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Abstract In this work, we explore the dynamics of molecules in torsionally stressed DNA subjected to periodic external forces,
specifically microwave radiation. Our approach involves constructing a novel continuum model based on a discrete model. Remark-
ably, this continuum model has not been analytically solved in existing literature, which motivates us to derive analytic solutions for
investigating DNA s dynamical behavior. Our primary objective is to examine the impact of an external field (such as microwave
radiation) on DNA dynamics, potentially affecting its structural integrity. Scientifically, we know that DNA molecules exposed to
microwaves can suffer damage. Here, we focus on stability (or instability) to determine deterministic outcomes. Analytic solutions
are essential for this purpose. The model equations governing torsional DNA (TDNA) behavior are non-autonomous and, in some
cases, not integrable, meaning no exact solutions exist. Consequently, we rely on approximate solutions. Our chosen method is
the extended unified method, allowing us to control errors through parameter selection. We consider two scenarios: when the tor-
sional angle is smaller than one or completely free. Exact solutions emerge only when stacking and chain curvature constants are
equal, otherwise, we derive approximate solutions. Numerical results: Numerical representations reveal that the localization of DNA
molecules depends significantly on the microwave amplitude (MWA) and damping rate. Additionally, a critical MWA or DA value
exists beyond which TDNA undergoes deformation. Stability analysis plays a crucial role in understanding these intricate dynamics.
The present study sheds light on the interplay between external fields, DNA stability, and structural changes. Analytic solutions
provide valuable insights into this complex system, with potential implications for biological processes and health.

1 Introduction

The dynamics of DNA in the absence of an external force were currently studied in the literature’s. Researchers have investigated the
behavior of DNA molecules when confined within pores. Specifically, they measured the escape time for DNA molecules initially
drawn into these tiny spaces. This research provides insights into how DNA responds in confined environments [1]. The dynamics
of DNA molecules in mixed flows, where the ratio of vorticity to strain rate plays a crucial role, have been examined using Brownian
dynamics simulations. Understanding how DNA behaves under varying fluid flow conditions is essential for biological processes
[2]. Scientists have used optical tweezers to probe the elastic response of single plasmoid and lambda phage DNA molecules. These
experiments provide valuable information about DNA’s mechanical properties, especially when subjected to trivalent cations [3].
While, in [4], The dynamics of isolated DNA molecules under homogeneous extensional flow have been reported. Browning dynamics
simulations have been employed to study a single DNA molecule’s behavior in shear flow with internal viscosity. Investigating how
DNA moves and deforms under shear forces contributes to our understanding of its dynamics [5].

The Peyrard–Bishop (PB) DNA model was used to study the dynamical properties of double-stranded DNA using Langevin
dynamics [1–3]. The PB model is a one-dimensional coarse-grained lattice model at the base pair level, considering a continuous
variable at each site which describes the stretching of individual base pairs [4]. The mechanical stability and elasticity properties
of duplex DNA molecules were studied numerically within the frame of a network model with the arrangement of the base pairs.
A discrete worm-like chain model and Brownian dynamics were used to simulate the DNA/RNA buckling transition [5–8]. The
worm-like chain (WLC) model in polymer physics is used to describe the behavior of polymers that are semi-flexible [5]. The
fluctuational dynamics of a tagged base pair in double-stranded DNA was studied [9–12]. This involves the disruption of hydrogen
bonds between the complementary bases and flipping the base out of the helical stack disrupting two contacts [11]. The dynamics
of a double-stranded DNA (dsDNA) segment, as a semi-flexible polymer, in a shear flow, was studied [1, 3, 11, 12]. In physics,
Brownian dynamics is a mathematical approach for describing the dynamics of molecular systems in the diffusive regime [16].
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These studies provide valuable insights into the complex dynamics and properties of DNA, contributing to our understanding of its
function in biological systems.

The effects of helicity and inhomogeneities, which are due to the site-dependent stacking and hydrogen bonding energies in DNA
and protein molecules, on DNA base pairs opening were investigated numerically [13].

The dynamics state damage DNA or DNA at a defect were studied in biochemistry, physical chemistry, medicine and in biology
[14–18]. The study of dynamics of DNA, in this state, had received the attention of many works. To this issue, a discrete model to
describe the nonlinear dynamics DNA molecule with inharmonic potential, which imposes inhomogeneity, were studied in [19].

The dynamics of DNA are investigated mathematically via discrete and continuum models, where solutions of these models have
attired the attention of many research works. In this context, the double-chain model for DNA was studied analytically to extract
the traveling wave solutions [2, 20–23]. Solution of the minimum-energy shape of circular DNA, showing that twist-bend coupling
induces sinusoidal twist waves was performed [24]. Diverse performances for the solitary wave solutions to the DNA PB Model
with Beta-Derivative via three distinctive techniques were investigated [25].

In [26], DNA-torsional model was reduced to the sine-Gordon and double sine-Gordon equations with Caputo fractional was
used. The dynamics of DNA in the presence of an external force were currently studied. the molecular dynamics of DNA under
the influence of external periodic force were investigated within the framework of a mechanical model without simplifications [27].
In [28], the impact of the damping effect and external forces on DNA breathing was investigated. The dynamics of DNA in the
presence of uniform damping and periodic force was studied [29].

The most relevant works to the present study were carried in [30–33]. It is worth mentioning that, some of these works studied
torsional DNA in the absence of an external force, while others studied non-torsional DNA in the presence of an external force. So,
no comparison with the present work is amenable.

The most eminent question is, how to be able to inspect the dynamic behavior and to study the impact on the DNA molecules
structure?

Our objective, here, is to discuss the most acceptable answer.
Here, a continuum model for torsional DNA is considered, in the presence of an external force, which is taken, here, a microwave.

It is derived based on a discrete model which was proposed in [34]. Exact and approximate solutions of the model equations are
derived by using the extended unified method (EUM) [35–37].

2 The model equations and the EUM

2.1 The discrete model

From Fig. 1, the bases will be described by two coordinates Pn , P ′
n , and the rotation angle between next neighbor of bases ϕn

and ϕ′
n , referring to site n ∈ Non the two chain [31, 32].

A discrete model for torsional DNA under the influence of periodic external force was presented [33],
The Lagrange function and equations are

L � T − V , (1)

Fig. 1 Show rotational DNA
molecules
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where T and V are kinetic and potential energies,

T �
[

N∑
n�1

m

2

[
(Ṗn)2 + (Ṗ ′

n)2] +
I

2

[
(ϕ̇n)2 + (ϕ̇′

n)2 ] ,

V � V1 + V2. (2)

The effect of stacking is,

V1 � 1

2

[
N−1∑
n�1

κ1

(
(Pn+1 − Pn)

2 +
(
P ′
n+1 − P ′

n

)2)
κ2

(
(ϕn+1 − ϕn)

2 + G02
(
ϕ′
n+1 − ϕ′

n

)2) +
N∑

n�2

terms, n → n − 1

]
, (3)

and V2 describes the coupling energy associated to the twist ϕn and ϕ′
n [34]

V2 � η1(n)
N−1∑
n�1

Pn
(
1 − cos(ϕn − ϕ′

n) , (4)

where m is center of mass, I the moment of inertia, κ1, κ2 are stacking and chain curvature constants, respectively. η1(n) indicate
the site dependent character of H bonds between complementary DNA molecules.

For convenience, we write,

ϕ(±)
n � ϕn ± ϕ′

n

2
, P (±)

n � Pn ± P ′
n

2
. (5)

In the case of the twist stretching, we have P (+)
n � −P (−)

n and ϕ
(+)
n � −ϕ

(−)
n for simplicity we remove the sub and supper the

superscripts. Here, we investigated the effect of various frequencies of external periodic action on the dynamics of a DNA molecule.
By using Eqs. (1)–(5), the discreet Lagrange equations are,

mR̈n � κ1(Rn+1 + Rn−1 − 2Rn) − η(n) (1 − cos ϕn),

I ϕ̈n � κ2(ϕn+1 + ϕn−1 − 2ϕn) − η(n) Rn sin ϕn + F(t), (6)

wherePn � Rn . The magnitude of the external influence is taken equal to F(n, t) � −β
∂ϕn
∂t + f cos ϕn where the term −β

∂ϕn
∂t

models the effects of dissipation caused by the interaction with the liquid surrounding the DNA molecule, and the term f cos ϕn

models external periodic influence [34].

2.2 The continuum model

As continuum distribution in a plane, where the distance between two successive bases along the axis of the two chain (δ � 3.44A0)
[24, 32].

Rn �R(x , t), ϕn � ϕ(x , t),

Rn±1 �R(x , t) ± δRx (x , t) +
1

2
δ2 Rxx (x , t),

ϕn±1 �ϕ(x , t) ± δϕx (x , t) +
1

2
δ2ϕxx (x , t), (7)

From Eq. (7) into Eq. (6) leads to,

∂2R(x , t)

∂ t2 − κ1
∂2R(x , t)

∂x2 − η(1 − cos(ϕ(x , t))) � 0,

∂2ϕ(x , t)

∂t2 − G
∂2ϕ(x , t)

∂x2 − η R(x , t) sin(ϕ(x , t)) + β
∂ϕ(x , t)

∂t
− f cos(ωt) � 0. (8)

where R and ϕ stand for the distance between two bases and the torsional angle, respectively. In (8),

κ̄1 � κ1δ
2

m , κ̄2 � κ2δ2

I and for simplicity we omit upper bar ( κ̄1 � κ1, κ̄2 � κ2) and η � η1(n)
mI takes two values ηaand ηb by their

concentration, and η � sN ηa − (1 − s ηb) (sN number of A- site of chain [33] ).
To find the solutions of Eq. (8), we distinguish two cases:

(i) when ϕ << 1
(ii) ϕ is arbitrary.

In case (i), consider the two cases; (i1) when cos(ϕ) � 1 − ϕ2

2 , sin(ϕ) � ϕ, (i2) when cos(ϕ) � 1 − ϕ2

2 , sin(ϕ) � η ϕ- ϕ3

3 .
In case (ii), we use the transformation ϕ(x , t) � arctan( 1

2 (v(x , t) − 1
v(x , t) ).
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As Eq. (8) depends explicitly on t due to the presence of an external force, so, the similarity solutions are invoked. To this issue,
we introduce the similarity transformations R(x , t) � r (z, t), ϕ(x , t) � θ (z, t), z � h(t) x , and t � t , and Eq. (3) becomes,

∂2r (z, t)

∂ t2 − κ1 h(t)2 ∂2r (z, t)

∂z2 − η (1 − cos(θ (z, t))) � 0,

∂2ϕ(x , t)

∂t2 − κ2 h(t)2 ∂2θ (z, t)

∂z2 − η r (z, t) sin(θ (z, t)) + β
∂θ (z, t)

∂t
− f cos(ωt) � 0. (9)

Exact and approximate solutions of Eq. (9) are found by using the EUM, which asserts that the solutions of nonlinear evolution
equations are expressed in polynomial and rational forms in an auxiliary function the satisfies appropriate auxiliary equations.

2.3 Brief account of the EUM

2.3.1 Polynomial solutions

For Eq. (9), these solutions are written,

r (z, t) � A(t)
n1∑
i�0

aiφ(z, t)i , θ (z, t) � B(t)
n2∑
i�0

biφ(z, t)i ,

φz(z, t) � λ

k∑
i�0

ciφ(z, t)i , φt (z, t) � μ(t)
k∑

i�0

ciφ(z, t)i . (10)

Here, the integrability of Eq. (9) is related to the existence of exact solutions of (10). In fact (10) holds if there exist integers n1,
n2and k. To examine this, two conditions have to hold, the balance condition (BC) and the consistency condition (CC). This depends

heuristically on the choice of the cases for θ (x , t) mentioned in the above. When taking, cos(θ ) � 1 − θ2

2 , sin(θ ) � θ , the BC reads
n1 � n2 � 2(k − 1). For CC, we find that, the number of equations result, by setting the coefficients of φ(z, t) j , j � 0, 1, 2, ...etc
equal to zero, is (4k − 3), and the number of parameters { a j , c j , b j }is (2k + 1). The CC reads 4k − 3 − (2k + 1) ≤ l, where l is the
highest order derivative (l � 2), so 1 ≤ k ≤ 3.

It is worth mentioning that when Eq. (9) is integrable, the solutions of the equations that result from setting the coefficients of
φ(z, t) j , j � 0, 1, 2, ...etc equal to zero are consistent. If Eq. (9) is not integrable, in the sense that no exact solution exists, we are
led to find approximate solutions. This is carried out by taking some coefficients of φ(z, t) j , j � 0, 1, 2, ...etc are not identically
zero. In this case, they are considered as errors in the solution (residue terms (RTs)).

As Eq. (9) depends explicitly on time, then similarity solutions are invoked. In this case, the errors are time dependent. The
maximum error (ME) is controlled by an adequate choice of the values of the parameter in the RTs.

It is observed that the EUM, used here, is of lower time cost in symbolic computation when compared with the method of Lie
symmetry as the later requires a hierarchy of long steps.

2.3.2 Rational solutions

The rational solutions of Eq. (9) are expressed in the form,

r (z, t) � A(t)
a1φ(z, t) + a0

s1φ(z, t) + s0
, θ (z, t) � B(t)

b1φ(z, t) + b0

s1φ(z, t) + s0
,

gz(z, t) � λ

j�k∑
j�0

c jφ(z, t) j , φt (z, t) � μ(t)
j�k∑
j�0

c jφ(z, t) j . (11)

A discussion similar to that given in Sect. 2.3.1 holds.

3 When ϕ << 1, cos(ϕ) � 1 − ϕ2

2 , sin(ϕ) � ϕ

In this case, Eq. (9) reduce to,

− κ1 h(t)2 ∂2

∂x2 r (z, t) +
∂2

∂t2 r (z, t) − 1

2
η θ (z, t)2 � 0,

− κ2 h(t)2 ∂2

∂x2 θ (z, t) − η r (z, t)θ (z, t) + β
∂

∂t
θ (z, t) +

∂2

∂t2 θ (z, t) − f cos(tω) � 0. (12)
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3.1 Polynomial (exact) solutions

When k � 2 and n1 � n2 � 2. in this case, the solutions of Eq. (12) are expressed by,

r (z, t) � A(t)
(
a2φ(z, t)2 + a1φ(z, t) + a0

)
,

θ (z, t) � B(t)
(
b2φ(z, t)2 + b1φ(z, t) + b0

)
, (13)

and the auxiliary equations are,

φz(z, t) � λ
(
c2φ(z, t)2 + c1φ(z, t) + c0

)
,

φt (z, t) � μ(t)
(
c2φ(z, t)2 + c1φ(z, t) + c0

)
. (14)

From Eqs. (13) and (14) and by setting the coefficients of φ(z, t) j , j � 0, 1, 2, ...etc equal to zero leads to,

A(t) � 6c2
2

(
μ(t)2 − κ2λ

2h(t)2
)

a2η
, B(t) � 6c2

2

√
2κ1λ2h(t)2 − 2μ(t)2

√
κ2λ2h(t)2 − μ(t)2

b2η
, κ2 � κ1,

μ′′(t) � 1

2a2b2
2μ(t)

(
κ2

1 λ4h(t)4(a2
(−4b2

2

(
c2

1 + 2c0c2
)

+ 12b0b2c
2
2 + 6b2

1c
2
2

)
− 3a1b

2
2c1c2) − a1b

2
2c2μ(t)2(3c1μ(t)2 + 5μ′(t)

)− 2a2
(−3b2

1c
2
2μ(t)4

− 6b0b2c
2
2μ(t)4 + b2

2

(
5c1μ(t)2μ′(t) + 2c2

1μ(t)4 + 4c0c2μ(t)4 − κ1λ
2h′(t)2

+μ′(t)2)) + λ2h(t)2κ1
(
a1b

2
2c2
(
6c1μ(t)2 + μ′(t)

)
+ 2a2

(−6b2
1c

2
2μ(t)2

− 12b0b2c
2
2μ(t)2 +b2

2

(
c1μ

′(t) + 4c2
1μ(t)2 + 8c0c2μ(t)2)))

+2b2
2κ1λ

2h(t)
(
2a1c2μ(t)h′(t) + a2

(
4c1μ(t)h′(t) + h′′(t)

)))
,

μ′(t) � 1

P

(
κ2

1 λ4h(t)4(a1b2c2 + a2(5b2c1 − 6b1c2)) − 2λ2h(t)2(a1b2c2

+ a2
(
5b2c1 −6b1c2))κ1μ(t)2 + μ(t)4(a1b2c2 + a2(5b2c1 − 6b1c2))

−4a2b2κ1λ
2h(t)μ(t)h′(t)

)
, P � a2b2

(
κ1λ

2h(t)2 − 5μ(t)2),
b1 � 2b2c1

3c2
, a0 � 3

(
a3

2

(
6b2

0c
2
2 − 2b2

2c
2
0

)
+ a2

1a2b2
2c0c2

)
b2
(
2a2

2

(
18b0c2

2 + b2
(
c2

1 − 12c0c2
))

+ 3a2
1b2c2

2

) ,

b0 � 5a2
1b2

12a2
2

, c1 � 2a1c2

a2
, μ(t) �

√
9a2

2β2 + 64a2
1c

2
2κ1λ2h(t)2 − 3a2β

8a1c2
,

h′(t) �
13401a2β

2
(√

9a2
2β2 + 64a2

1c
2
2κ1λ2h(t)2 − 3a2β

)
139776a2

1c
2
2κ1λ2h(t)

+
h(t)2

a2
1c

2
2κ1λ2⎛

⎝60992
√

9a2
2β2 + 64a2

1c
2
2κ1λ2h(t)2

a2
− 325920β

⎞
⎠, c0 � 221a2

1c2

252a2
2

. (15)

In Eq. (15), equations for μ′(t) and μ′′(t)exist, so, the compatibility equation (μ′(t))′-μ′′(t) � 0 is used, which gives rise to,

h(t) �
(√

7a2

)√
9β2

√
f
√

η
√

cos(tω) + 14 4
√

2 f η cos(tω)

6 23/8a1βc2
√

κ1λ
. (16)

By using Eqs. (13)–(16), the exact solution of (12) is,

R(x , t) �
⎛
⎝9a2β

2 − a2

(
9β2 + 28 4

√
2
√

f
√

η
√

cos(tω)
)

17472a1a2c2η

⎞
⎠

(
78

√
217a1c2tanh(K )403a1c2tanh

2(K ) + 755a1c2

)
,

ϕ(x , t) � −
⎛
⎝9a2β

2 − a2

(
9β2 + 28 4

√
2
√

f
√

η
√

cos(tω)
)

672
√

2a1a2c2η

⎞
⎠

(
4
√

217a1c2tanh(K ) + a1c2
(
31tanch2(K ) + 21

))
,
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K � 1

6

√
31

7

√
a2

1c
2
2

a2
2

(

√
7x

√
a2

2

(
9β2

√
f
√

η
√

cos(tω) + 14 4
√

2 f η cos(tω)
)

6 23/8a1βc2
√

κ1λ

+ H (t)), H (t) �
∫ t

0
μ(s) ds; μ(t) �

√
9a2

2β2 + 64a2
1c

2
2κ1λ2h(t)2 − 3a2β

8a1c2
, (17)

where h(t) is given in Eq. (16). It is worth mentioning the model equation in (8), in present section, exact solutions hold when
κ2 � κ1. In the next sections, we assume that κ2 	� κ1, so, only approximate solutions are derived.

3.2 Rational (approximate) solution

3.2.1 When k � 2

The rational solution of Eq. (12) is expressed by,

r (z, t) � a1φ(z, t) + a0

s1φ(z, t) + s0
, θ (z, t) � b1φ(z, t) + b0

s1φ(z, t) + s0
, (18)

together with auxiliary equations in Eq. (14). From (14), (18) into Eq. (12), and when a part of the coefficients of φ(z, t) j , j � 0,
1, 2, ...etc equal to zero leads to,

μ′(t) � 1

c0s0(b1s0 − b0s1)

(
a0b0ηs0 + 2b0c

2
0s

2
1

(
κ2λ

2h(t)2 − μ(t)2) + f s3
0 cos(tω) + b1c0s

2
0

(
c1κ2λ

2h(t)2 − μ(t)(β + c1μ(t))
)

+c0s0s1
(−κ2λ

2(2b1c0 + b0c1)h(t)2 + μ(t)(b0(β + c1μ(t)) + 2b1c0μ(t))
))

,

b1 � 2a0b0s1 − a1b0s0

a0s0
, h(t) �

√
a0s1 − a1s0

√
c1s1 − 2c2s0μ(t)√

κ2λ2(a0s1 − a1s0)(c1s1 − 2c2s0)
,

c0 � c1s0

2s1
, c1 � c2ms0

s1
, a0 � n(a1s0)

s1
, m � 2n2

2n − 1
.

(19)

The equation for μ′(t)solves to,

μ(t) � − 2a1ηn2

βc2ms0 − βc2mns0
+ Ae−βt +

2 f ns1(β cos(tω) + ω sin(tω))

b0c2m(n − 1)
(
β2 + ω2

) . (20)

Maximum error evaluation

It is worthy to mention that the non-zero coefficients or RTs are the errors. For an adequate choice of the parameters in the RSs as
in what follows,

n � 1.1, s1 � 0.5, b0 � 0.3, s0 � 0.5, κ2 � 5, κ1 � 5.001,

a1 � 0.01, f � 0.2, η � 0.01, c2 � 0.3, β � 0.01, (21)

the errors are given in Table 1.
In the Table 1, μ(t) is given in Eq. (20). The maximum error is shown in Fig. 2
The solutions of Eq. (12) are,

R(x , t) � P1

Q1
, P1 � a1

(
m − 2n +

√
(m − 2)m tanh

(√
(m − 2)m(c2s0)

2s1

1

λ
√
a1c2κ2(m − 2)(n − 1)(

x
√
a1(n − 1)

√
c2(m − 2)

(
− 2a1ηn2

βc2ms0 − βc2mns0
+ Aeβ(−t) +

2 f ns1(β cos(tω) + ω sin(tω))

b0c2m(n − 1)
(
β2 + ω2

)
))

+ H (t)

))
,

Table 1 The errors that result
from inserting of Eq. (21) into the
residue terms

−1.5125000000000012 × 10−6 − 6μ(t) + 0.00183333 cos(tω) + 0.00045121

1.5125000000005006×10−10μ(t)2 − 4.5375000000000036.×10−6μ(t) + 0.0055 cos(tω) + 0.00143545

2.025 × 10−10μ(t)2 − 4.525000000000004×10−6μ(t) + 0.00548485 cos(tω) + 0.00152098

1.500000000000497×10−10μ(t)2 − 1.5000000000000013×10−6μ(t) + 0.00181818 cos(tω) + 0.000536737

3.0028571665293494×10−21 − 0.000206612 cos(tω), 3.0028571665293494×10−21 − 0.000206612 cos(tω)
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Fig. 2 By using Eq. (21). It shows
that the maximum error is
6 × 10−3

Q1 � s1

[
−2 + m +

√
(m − 2)m tanh

(√
(m − 2)m(c2s0)

2s1

1

λ
√
a1c2κ2(m − 2)(n − 1)(

x
√
a1(n − 1)

√
c2(m − 2)

(
− 2a1ηn2

βc2ms0 − βc2mns0
+ Aeβ(−t) +

2 f ns1(β cos(tω) + ω sin(tω))

b0c2m(n − 1)
(
β2 + ω2

)
))

+ H (t)

))
,

(x , t) � � P2

nQ1
, P2 � b0

[
−2n + m(2n − 1) +

√
(m − 2)m(2n − 1) tanh

(√
(m − 2)m(c2s0)

2s1

x
√
a1(n − 1)

√
c2(m − 2)

λ
√
a1c2κ2(m − 2)(n − 1)(

− 2a1ηn2

βc2ms0 − βc2mns0
+ Aeβ(−t) +

2 f ns1(β cos(tω) + ω sin(tω))

b0c2m(n − 1)
(
β2 + ω2

)
)

+ H (t)

)]
,

H (t) � − 2a1ηn2t

βc2ms0 − βc2mns0
+

A − Aeβ(−t)

β
+

2 f ns1(β sin(tω) + ω(− cos(tω)) + ω)

b0c2m(n − 1)ω
(
β2 + ω2

) . (22)

The results in Eq. (22) are displayed 3D for R(x, t) and ϕ(x , t) in Fig. 3a (i)–(vi) and b(i)–(iv).
The 3D plot are represented for R, by varying the parameters η, β, κ1and f .
Figure 3a(iv), when compared Figs. (ii)–(vi) with Fig. 3a(i), we find that R varies significantly for increasing η, β, and f But

there is no significant change for greater value of κ1. Also, when comparing Fig. (iii) and (iv), we find that deformation in the DNA
diameter when β > 0.05. On the other side, when comparing Fig. (v) and (vi), deformation occurs when f >0.25.

The angle deviation ϕ(x , t) is displayed in Fig. 3b(i)–(vi)
The 3D plot are represented for ϕ, by varying the parameters η, β, κ1and f .
Figure 3b(i)–(iv), when comparing. (ii)–(iv), we find that no significant change occurs in ϕ. when varying the parameters η,f and

β.

3.2.2 When k � 1

Consider Eq. (13) and the auxiliary equations,

φz(z, t) � λ(c1φ(z, t) + c0), φt (z, t) � μ(t)(c1φ(z, t) + c0). (23)

From Eq. (18) and (23) into Eq. (12) gives rise to,

μ′(t) � κ2λ
2(c1s0 − 2c0s1) h(t)2 − s0μ(t)(β + c1μ(t)) + 2c0s1μ(t)2

s0
,

A′′(t) � a0η A(t)2

s0
+

f s0 cos(tω)
σ

− 2b1c0μ(t) A′(t)
b0

+ A′(t)
(

2c0s1μ(t)

s0
− β

)
,

A′(t) � − 1

2a0βs2
0

(
−ηs0A(t)2(2a2

0 − b2
0σ

2)− 2a0 f s3
0 cos(tω)

b0σ
+ 2c0(a1s0 − a0s1)A(t)

(
(κ1 − κ2)λ

2(c1s0 − 2c0s1)h(t)2 + βs0μ(t)
))

,

b1 � a1b0

a0
, h(t) �

√
β
√
s0

√
μ(t)√

(κ1 − κ2)
(−λ2

)
(c1s0 − 2c0s1)

, a0 � −b0σ√
2

,

c1 � c0ms1

s0
, a1 � n(b0σ s1)

s0
. (24)
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Fig. 3 a (i)–(iv) are displayed when n � 1.1, s1 � 0.5, b0 � 0.3, s0 � 0.5, κ2 � 5, κ1 � 5.001, a1 � 0.01, f � 0.2, η � 0.01, c2 � 0.3, β � 0.01.
b (i)–(iv). The caption as in Fig. 3a(i)–(vi) is used
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Fig. 3 continued

The compatibility equation, (A′(t))′-A′′(t) � 0 leads to,

A(t) �

(
4
√

2
√
s0

)√
f
(

2
√

2a1c0s0μ(t) cos(tω) + b0σ(2c0s1μ(t) cos(tω) + s0ω sin(tω))
)

b3/2
0

√
β
√

ησ 3/2
. (25)

The first equation in Eq. (24) integrates to,

μ(t) � − βκ1s0e
βκ1s0

(
A− t

(κ1−κ2)s0

)

c0κ1(m − 2)s1e
βκ1s0

(
A− t

(κ1−κ2)s0

)
+ c0κ2(2 − m)s1 − 1

. (26)

Maximum error evaluation

It is worth mentioning that the non-zero coefficients or RTs are the errors. For an adequate choice of the parameters in the rational
solution as in what follows,

n � −0.7, β � 1.2, c0 � 0.05, b0 � 1.1,m � 2.1, s1 � 0.5, σ � 3,
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Table 2 The errors when
inserting Eq. (27) into the residue
terms

0.0006ω sin(tω) + 2.5707106781189444 × 10−6μ(t) cos(tω)

−1.7591518356795715 × 10−6 − 6μ(t)(1.μ(t) + 1584.)
√

0.0000707107μ(t) cos(tω) + 1.2ω sin(tω)

0.000499646ω sin(tω) − 1.539257856219625 × 10−6μ(t)2√
0.0000707107μ(t) cos(tω) + 1.2ω sin(tω)

+μ(t)
(
−0.00243818

√
0.0000707107μ(t) cos(tω) + 1.2ω sin(tω) − 9.316095268233119 × 10−6 cos(tω)

)
0.000104019ω sin(tω) − 4.3280102989382175 × 10−6μ(t) cos(tω)

−2.500000000000368 × 10−8μ(t) cos(tω) − 0.000424264ω sin(tω) − 1.7927669529665738 × 10−6 cos(tω)

(1.μ(t) + 283.984) + 1.2439081921457883 × 10−6μ(t)(1.μ(t) + 1008.)
√

0.0000707107μ(t) cos(tω) + 1.2ω sin(tω)

Fig. 4 By using Eq. (27, it shows
that the absolute maximum error
is 1 × 10−3

s0 � 1.2, κ2 � 0.7, κ1 � 1.1, f � 0.5, η � 0.3, ω � 0.5, A � 1.2, (27)

the errors (RTs) are given in Table 2.
In the Table 2, μ(t) is given in Eq. (26). The maximum error is shown in Fig. 4
The solution of Eq. (12) are,

R(x , t) � − 1

23/4Q

⎡
⎢⎢⎣√b0

√
σ (−2nAms1e

( c0ms1
s0

(
√

β
√
s0x

√
μ(t)√

c0(κ1−κ2)λ2(−(m−2))s1
+H (t)))

+
√

2ms0 + 2n)

√√√√ f
(

2c0

(√
2n + 1

)
s1μ(t) cos(tω) + s0ω sin(tω)

)
βb0σ

⎤
⎥⎥⎦,

ϕ(x , t) � 1

Q

⎡
⎢⎢⎣ 4

√
2
√
b0

√
σ

⎛
⎝ms0 − √

2n

⎛
⎝Ams1e

( c0ms1
s0

(
√

β
√
s0x

√
μ(t)√

c0(κ1−κ2)λ2(−(m−2))s1
+H (t)))

− 1

⎞
⎠
⎞
⎠
√√√√ f

(
2c0

(√
2n + 1

)
s1μ(t) cos(tω) + s0ω sin(tω)

)
βb0σ

⎤
⎥⎥⎦,

Q � √
η
√
s0

⎛
⎝Ams1e

( c0ms1
s0

(
√

β
√
s0x

√
μ(t)√

c0(κ1−κ2)λ2(−(m−2))s1
+H (t)))

+ ms0 − 1

⎞
⎠.

(28)

The results in Eq. (28) are displayed in Fig. 5(i)–(iii)
The 3D plot, contour plot and for different values of t. Fig 5(iii), shows Cavity soliton. Figure 5a(iii) shows

4 General case

Here, ϕ is taken free. So, the transformation ϕ � arctan ( 1
2 (v − 1

v
)) is introduced into Eq. (8) (or into Eq. (9)) and we have,(

v(x , t)2 + 1
)
(Rtt (x , t) − κ1Rxx (x , t)) + 2ηv(x , t) − η

(
v(x , t)2 + 1

) � 0,(
v(x , t)2 + 1

)
vt t (x , t) − 1

2
η R(x , t)

(
v(x , t)2 − 1

)3
+ 2v(x , t)

(
β
(
v(x , t)2 + 1

)
vt (x , t)

+κ2
(
2v(x , t)vx (x , t)2 − (

v(x , t)2 + 1
)
vxx (x , t)

)− 2v(x , t)vt (x , t)2)
− f cos(tω)v(x , t)

(
v(x , t)2 + 1

)2 � 0. (29)

123
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Fig. 5 a(i)–(iii) are displayed by using Eq. (27) (n � −0.7, β � 1.2, c0 � 0.05, b0 � 1.1, m � 2.1, s1 � 0.5, σ � 3, s0 � 1.2, κ2 � 0.7, κ1 � 1.1,
f � 0.5, η � 0.3, ω � 0.5, A � 1.2. b (i), (ii) show 3D and contour plot of ϕ at the same caption of 5a(i)–(iii)
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Table 3 The errors from
plugging Eq. (34) in the residue
terms

0.168μ(t)2 + 0.00519885 cos(tω) − 0.0000372998

0.1323μ(t)2 − 0.00686375 cos(tω) − 0.0000408462

−0.304555μ(t)2 + 0.00567713 cos(tω) + 0.0000304702

−0.240138μ(t)2 + 0.00247206 cos(tω) + 0.0000180777

0.0114629μ(t)2 + 0.000941555 cos(tω) + 1.0335937499999998 × 10−7

Fig. 6 Is displayed by using Eq.
(34). The absolute maximum error
is 2 × 10−3

In Eq. (29), the transformations R(x , t) � r (z, t), v(x , t) � V (z, t), z � h(t)x , and t � t , are introduced. Thus Eq. (29) becomes,(
V (z, t)2 + 1

)(
rtt (z, t) − κ1h(t)2rzz(z, t)

)
+ 2ηV (z, t) − η

(
V (z, t)2 + 1

) � 0,(
V (z, t)2 + 1

)
Vtt (z, t) − 1

2
ηr (z, t)

(
V (z, t)2 − 1

)3
+ 2V (z, t)

(
β
(
V (z, t)2 + 1

)
Vt (z, t)

+κ2h(t)2(2V (z, t)Vz(z, t)
2 − (

V (z, t)2 + 1
)
Vzz(z, t)

)− 2V (z, t)Vt (z, t)
2)

− f cos(tω)V (z, t)
(
V (z, t)2 + 1

)2 � 0. (30)

4.1 Solutions of Eq. (29)

Here, the polynomial solutions take the form,

r (z, t) � a2φ(z, t)2 + a1φ(z, t) + a0, V (z, t) � b2φ(z, t)2 + b1φ(z, t) + b0,

b0 � a0b2

a2
, b1 � a1b2

a2
, (31)

together with the auxiliary Eq. (14), and we have,

a0 � − a2
1

3a2
, h(t) �

√
−6a3

2

(
b2 f cos(tω) + 4c2

2μ(t)2
)− 7a4

1b
2
2η + 9a4

2η

2
√

13a1
√
a2c1c2

√
κ2λ

,

b2 � 3a2
2√

7a2
1

, c0 � −12a3
1c1c2 − 13a2a2

1c
2
1

6a3
2

, a2 � a1c1m, c2 � −13

12
c2

1m,

μ′(t) � 18
√

7a2a1c2 f cos(tω) − 18
√

7a2
2c1 f cos(tω) − 7a2

1c2(33a1η + 8βc2μ(t))

56a2
1c

2
2

. (32)

The last equation in Eq. (32) integrates to,

μ(t) � 9009a1η

2366βc2
1m

+
2
(

1183Ac1e−βt − 675
√

7 f (β cos(tω)+ω sin(tω))
β2+ω2

)
2366c1

. (33)

The errors (RTs), by taking,

η � 0.005, a1 � 0.002,m � −0.5, c1 � 0.7, κ2 � 1.5, κ1 � 1.4, β � 0.3, f � 0.02, A � 0.001, (34)

are given in Table 3,
Where μ(t)is given in Eq. (33).The maximum error is shown in Fig. 6
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Finally, the solutions of Eq. (29) are,

R(x , t) � 1

507c2
1m

(
a1450 tanh

[
1

61516c2
1
√

κ2λ(a1c1m)3/2

(
c1

(
−1092

√
78x

√
K + 30758c2

1
√

κ2λH (t)(a1c1m)3/2
))]

+c1

(
173 + 108 tanh

[
1

61516c2
1
√

κ2λ(a1c1m)3/2

(
c1

(
−1092

√
78x

√
K + 30758c2

1
√

κ2λH (t)(a1c1m)3/2
))])2

⎞
⎠,

v(x , t) � 1

169
√

7c1

(
450c1tanh

[
c1

61516c2
1
√

κ2λ(a1c1m)3/2

(
- 1092

√
78x

√
K + 30758c2

1
√

κ2λH(t)(a1c1m)3/2))]

+ c1

⎛
⎝173 + 108tanh

[
1

61516c2
1
√

κ2λ(a1c1m)3/2

(
c1

(
−1092

√
78x

√
K + 30758c2

1
√

κ2λH(t)(a1c1m)3/2
))]2

⎞
⎠
⎞
⎠
⎞
⎠,

K � − m3a3
1c

3
1

[
3c2

1 f m2 cos(tω)√
7

+
1

1192464β2
(
β2 + ω2

)2 (e−2βt(9009a1η
(
β2 + ω2)eβt

+2mβc1(−675
√

7 f eβt (β cos(tω) + ω sin(tω)) 1183Ac1
(
β2 + ω2)))2],

ϕ(x , t) � tan−1
(

1

2

(
v(x , t) − 1

v(x , t)

))
,

H (t) � 99a1ηt

26βc2
1m

+
A − Ae−βt

β
− 675 f (β sin(tω) + ω(− cos(tω)) + ω)

169
√

7c1ω
(
β2 + ω2

) . (35)

The results in Eq. (35) are displayed in Fig. 7

5 Velocity and heating of DNA

Genome size refers to the amount of DNA contained in a haploid genome expressed either in terms of the number of base pairs,
kilo-bases (1kb � 1000bp), or as the mass of DNA in picograms (1pg � 10−12g). Genome, for a human contains about 3 billion
bases (3 × 109) and about 20,000 genes on 23 pairs of chromosomes. Each base pair measures approximately 340pm, which means
340 picometers. A picometer is equal to 1 × 10−12 meters. The velocity is defined by,

v(t) � Nl0
∫
R | R(x̄ , t)t | dx̄∫

R | R(x̄ , t)x̄ | dx̄
, x̄ � x

Nl0
, (36)

where, N � 3 × 109and l0 � 3.4 × 10−10 m. By considering the results in Eq. (17), the velocity is displayed In Fig. 8
The temperature of DNA due to the presence of microwave (MW) is estimated. MW is an electromagnetic wave with a relatively

long wavelength and low frequency. To this issue, the Boltzmann equation is used,

KBT=
m0Nl20

2
< v2 >, (37)

where, m0 � 10−12g � 10−15Kg, T is the temperature, and KB is the Boltzmann constant (KB � 1.38 × 10−23 Kgm2 K−1 s−2),
and,

< v2 >�
∫
R+

∫
R

(| R(x̄ , t)t |)2dx̄dt∫
R+

∫
R

(| R(x̄ , t)x̄ |)2dx̄dt
, x̄ � x

Nl0
. (38)

From Eq. (38) the temperature is T � 82.8 K.

6 Stability of the initial value problem

Here, a study of the stability of the DNA dynamics in the presence of microwave is carried. This study can help to depict if the
DNA molecules can be damaged or not, which depends on stability (or instability of the motion of DNA molecules. It is known
scientifically that, the energy of microwaves is not sufficient to break a chemical bond in DNA, but genotoxic effects may occur by
indirect mechanisms via generation of oxygen free radicals or a disturbance in DNA-repair processes.

Here, the stability of initial value problem is considered. To this issue, assume that
∂2R(x , t)

∂ t2
|t�0� 0, ∂2ϕ(x , t)

∂ t2
|t�0� 0, ∂ϕ(x , t)

∂ t |t�0� 0, R(x , 0) � R0(x),

123
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Fig. 7 a(i)–(iii) are displayed when η � 0.005, a1 � 0.002, m � −0.5, c1:==0.7, , κ2 � 1.5, κ1 � 1.4, β � 0.3, f � 0.02, A � 0.001. b (i), (ii) show
3D and contour plot of ϕ at the same caption of 7a(i)–(iii)
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Fig. 8 The velocity is displayed
against t for the parameters in Eq.
(34)

and ϕ(x , 0) � ϕ0(x). So, in this case Eq. (8) reduces to,

− κ1
∂2R0(x)

∂x2 − η (1 − cos(ϕ0(x))) � 0,

− κ2
∂2ϕ0(x)

∂x2 − f − ηR0(x) sin(ϕ0(x)) � 0. (39)

Eq. (39) describes the solutions of the initial values. For simplicity, in Eq. (39), we take sin(ϕ0(x)) � ϕ0(x) and cos(ϕ0(x))

� 1 − ϕ0(x)2

2 , so, Eq. (39) becomes,

−κ1
∂2R0(x)

∂x ∂x
− 1

2
ηϕ0(x)2 � 0, − κ2

∂2ϕ0(x)

∂x ∂x
− f − ηR0(x)ϕ0(x) � 0. (40)

Eq. (40) are solved by the same method in the above and we get the exact solutions,

R0(x) �
√

2 f√
3

+ f 4
√

κ2

23/4√η 4
√

κ1

⎛
⎝−3 tanh2

⎛
⎝ 4
√

2 f√
3

+ f 4
√

ηx

27/8 8
√

κ1κ
3/8
2

⎞
⎠− √

3 + 4

⎞
⎠,

ϕ0(x) �
√

2 f√
3

+ f 4
√

κ1

4
√

2
√

η 4
√

κ2

⎛
⎝3 tanh2

⎛
⎝ 4
√

2 f√
3

+ f 4
√

ηx

27/8 8
√

κ1κ
3/8
2

⎞
⎠− √

3

⎞
⎠. (41)

Now, we use the perturbation expansion,

R(x , t) � R0(x) + ε1u(x , t), ϕ(x , t) � ϕ0(x) + ε2v(x , t), (42)

into Eq. (8) we get the equation,

M

(
ε1

ε2

)
, M �

(
a11 a12

a21 a22

)
,

a11 � utt (x , t) − κ1uxx (x , t), a12 � −ηϕ0(x)u(x , t), a21 � −ηϕ0(x)v(x , t),
a22 � −ηR0(x)v(x , t) + βvt (x , t) − κ2vxx (x , t) + vt t (x , t) − f cos(tω).

(43)

Eq. (43) solves to det(M) � 0, which leads to,

−η2ϕ0(x)2u(x , t)v(x , t) − (utt (x , t) − κ1uxx (x , t))
ηR0(x)v(x , t) − βvt (x , t) + κ2vxx (x , t) − vt t (x , t) + f cos(tω) � 0.

(44)

The Eq. (44) is solved when subjected to the boundary conditions (BCs) are, | u(±∞, t) |< K1and | v(±∞, t) |< K2. It is worth
mentioning that, the solutions in Eq. (41) verifies these conditions. To discuss the stability of the solution in Eq. (41), a solution of
Eq. (44) has to be derived, which is not amenable. So, consider the following theorem.

Theorem 1 The solutions of Eq. (39) that satisfy the aforementioned BCs are unstable.
Proof. Assume the contraction, that is the solutions of Eq. (44) are stable. That is, they are periodic in time. Now take,

utt (x , t) − κ1uxx (x , t) � mu(x , t),

which gives rise to,

u(x , t) � cos(hx − ct), m � −c2 + h2κ1, (45)
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Assume that v(x , t) � V (x) cos(tω), it is found that Eq. (44) reduces to,

ξ2(d − ξ2r
)

+
(
1 − ξ2) ∂

∂ξ

((
1 − ξ2)∂Q(ξ )

∂ξ

)
� 0,

r � −
3
(

2
√

3 + 3
)
f η

√
κ1√

2
√

κ2
, d � −

3c2
√

2 f√
3

+ f
√

η 4
√

κ2

23/4 4
√

κ1
+

(
2
√

3 + 3
)√

6 f η
√

κ1
√

κ2
+

3
√

2 f√
3

+ f
√

ηh2κ
3/4
1

4
√

κ2

23/4 . (46)

The Eq. (46) solved to,

Q(ξ ) � k +
1

24

(
4cξ2 + 4log(1 − ξ )(−3d + 3k + 4r ) + 3(r − d)log2(1 − ξ )

4log(ξ + 1)(4c − 3(d + g)) − 6log(2) (c − d)log(ξ + 1) − 6log(2) (r − d)log(ξ − 1)

+3(c − d)log2(ξ + 1) + 6(c − d)Li2

(
1 − ξ

2

)
+ 6(c − d)Li2

(
ξ + 1

2

))
, (47)

where k and g are arbitrary parameters and Li2is the logarithmic integral of the second kind, Li2(x) � ∫ x
2

dt
lnt .

Indeed, the solution in Eq. (47) is unbounded, so, the BCs are not satisfied. This complete the proof �.

From Theorem 1, it is concluded that, in the dynamics of DNA molecules exposed to microwave, molecules, deformation can
occur.

7 Conclusions

The extended unified method is used to find these solutions, and the errors in the approximate solutions are controlled by choosing
suitable parameters in the residue terms. The results of this model are typically displayed graphically, which can provide a visual
understanding of the dynamics at play.

One of the key findings of this model is that the DNA diameter varies significantly depending on the strength of the hydrogen
bond, the decaying rate, and the microwave amplitude. It is also observed that deformation in the DNA occurs when the damping
rate and the microwave amplitude exceed a critical value. The stability of the initial value problem is analyzed in this model, and it
is found that the solution is unstable, which impacts DNA deformation. This instability could have significant implications for our
understanding of DNA structure and function. For a more detailed understanding, you may want to look into resources that delve
into the structural features of the DNA double helix and their effects on its elastic mechanical properties. There are also studies
that discuss the mathematics of DNA structure, mechanics, and dynamics. These resources might provide more insights into the
continuum model for the dynamics of torsional DNA molecules. The major conclusion from this model is the recommendation to
avoid exposure to microwaves, especially when they are of high amplitudes. This is an important consideration for maintaining the
integrity of DNA structures.
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