveal more realistic mobility patterns when incorporating estimated
home information, where individuals move out in the morning and return home before midnight. To further evaluate the effectiveness
of the HOD approach, we conduct an entropy analysis to measure the unpredictability of human mobility. The HOD results exhibit
lower entropy values than those in the other two cases, OD and home—destination (HD). These findings underscore the importance of
incorporating home information in understanding and modeling human mobility. By leveraging the HOD data aggregation method,
we can achieve more accurate population distribution estimates and capture the inherent dynamics of human movement

1 Introduction

Human mobility is a fundamental aspect of the society. It serves as a proxy for human urban activities, shaping the spatial structure
of cities [1-3] and providing insights into the estimation of transportation and the development of novel infrastructure [4, 5].
Furthermore, it is closely related to various social issues, including economic questions and living conditions. This encompasses a
range of domains including, but not limited to, epidemic spread estimation [6—8], traffic engineering [9—11], urban planning [12], and
emergency management [13—15]. Consequently, a qualitative understanding of human mobility patterns holds profound significance
in empowering urban planners to design habitable and sustainable cities.

The increasing availability of human mobility data, including mobile phone records [16—18], global positioning system (GPS)
tracks [19-21], and social media data [22-25], has facilitated extensive research efforts aimed at understanding human mobility
patterns. The prediction of human mobility patterns using individual-level data is often challenging due to large data size and privacy
considerations.

Consequently, the aggregation of raw data into an origin—destination (OD) format has become prevalent, and OD data are widely
used [26-28]. Extensive efforts have been made to propose methodologies for estimating reliable OD matrices from available data
[29-31], as well as general mobility models for predicting mobility flow between areas [32-35]. The use of OD data has several
advantages, including important spatial information regarding the origin and destination of a trip; reduced data size compared with
raw data, particularly individual-level data; and a simple structure that allows for a wide range of applications, including network
analysis.

However, traditional OD data are limited because they do not include home location, which is important in showing an individual’s
access to opportunities, services, and amenities, as well as further shaping their mobility patterns. Previous studies have overlooked
the importance of considering home location. Some studies have focused on estimating human mobility based on Markov processes
[36, 37], which determine individuals’ next place solely based on their current location, independent of previous places. In those
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studies, return-home trips were not considered. In non-Markov models, it is sometimes assumed that an individual might return to a
previously visited place based on the frequency [38, 39]. However, despite the recognized importance of accurately identifying home
locations for comprehensive data analysis, current OD methodologies lack a specific approach to aggregating data that includes
home information.

In this study, we propose a novel method for data aggregation, called home—origin—destination (HOD) data aggregation, in addition
to the conventional OD format and the home—destination (HD) format, which is occasionally used as an alternative to the OD format.
We compare the estimated population distributions obtained from OD, HD, and HOD data. Specifically, we analyze human mobility
based on a home-specific Markov process for HOD and OD cases, and a random process for HD case where the origin information
is missing. Our findings demonstrate that the HOD and HD aggregation outperformed OD aggregation where home information
is excluded. The absence of home information in the OD data may lead to an overestimation of the impact of human mobility.
To measure the unpredictability of human mobility, we employed Shannon’s entropy and demonstrate the HOD aggregation yield
the best results. These findings underscore the crucial role of home information in obtaining an accurate understanding of human
mobility patterns and their impact. Additionally, by comparing entropy values across different years, we observe that people tend to
visit fewer places after the COVID-19 pandemic.

2 Data

Our study is based on a set of GPS data, “LocationMind xPop”, provided by the Japanese company LocationMind Inc. [40] The
“LocationMind xPop” data refer to human mobility data collected through individual location information shared by mobile phone
users who have provided their consent. This dataset is made available by NTT DOCOMO, Inc., Japan’s largest cellular service
provider. To safeguard privacy, the data are processed collectively and statistically by NTT DOCOMO, Inc. The original location
data consist of GPS coordinates (latitude and longitude) sent at intervals as short as 5 min. Importantly, this dataset does not contain
any information that can be used to identify specific individuals. The areas of interest are Tokyo and surrounding areas, which are
divided into 2 km by 2 km meshed grids based on the grid square partition introduced by the Statistics Bureau of Japan [41]. Each
grid is denoted by a 9-digit code. In this study, approximately 12 hundred populated grids are investigated.

The dataset consists of approximately 4.4 million records in the year 2019 and 4.7 million records in 2021, each detailing the
hourly volume of mobility flows for each home—-origin—destination set, indicating the number of individuals visiting from an origin
to a destination, given their home grid. These volumes are derived from the averaged flows of specific hours across full days of May
and June for either the years 2019 or 2021. Additionally, each data record is annotated with a flag indicating whether the observed
average pertains to weekdays or weekends. For this study, we specifically selected the weekday subset to focus on analyzing the
characteristics of daily commuting trips. This subset encompasses approximately 2.7 million records in 2019 and 3.0 million records
in 2021. The data capture origin and destination information on an hourly basis, which differs from real-case OD data that accurately
represents the specific origins and destinations of individual trips. However, it is worth noting that hourly OD data are still capable
of illustrating the continuous movement of people and are sufficient for characterizing daily trips.

The home information in the data is estimated by the data provider using the following procedures. Initially, the GPS logs for
each user, which are records of geographical positions captured by mobile phones collected over approximately one month, are
mapped onto the 2 km by 2 km meshed grids mentioned previously. Following this mapping, the frequency distribution on these
spatial grids for each user is generated with a bin width of 1 h. These logs are activated by smartphone movement, leading to fewer
GPS records during inactive periods, such as night hours, when individuals are likely to be asleep. Frequency increases during the
day and decreases at night for typical daytime workers, with the reverse pattern for night-shift workers. Subsequently, the frequency
distributions for all users are clustered using the K-means algorithm, where the number of clusters k is set to 12. Notably, this method
results in the formation of similar clusters that are generally narrowed down to five distinct patterns: the daytime pattern, involving
individuals commuting or traveling in the morning, being active during the day, and returning home in the evening; the nighttime
pattern, characterized by inactivity during the day and activity at night; the morning pattern, similar to the daytime pattern but with
more active mornings; the evening pattern, akin to the daytime pattern but with more evening activities; and the stay-at-home pattern,
with few trips, typical of homemakers or those working from home. Based on this clustering, users are further categorized, and then
the inactive period for each user is identified. Finally, the home of the user is estimated as the location with the highest GPS log
frequency during the inactive period.

The process of population magnification is undertaken because the number of mobile phone users in the data does not encompass
the entire population. The magnification coefficient for each grid is derived by comparing the number of samples whose estimated
home is in this grid with the actual population as per the census data. Owing to privacy concerns, any grid with a residence number
less than a certain threshold is excluded from the data. This exclusion results in discrepancies between the populations in the data and
the census data. The magnification of data for both 2019 and 2021 utilized the same benchmark, the Japan Population Census 2015
[42]. However, it is validated that the results in this work are not driven by the grid-wise population changes (see Supplementary
Information).

The underground map layout in Figs. 2, 4 and 5 is based on map tiles by Stamen Design, under CC BY 4.0. Data by OpenStreetMap,
under ODbL. The results in Figs. 2, 3, 4 and 5 are obtained by using data “LocationMind xPop (c) LocationMind Inc”.
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3 Methods
3.1 Time discretization

In this study, we investigate human movements based on discrete time, represented by a specific hour denoted by a non-negative
integer . As illustrated in Fig. 1a, an individual’s movements are recorded through interpolation within a 1-h time window, which
captures only the starting and ending grids during this hour.

3.2 Data aggregation methods

The traditional OD aggregation method primarily focuses on identifying the two important spatial factors of trips: origins and
destinations. This involves recording the volume of mobility flow for each OD pair. For instance, in Fig. 1b, suppose there are 100
individuals traveling from location A at time ¢, to location B at t + 1, a single-row table can summarize these trips, incorporating
information on the origin, destination, and volume.

However, as argued previously, we contend that home location plays an important role in characterizing human mobility patterns.
Consequently, we propose including the home location, in addition to the OD pair, when aggregating the data. Specifically, we aim
to ascertain how many of the 100 individuals reside in location A and how many reside in location B. In this example, HOD data can
be summarized in a table in which each specific home location is associated with the corresponding OD pair. In detail, 40 individuals
reside in home A and travel from A to B, whereas 60 reside in home B and also travel from A to B.

Another aggregation method, HD, considers only the home and destination information and does not include origin information.
It can be viewed as a proxy for commuting trips because the origin is assumed to be the individual’s home. Similarly, the HD table
can be summarized as shown in Fig. 1b, where the origin information is missing.

Remarkably, the HOD format can generate both OD and HD data by aggregating the home or origin information because it
contains a complete set of home, origin, and destination information. As shown below, even when only one additional feature, the
home location, is included in the data, which does not significantly increase the data size compared with individual-level data, using
HOD data for estimating the human movements proves to be more reliable than using OD data alone.
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Fig. 2 Estimated population distribution. The population distributions in 12, 24, 84, and 96 h later in the OD (a—d), HOD (e-h), and HD (i-1) cases are
shown. The black lines correspond to big streets, railways, and subways. The black areas are rivers, inland lakes, and the sea. Initially, only the home location
(hinted by the red square) is populated. The colors represent the population volume in each 2 km by 2 km grid square at a certain hour. The underground
map layout is based on map tiles by Stamen Design, under CC BY 4.0. Data by OpenStreetMap, under ODbL

3.3 Transition matrix

To estimate the population distribution using OD, HD, and HOD data, we adopt the following procedure to extract the transition
matrix from the data at a specific hour ¢, represented by T(z).

Regarding the OD data, we construct a matrix denoted as NODP (1), where each element ngD(t) represents the number of trips that
start from grid j at hour  and end at grid i at hour 7 + 1. To obtain the transition matrix TOP(¢), we normalize the columns of matrix
NOP(r), such that each element of TOP(¢) is defined as follows:

oD
Py =l (M
2y ()

Similarly, for HD data, we construct a matrix N HD (1) where each element ngD(t) represents the number of individuals whose homes
are located in grid j and who visit grid i at hour ¢. Then, an element of the transition matrix THP(¢) is defined as
HD
ni;(t)

My =—"1 " 2

Regarding the HOD data, as it includes information on the estimated home grid in each OD pair, we define a flow matrix specific
to each estimated home grid & as NHOD (1, 1), whose element ni}}OD(h, t) represents the mobility flow whose estimated home grid
is h, visiting from grid j to i at time ¢. In this case, the transition matrix of the estimated home / is defined as

n}j.OD(h, 1)
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In the following analysis, we assume that transition matrix T(#) is periodic over a 24-h time interval, as expressed by the relationship
T(t) = T(t + 24) for any non-negative hour ¢. This assumption is consistent with our intent to examine average mobility patterns. It
is worth noting that the periodicity assumption is usually not necessary when the focus shifts to studying anomalous mobility, such
as evacuation from a major earthquake.

3.4 Random walk

By extracting the transition matrices from the data as described above, it is possible to estimate the population distribution in
future hours. In this study, we adopt a random walk methodology to replicate mobility patterns, where the population distribution is
estimated using a Markov process for HOD and OD cases, and a random process in which the next movement does not depends on
the previous one for HD case. By employing this approach, we gain insights into the spatial dynamics of a population, particularly
its movement within urban areas over time. In this framework, the probable movements of individuals at each step are based on their
current states, with no dependence on the previous positions. Although it is acknowledged that this memoryless model cannot fully
encompass the complexities of real-world population dynamics, it serves as a valuable simplification. This allows us to concentrate
on analyzing distinct population dynamics across various scenarios, including OD, HD, and HOD.

As our focus is particularly on whether home information is available, we examine the time-varying distribution of the population
from a certain estimated home grid 4. Specifically, we start from an initial condition in which only grid % is populated such that the
population distribution is defined as follows:

q"P,0) = §°°1,0) = ¢"™°(1,0) = (0, ...,0,410,0, ...,0)T, 4)

where gy, ¢ is taken as the total number of people whose estimated home grid is / from the data, and the superscript T denotes the
transpose of a vector.

In the OD and HOD cases, given the estimated population distribution at any hour #, the population distribution at the next hour
can be determined by multiplying the transition matrix by the estimated population distribution at the current hour. The equations
for the OD and HOD cases are as follows:

q°P(h,t + 1) =TP()d(h, 1), )
q"P(n,t + 1) =THOP (1, 1)§(h, 1). (6)

For the HD case, because the origin information is not provided, the starting place is always considered as home. Given the initial
population distribution p(#, 0), the population distribution at hour ¢ is estimated as:

a"Ph, 1t + 1) =THP(1)q(h, 0). %)

4 Results
4.1 Estimation of population distribution

Figure 2 presents the results of random walk experiments discussed above as an example to illustrate the estimated population
distribution. The initially populated area, 7 = 533945865 (indicated by the red square), is located near Ikebukuro, one of Tokyo’s
city centers. The population value is taken as the total number of people whose estimated home is located in grid / based on the
HOD data, which is 61,666 in this case.

The OD results reveal a discernible trend of population spread within the area of interest over a 96-h period, as shown in Fig. 2a—d.
The absence of home information in the OD data results in the limited predictive capabilities in determining return-home trips. Even
if all individuals share the same estimated home grid, forecasting their journeys back home remains difficult. In contrast, the HD
and HOD scenarios exhibit distinct patterns of expansion at hour 12 and 84, corresponding to the noon, followed by contractions
at hour 24 and 96, representing the midnight. These observations indicate a recurring movement pattern in which individuals leave
during the day and return home in the evening. These results provide evidence that relying solely on the OD information may lead
to an overestimation of the impact of human mobility. Incorporating estimated home information in the HOD and HD scenarios
enables a more comprehensive understanding of population dynamics, highlighting the importance of considering human mobility
patterns and home-based movements in urban areas.

@ Springer



403  Page 6 of 10 Eur. Phys. J. Plus (2024) 139:403

Fig. 3 Hourly entropy change of
population distributions in a 500-h

period for the OD, HD, and HOD 8 . oD
cases. The initial condition of HD
population distribution is the same ’
as that in Fig. 2 36 r HOD
o
€4
i
2 B
0 4
0 100 200 300 400 500
Time (hour)

“LocationMind xPop (¢) LocationMind Inc.

4.2 Entropy of population distribution

We incorporate Shannon entropy as a measure to quantify the information loss and degree of unpredictability of human mobility
[43-45]. Given a population distribution estimated from the initial condition that only grid 4 is populated, (%, t) = (Gn. 1, Gn.2,
., Gn. M), where M denotes the total number of grids, we define the Shannon entropy as follows:

M
qj(h,1) q;j(h,1)
H(h,t) = — log ) (8)
jZ:; il q(h. ) 2 Sl qi(h, 1)

In this measure, a higher entropy value indicates greater unpredictability of human mobility, implying a larger number of expected
locations that individuals might visit. Figure 3 presents the average entropy values of the estimated population distributions across
all grids, 224:] H(h, t)/M, for the OD, HD, and HOD scenarios. The HOD and HD scenarios exhibit consistent periodic variations
from the initial stages. Specifically, during nighttime hours, the entropy values are lower, reflecting the predictable trend of individuals
returning home. Moreover, the entropy of the HOD scenario is lower than that of HD scenario. In the OD scenario, the entropy
values increase at least over the 200-h observation period, eventually reaching a steady-state with higher entropy than that of the
HOD and HD scenarios.

As shown in Fig. 3, the absence of estimated home information in the OD data results in the failure to capture returning trips,
leading to high entropy values. During the evening hours, when individuals are expected to start returning home, the entropy values
are lower in the HOD and HD cases than in the morning hours. However, in the OD case, the entropy values remain high, indicating
a counter-intuitive scenario in which individuals are not considered to return home but are assumed to explore further areas instead.
These findings further highlight the critical importance of incorporating estimated home information to achieve more accurate
predictions of human mobility.

4.3 Spatial distribution of the maximum entropy

Upon observing the dynamics of entropy values within a singular grid in Fig. 3, several questions emerge regarding the comparative
analysis of entropy values across all regions, focusing on identifying which locations exhibit relatively higher or lower entropy
values in comparison to others and exploring the formation of specific spatial patterns among these values. Because of the temporal
variability of entropy values for each location, we adopt the methodology of selecting the maximum entropy value for each grid as
a standardized measure for comparison. Specifically, since a 24-h oscillation is observed in the case of HOD and HD for the first
simulation day in Fig. 3, the maximum entropy value during the initial 24-h period was chosen for analysis. The spatial distribution
of the maximum entropy values with respect to the home locations is shown in Fig. 4, where colors represent the maximum of the
time-dependent entropy of the population distribution estimated from the initial condition that only this grid is populated, within a
24-h period, represented by max;e(o,24) H (h, t).

Figure 4 demonstrates that the maximum entropy in the OD case is higher than that in the other two cases, encompassing all
grids within the designated area of interest in both 2019 and 2021, which is consistent with the results in Fig. 3. It is also validated
that OD aggregation results in a higher entropy than the other two cases, while comparing the same hour in the simulation (see
Supplementary Information). The maximum entropy quantifies the potential complexity that different aggregation methods can
introduce. The high entropy values in the OD aggregation suggest an exaggerated number of potential places that individuals might
visit. This indicates that predictions based solely on the OD data can overestimate the actual spatial extent of human movement. In
contrast, the entropy values corresponding to the population distribution estimated using HOD data exhibit the lowest values. This
implies a higher level of predictability for the HOD case, highlighting the global significance of home locations in determining the
predictability of human mobility patterns.
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Fig. 4 Spatial distribution of maximum entropy values in a 24-h period for the HD (a), HOD (b), and OD (¢) in 2019, and HD (d), HOD (e), and OD (f) cases
in 2021. The underground map layout is based on map tiles by Stamen Design, under CC BY 4.0. Data by OpenStreetMap, under ODbL

In all cases examined, the peripheral areas exhibit relatively lower entropy values. This can be attributed to the lower population
density and the presence of established trip routines among the individuals residing in these areas. In the OD case (Fig. 4c, f), the
entropy values generally increase from the periphery toward the center. However, in the HOD and HD cases (Fig. 4a—d), the central
areas display relatively lower entropy values than their immediate surroundings. This discrepancy arises because the maximum
entropy in OD case is in the midnight, due to the continuous increase in the entropy value for the first several hours, while HOD and
HD predict the recurrent movements of people and the maximum entropy appears in the daytime.

Furthermore, as shown in Fig. 4d, relatively higher entropy values are observed alongside railway or subway lines in the HD
case in 2019. This observation suggests that areas near railway or subway lines exhibit a higher probability of individuals moving to
various destinations, which aligns with an intuitive understanding of the influence of transportation infrastructure on human mobility
patterns.

Moreover, across all three cases, the entropy values in 2021 are lower than those in 2019. This suggests that individuals tend
to visit fewer locations during the post-COVID-19 period than during the pre-pandemic era. This trend can be attributed to several
factors, including changes in people’s attitudes toward travel after the COVID-19 pandemic and the increased prevalence of remote
work facilitated by the enhanced remote working environment, including the introduction of various online meeting applications.

4.4 Population and maximum entropy: fitting and residuals

Next, we seek to understand what brings the mobility patterns indicated by the maximum entropy analysis depicted in Fig. 4. The
size of the population stands out as a factor contributing to the variability in movement patterns observed. It is intuitive to posit that
larger populations are associated with more complex behavior patterns, which, in turn, are likely to lead to higher entropy values. To
segregate the impact of population size on maximum entropy, a regression analysis was conducted, correlating the maximum entropy,
max;e(0,24] H(h, t) for each home grid A, and its respective population size, as shown in Fig. 5. Throughout the evaluated HOD,
HD, and OD cases, maximum entropy values correlate with the population size through logarithmic functions. The correlations
establish a foundational understanding of how population size influences maximum entropy values.

The objective extends to identifying regions where maximum entropy deviates from population-based predictions. By employing
residual plots in Fig. 5, we spotlight regions characterized by significant discrepancies, revealed either as overestimations or
underestimations when compared to population forecasts. Interestingly, an observed negative bias in the fitting for HOD and HD
cases within central regions suggests a diminished level of daytime mobility than what would be anticipated based on population
size alone. This observed reduction in movement could be attributed to a phenomenon where individuals both live and work in the
same central grid, thereby reducing the need for daytime travel to other areas.
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Fig. 5 Correlation between the maximum entropy and population. The logarithm functions represented by red curves are fitted into the relationship between
maximum entropy and population in each grid in the HOD (a), HD (b), and OD (c) cases. The correlation coefficients are 0.706, 0.720, and 0.743 for the
OD, HD, and HOD cases, respectively. The spatial distribution of residuals is plotted for HOD (d), HD (e), and OD (f) cases. Colors in each grid represent
the residual values

5 Discussion

This study aimed to address the limitations of the widely adopted OD aggregation method for human mobility data by introducing
a novel approach called the HOD aggregation method. The HOD method incorporates the estimated home location information,
which is crucial for understanding individual movement patterns and improving the accuracy of human mobility estimation.

A comparison of various data aggregation methods for estimating the population distribution revealed that our proposed HOD
aggregation yielded a more realistic moving pattern than the OD aggregation. Furthermore, an entropy analysis was conducted to
measure the unpredictability of human mobility and evaluate the effectiveness of different approaches. In comparison to the OD
aggregation, the lower entropy values in the HOD aggregation suggest that incorporating estimated home information is crucial for
the prediction of return-home trips. Compare with the HD aggregation, the lower entropy values in the HOD aggregation underscore
the importance of considering origin information, even when analyzing individuals from the same residential area. This indicates
that an individual’s current location also plays a pivotal role in shaping their movement patterns. In summary, by incorporating
home, origin, and destination information, the HOD aggregation captures an additional layer of context compared with the OD or
HD aggregation, which enhances our understanding of how individuals make trips, further reduces the uncertainty and improves
the predictability of human mobility patterns.

It is worth noting that each aggregation method has distinct advantages tailored for different scenarios. OD aggregation is
suitable when focusing on overall mobility flow, such as in assessing citywide traffic demand. HOD aggregation, although more
computationally demanding, provides relatively precise predictions. Meanwhile, HD aggregation might be especially valuable in
simulating epidemic spread. This strikes a balance between computational efficiency and the integrating of the origin data for a more
accurate depiction of human mobility patterns.

From the comparison of mobility patterns between 2019 and 2021, there was a tendency for individuals to visit fewer places in
2021, which is attributable to the fact that the COVID-19 pandemic had a considerable influence on human mobility patterns. This
implies that the variations reflected in the mobility data may not only enhance the current understanding of the spread and size of
epidemics but can also provide insights into the social and economic impacts of the pandemic. Some studies have indicated that the
pandemic could exert a long-lasting impact on our society, including reshaping working styles [46] and reducing income diversity
[47]. Incorporating home information may improve our knowledge of these aspects and reveal the influence of the pandemic. To
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encapsulate the changes in mobility patterns induced by the pandemic, future studies could examine more recent HOD data to
determine whether mobility patterns have reverted to the pre-pandemic state or remained altered.

A potential extension to this study lies in adopting a train-test split methodology to predict population distribution several hours
into the future using different aggregation methods. While the current dataset, limited to the average of aggregated 24-h mobility
flow, constrains our ability to conduct such predictive analysis, the examination of Fig. 2 suggests that the HOD aggregation may
offer promising accuracy in population distribution predictions. Should the predictive potential of HOD aggregation be validated
through the analysis of more granular mobility data collected over extended periods, it would significantly refine our aggregation
approach, offering a more comprehensive metric for assessment beyond traditional methods.

A primary limitation of this study is the dependence of population estimation on a random walk process. Human mobility is
inherently complex, and individual movements are multifaceted and challenging to predict. In this case, using a Markov process
as the sole representation of these intricate behaviors is not a perfect approach to fully represent the nature of human mobility in
the real world. However, previous studies have demonstrated the effectiveness of Markov models in predicting human movements,
particularly in terms of the accuracy of next-location prediction [36, 37]. Therefore, they can serve as suitable simplifications
when the primary focus is on comparing the outcomes of different aggregation methods. Future extensions of this research should
incorporate home information into these Markov models or explore the integration of more realistic models for mobility pattern
prediction.

In addition, there are limitations related to the data. First, the GPS sample did not cover the entire population in the area of interest,
primarily because the data were sourced from mobile phone users. Furthermore, because the data were not randomly selected, some
certain groups, such as older adults and low-income individuals, were less likely to use a mobile phone, potentially leading to biased
results. Moreover, to protect the privacy of individuals, the data from grids with fewer than a certain threshold were truncated,
resulting in the exclusion of nearly half of the users from the data. A thorough robustness check using less biased datasets represents
an avenue for future research exploration.

Despite the limitations, this study provides valuable insights into human mobility research, with implications that extend beyond
the academic realm. Policymakers, urban planners, and transportation authorities can benefit from the improved accuracy of the HOD
aggregation method. The ability to accurately estimate the population distribution and understand human mobility patterns enables
better resource allocation, infrastructure planning, and targeted interventions to enhance public services and optimize transportation
systems. Moreover, the application of the HOD aggregation method is particularly valuable for the estimation of epidemic spread.
As demonstrated in this study, traditional OD methods tend to overestimate the influence of human mobility on epidemic spread.
Using the HOD method, researchers can effectively reduce the risk of misguided interventions.
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