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Abstract We study 5DBrans–Dicke theory in the framework of (gravitational) baryogenesis and primordial light element formation.
Such a model is able to explain the present cosmic accelerated expansion without recurring to matter fields in 5D or dark energy
in 4D. In fact, the 5D to 4D reduction arises a space-matter tensor of geometrical origin that plays the role of a new ingredient
on-shell. For an isotropic and homogeneous Universe, the cosmological equations admit a power-law solution of the scale factor,
a(t) ∼ tα , we constrain the exponential factor α by using the present bounds on the matter–antimatter asymmetry in the Universe
and Big Bang Nucleosynthesis. A possible connection with dark matter relic abundance is also discussed.

1 Introduction

Although general relativity (GR) is the best theory of gravitational interaction and its predictions have been tested with high precision
[1, 2], there are still open questions (arising at short distances and small time scales) for which GR predictability gets lost. Without
any doubt, the prediction of the existence of the gravitational waves, or the CMBR as well as the formation of primordial light
elements (Big Bang Nucleosynthesis) represent significant successes of GR. However, Einstein’s theory seems not to be completely
satisfactory at the regime of the ultraviolet scale in which deviations from the Hilbert–Einstein action are needed. This leads to the
introduction of new ingredients, such as dark matter and dark energy, necessary to fit the present picture of the Universe [3, 5–12].
A possibility that one may consider is the generalization of GR such that the gravitational action includes higher-order curvature
invariants, L ∼ f (R, RμνRμν , �k R, . . . ) [13–26, 26–31]. The latter allows the inflationary behaviour of the early Universe to
remove the primordial singularity and the explanation of the flatness and horizon problems [13, 14, 32–43]. Moreover, a high
curvature regime requires the introduction of curvature invariants in order to build up self-consistent effective actions in curved
spacetime1 [44–46]. Possible candidates for dark energy are a time-dependent cosmological term [52, 53], quintessence [54–57],
dissipative fluids [58], Chaplygin gas [59, 60], K-essence [61–64], scalar–tensor theories [65–71], and other more exotic models
[72]. Among the other possibilities to explain the accelerated expansion of the Universe, it has been also explored the possibility
related to Brans–Dicke (BD) theory in 5D (without recurring to matter fields in 5D or dark energy in 4D). More specifically, it was
shown in [73] (see also [66, 67, 74–77]) that the vacuum BD field equations in 5D are equivalent, on every hypersurface orthogonal
to the extra dimension, to a BD theory in 4D equipped with a new matter–energy source of geometrical origin. This model implies
that in a FRW cosmology, the reduced BD theory yields the accelerated expansion of a matter-dominated universe. This is consistent
with current observations and with a decelerating radiation-dominated epoch. An extension of this model to f (R) gravity has been
proposed in [78, 79]. This approach finds its bases in induced-matter theory. A formulation of 5D relativity, in which matter in 4D
is counter-effect induced by geometry in 5D. In modified theories of gravity, such a scheme provides more degrees of freedom that
can be exploited in order to build a coherent cosmological model according to observations.

In this work, we investigate how matter–antimatter asymmetry in the Universe and the formation of primordial light elements,
that is the Big Bang Nucleosynthesis (BBN), can influence the framework descending from reduced BD 5D-cosmology to 4D. The
origin of the baryon asymmetry in the early Universe is an unsolved problem of cosmology and particle physics. Observations show
that the Universe is mostly made up of matter, contrary to what is expected from QFT in which matter and antimatter should be
present in equal amounts. For such asymmetry to occur, the Sakharov conditions must be fulfilled [80]: (1) baryon number violation,

1 It is worth mentioning that some models have been proposed in which deviations from GR are described by screening effects [47], that is by introducing
an additional degree of freedom that obeys a nonlinear equation the couples to the environment. Screening mechanisms allow to circumvent solar system
and laboratory tests by suppressing, in a dynamical way, deviations from GR (screening mechanisms studied in the literature are the chameleon [48, 49],
symmetron [50], and Vainshtein [51]).
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(2) C and CP violation, and (3) deviation from thermal equilibrium. The CMB temperature anisotropies provide a strong probe of
the baryon asymmetry. In fact, the observation of the acoustic peaks in CMB and the measurements of large-scale structures provide
an estimation of the baryon asymmetry parameter η given by η(CMB) ∼ (6.3±0.3)×10−10 [81]. Yet, measurement of η can be also
carried out in the context of the BBN, leading to η(BBN ) ∼ (3.4 − 6.9) × 10−10 [82]. These two values are compatible, although
derived in two different eras of the Universe evolution.

Moreover, we also explore the implications of the formation of light elements in the early Universe on 5D-cosmology. The latter
occurred in the early phases of the Universe evolution, between the first fractions of a second after the Big Bang (∼ 0.01 s) and
a few hundred seconds after it, when the Universe was hot and dense (indeed BBN, together with cosmic microwave background
radiation, provides the strong evidence about the high temperatures characterizing the primordial Universe). It describes the sequence
of nuclear reactions that yielded the synthesis of light elements [83–85], and therefore drive the observed Universe. In general, from
BBN physics, one may infer stringent constraints on a given cosmological model. In particular, in the present paper, after we have
found some analytical solutions of field equations, we will derive the physical constraints on the free parameter α of the model.

The paper is organized as follows. In section II, we recall the FRW cosmological equations inferred from the dimensional
reduction of the scalar-vacuum BD field equations in 5D to 4D adopting the scheme of induced-matter theory. In section III, we
study homogeneous and isotropic solutions of the vacuum BD field equations in 5D (focusing in particular to power-law solutions)
applied to the baryon asymmetry in the Universe. We will discuss gravitational baryogenesis considering baryon asymmetry generated
by the coupling of baryon current with the scalar Ricci curvature. In section IV, we study the consequences of 4D cosmological
scenarios allowed by the 5D power-law solutions to the formation of light elements. In the last section, we draw our conclusions.

2 Dimensional reduction of Brans–Dicke theory in 5D

A Brans–Dicke (BD) theory of gravity in 5D is described by the action [73, 75]

S(5) �
∫

d5x
√

|γ (5)|
[
φR(5) − ω

φ
γ AB(∇Aφ)(∇Bφ)

]
+ 16π

∫
d5x

√
|γ (5)|L (5)

m , (1)

where R(5) is the curvature scalar associated with the 5D metric γAB ; γ (5) is the determinant of γAB ; φ is a scalar field; ω is a
dimensionless coupling constant; and L (5)

m represents the Lagrangian of the matter fields in 5D and does not depend on φ. The
effective equations for gravity in 4D are given by2
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where we have introduced the quantity V (φ), which (as we will see bellow) plays the role of an effective or induced scalar potential;
Sμν is the reduced energy-momentum tensor (EMT) of the matter fields in 5D

Sμν � T (5)
μν − gμν

[
(ω + 1)T (5)

4 + 3ω
− εT (5)

44


2

]
, (3)

while T (BD)
μν can be interpreted as an induced energy-momentum tensor for an effective BD theory in 4D, given by [73]
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Since in BD, φ acts as the inverse of the Newtonian gravitational constant G, (5) is identical to the induced EMT used in STM
(space–time–matter theory) [86]. The second term in (4) depends on the first derivatives of φ with respect to the fifth coordinate and
represents the effective EMT in 4D coming from the scalar field. Taking the trace of (2), we obtain a simple relation between R(4),
S � gμνSμν and T (BD) � gμνT (BD)

μν , namely (we note that gμνT (5)
μν � T (5) − εT (4)

44 /
2)

R(4) � −8π

φ

(
S + T (BD)

)
+

ω(Dαφ)(Dαφ)

φ2 +
3D2φ

φ
+

2V

φ
. (6)

2 Details are given in Appendix A: This equation can be obtained writing down Ricci tensor, that is first equation in (A9), and Ricci scalar (A11) by making

explicit 4D quantities and then substituting these into (A8). Afterwards, one isolates G(4)
μν � R(4)

μν − 1
2 gμν R(4)).
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Since we are interested in induced-matter solutions of 5DBrans–Dicke theory hereon, we will focus on a scalar-vacuum Brans–Dicke
cosmology in 5D. Actually, a general key point for the embedding of 4D Einstein theory into a 5D Kaluza–Klein induced-matter
approach is provided by Campbell–Magaard (CM) theorem [87]. This theorem states that any analytic Riemannian space of N-
dimension can be locally embedded in a Ricci-flat Riemannian space of (N + 1)-dimension. As a consequence, the 5D metric (A5)
is commonly taken, in cosmological applications, considering 4D spacetime as a hypersurface y � y0 � const orthogonal to the
5D extra-coordinate. Therefore one can consider the line element in the form:

ds2 � n2(t , y)dt2 − a2(t , y)

[
dr2

1 − kr2 + r2(dθ2 + sin2 θdϕ2)] + ε
2(t , y)dy2, (7)

where k � 0, +1, −1 and (t , r , θ , φ) are the usual coordinates for a spacetime with spherically symmetric spatial sections. If one
considers the previous metric in field equations, the vacuum (T (5)

AB � 0) Brans–Dicke cosmological equations (see (A1)) give: for
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ȧ

a

(
ȧ
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while, for spatial components A � B � 1, 2, 3

2ä
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n

)
+
kn2

a2 +
εn2


2

⎡
⎣2

∗∗
a

a
+

∗
a

a

( ∗
a

a
+

2
∗
n

n

)
+

∗∗
n

n
−

∗






(
2

∗
a

a
+

∗
n

n

)⎤
⎦

� φ̇

φ

(
ȧ

a
− ωφ̇

2φ

)
+

εn2
∗
φ


2φ

⎛
⎝

∗
a

a
− ω

∗
φ

2φ

⎞
⎠, (9)

along the extra-coordinate A � B � 4
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ȧ

a
− ṅ
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and, finally, for the mixed component A � 0, B � 4

3

⎛
⎝

∗
nȧ
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The wave equation (A4) reads

∇2φ � 1

n2

[
φ̈ + φ̇
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A suitable solution set for these equations can be inferred by assuming that the metric coefficients are separable functions of their
arguments [73]

n(t , y) � N (y), a(t , y) � P(y)Q(t), 
(t , y) � F(t), φ(t , y) � U (y)W (t). (13)

In particular, in the hypothesis of a spatially-flat scenario, as it is suggested by observations, one may consider power-law solutions

n(t , y) � Ayα , a(t , y) � Byβ t l , 
(t , y) � Ctm , φ(t , y) � Dyγ t s . (14)

Here A, B, C, and D are some constants with the appropriate units; while α, β, γ while l, m, and s are parameters that will be
constrained by field Eqs. (8)–(12). In particular, substituting (14) into (12), we obtain

s(s − 1 + 3l + m)C2t (s−2)y(γ−2α) + εγ (γ − 1 + 3β + α)A2t (s−2m)y(γ−2) � 0. (15)

This equation can be satisfied with several sets of parameters (a detailed analysis of these solutions can be found in [73]):

• s � 0, γ � 0;
• s � 0, γ � 1 − 3β − α;
• γ � 0, s � 1 − 3l − m;
• s � 1 − 3l − m, γ � 1 − 3β − α;
• m � 1, α � 1, s(s + 3 l)C2 + εγ (γ + 3β)A2 � 0.
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Here, we focus on the case V � 0 (Sect. IV of [73]) that implies

γ � s(s + 6l − 2)(s + 3l)

(s + 3l − 1)
[
s2 + s(3l − 2) + 6l(l − 1)

] . (16)

ω � 6(2l − 1)l

s(s + 6l − 2)
, p � nρ, n � 2 − s − 3l

3l
, s � 2(2l − 1)

(1 − n)[2 − 3l(n + 1)]
. (17)

Consequently, a effective BD cosmology in 4D can be developed in terms of the only metric potentials a(t) and φ(t) written as

a(t) �a f

(
t

t f

)α

, α � 2[1 + ω(1 − n)][
4 + 3ω

(
1 − n2

)] (18)

φ(t) �φ f

(
t

t f

)β

, β � 2(1 − 3n)[
4 + 3ω

(
1 − n2

)] , φ f � 4πρ0(Ay0t f )2
[
4 + 3ω

(
1 − n2

)]2

(3 + 2ω)
[
4 − 6n + 3ω(n − 1)2] . (19)

where a(t f ), φ f , and t f are constants. In this parameterization, the n � 0 models become identical to those presented in the original
BD paper [88]. For n �� 0, we recover the type A-I solutions discussed in [71], although in a slightly different notation. As shown in
[73], the range of ω is −2 < ω < −3/2 (1 < l < 2) (within this interval, it is allowed a matter-dominated universe with accelerated
expansion). For the radiation-dominated epoch, it is ω � −3/2 (l � 1/2). In our analysis, we relax such range being mainly
interested to study the modifications of cosmology during the pre-BBN, keeping hence free all parameters of the 5D cosmological
model.

3 Gravitational baryogenesis in modified 5D to 4D-cosmology

A suitable scheme mechanism for generating baryon asymmetry during the expansion of the universe has been developed within
supergravity theories [89, 90]. The interaction responsible for the CPT violation is given by a coupling between the derivative of
the Ricci scalar curvature R and the baryon current Jμ [91]

1

M2∗

∫
d4x

√−g Jμ∂μR, (20)

where M∗ is the cutoff scale characterizing the effective theory (see Ref. [93–106] for further applications).
In order to get interactions that violate the baryon number B in thermal equilibrium (to satisfy the first Sakharov condition), it is

required that a net baryon asymmetry should be generated and get frozen in below the decoupling temperature3 TD . From Eq. (20),
one gets [91]

1

M2∗
Jμ∂μR � 1

M2∗
(nB − nB̄ )Ṙ, (21)

where

μB � −μB̄ � − Ṙ

M2∗
. (22)

For relativistic particles, the net baryon number density of matter in the early Universe is given by [92] nB − nB̄ � gb
6 μBT 2, where

gb ∼ O(1) is the number of intrinsic degrees of freedom of baryons, so that the baryon asymmetry reads

η ≡ nB − nB̄

s
≈ nB

s

 − 15 gb

4π2g∗
Ṙ

M2∗T

∣∣∣∣
TD

, (23)

where s � 2π2g∗s
45 T 3 is the entropy per unit volume, i.e. entropy density, in the radiation-dominated era, and g∗s ∼ 106 is the number

of degrees of freedom for particles which contribute to the entropy of the Universe [92]. As arises from (23), the parameter η is
different from zero provided that Ṙ �� 0. In the radiation-dominated era, described by GR, the baryon asymmetry is zero (η � 0)
because in that case Ṙ � 0. 5D-corrections modify Ṙ, making η �� 0. To obtain the 5D-corrected derivative of the Ricci scalar Ṙ,
we need first to compute the trace of the Einstein equation R � −8πGTg � −8πG (ρ − 3p), where Tg � ρ − 3p is the trace of
the energy-momentum tensor of matter. Such a term disappears in GR since the radiation equation of state of relativistic particles is

3 During the evolution of the Universe, the CPT violation generates the baryon asymmetry (B-asymmetry). This occurs when baryon (or lepton) violating
interactions are still in thermal equilibrium. The asymmetry is frozen at the decoupling temperature TD , when the baryon (or lepton) violation goes out of
equilibrium. The temperature TD is derived from the relation �(TD) 
 H (TD), where � is the interaction rate of processes, and H is the expansion rate
of the Universe. More specifically, in the regime � � H , or T > TD , the B-asymmetry is generated by B-violating processes at thermal equilibrium; at
T � TD , i.e. � 
 H , the decoupling occurs, while when � < H , or T < TD the B-asymmetry gets frozen.

123



Eur. Phys. J. Plus         (2024) 139:145 Page 5 of 12   145 

Fig. 1 Left—η vs α for fixed values T f � TBBN � 1MeV, M∗ � 1015GeV, and the decoupling is assumed to occur at GUT scales TD � 1014GeV.

Right—η vs α for fixed values T f � TBBN � 1MeV, M∗ � 1015GeV, and the decoupling is assumed to occur at low scales TD � 102GeV

Fig. 2 α and ω vs l, Eq. (18).
Here, we fixed the adiabatic index
to n � 0.333 (it is a tiny deviation
from the adiabatic index in the era
radiation dominated n � 1/3). As
we can see, α 
 0.16 for l 
 0.16,
to which corresponds ω 
 −1.5.
Notice that ω has an asymptotic at
l 
 0.5 for n ∼ 1/3

given by p � ρ/3. In a modified 5D-cosmology, the total energy-momentum tensor contains both matter and scalar fields, so that
the total trace does no vanish owing to the scalar field contribution, as we will see. By using (18), one gets

R � −6(Ḣ + 2H2) � 6α(2α − 1)

t2 , α � 2[1 + ω(1 − n)]

4 + 3ω(1 − n2)
. (24)

where H � ȧ/a is the expansion rate of the Universe. The time derivative of (24) gives

Ṙ � 12α(1 − 2α)

(
16π2g∗

45

)3/2
(

T 2
f

MP

)3(
T

T f

)3/α

. (25)

where T f (or t f ) is the temperature (times) in which the Universe starts to evolve according to GR. To obtain (25), we have assumed
entropy conservation so that Ta � T0 (we set a0 � 1 and T0 
 10−4eV). Such a transition occurs at BBN or well before that time
(the so-called pre-BBN era). Substituting Eqs. (25) into (23), one obtains the expression for the baryon asymmetry

η � 425gb
π2g∗

(
16π2g∗

45

)3/2(
T f

MP

)3(2α−1)/α(
MP

M∗

)2( TD
MP

)(3−α)/α

. (26)

Figure 1 is reported η in (26) as function of α for two significant cases of the decoupling temperature, TD ∼ TGUT ∼ 1015GeV
and TD ∼ 102GeV. We have fixed gb � 2, g∗ ∼ 106, MP ∼ 1019GeV, and the transition temperature (from pre-BBN Universe
described by modified 5D-cosmology to the standard cosmology) to T f ∼ TBBN ∼ 1MeV. Let us discuss the results displayed in
this picture from high temperature TD ∼ TGUT ∼ 1015GeV to TD ∼ 102GeV (below this temperature, the sphaleron effects are no
more operative):

• TD ∼ TGUT ∼ 1015GeV—From Fig. 1(Left), it follows that the exponential parameter α turns out to be of the order α ∼ 0.49,
i.e. it corresponds to a tiny deviation from the standard cosmological evolution of the Universe for which α � 1/2 (radiation
dominated era).

• TD ∼ 102GeV—The observed baryon asymmetry follows for α ∼ 0.161, Fig. 1(Right). This requires ω < 0. According to Eq.
(18), that give α and ω vs l, negative values of ω are allowed by the cosmological model under consideration, as shown in Fig. 2.
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4 Primordial light element {4He, D, Li} in modified 5D-cosmology

In this section, we analyse the effects of the Brans–Dicke induced-matter cosmology on the primordial light element formed in the
early stage of the Universe. We consider the scale factor (18) where t f (T f ) is interpreted as the instant (temperature) at which the
Universe starts to evolve according to GR. We can write down the modified 4D-hypersurface expansion rate H � ȧ/a in terms of
the expansion rate HGR of GR as

H (T ) ≡ Z (T ) HGR(T ) . (27)

Here HGR �
√

8π

3MPl
ρ(T ) is the usual expansion rate of the Universe in GR, with ρ � π2g∗

30 T 4, while the factor Z(T ) is defined as

Z (T ) ≡ η

(
T

T f

)ν

, η ≡ 2α , ν ≡ 1 − 2α

α
. (28)

For α � 1/2, it follows ν � 0, η � 1, so that Z (T ) � 1 and GR is recovered. Owing to the modified expansion rate induced by
the new sources of higher dimensional within the field equations, our goal is to infer the bounds on the parameter α that controls
scale factor evolution from the primordial abundances of light elements, that is deuterium 2H , helium 4He, and litium 7Li . To this
aim, one replaces the Z-factor entering the expressions of the primordial light elements (related to the effective number of neutrinos

species, Zν � [
1 + 7

43 (Nν − 3)
]1/2

[107]) with the Z(T ) factor entering (28) [108, 109]. Being interested in deviations from the
standard cosmology, hereafter, we shall assume that the number of neutrino generations is Nν � 3. Following the approach given
in [110], we can observe:

• 4He abundance—The relevant reactions for the BBN processes giving 4He are

n + p → 2H + γ ; 2H + 2H → 3He + n; 2H + 2H → 3H + p (29)

while the reactions

2H + 3H →4 He + n and 2H + 3He → 4He + p (30)

produce the helium 4He. The best fit of the primordial 4He abundance is given by [111, 112]

Yp � 0.2485 ± 0.0006 + 0.0016[(η10 − 6) + 100(Z − 1)] . (31)

Here Z is defined in (28), and η10 is given by [108, 109]

η10 ≡ 1010ηB ≡ 1010 nB

nγ

, η10 
 6 . (32)

The quantity ηB � nB/nγ is the baryon to photon ratio [113]. The value Z � 1 refers to the standard BBN results in GR for
the 4He-fraction, which means (Yp)|GR� 0.2485 ± 0.0006. The observed data relative to the helium 4He and the value η10 � 6
provide the abundance [114]

0.2561 ± 0.0108 � 0.2485 ± 0.0006 + 0.0016[100(Z − 1)] . (33)

These results imply the constrain

Z � 1.0475 ± 0.105 . (34)

• 2H abundance—The reaction producing deuterium 2H is given by n + p → 2H + γ . The best fit of deuterium abundance gives
[108]

yDp � 2.6(1 ± 0.06)

(
6

η10 − 6(Z − 1)

)1.6

(35)

The standard result in GR is yDp|GR� 2.6 ± 0.16, that follows by setting Z � 1 and η10 � 6. From observation with (35), one
gets [114]

2.88 ± 0.22 � 2.6(1 ± 0.06)

(
6

η10 − 6(Z − 1)

)1.6

, (36)

which implies

Z � 1.062 ± 0.444 . (37)

Such a constraint partially overlaps with the helium abundance (34).
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Fig. 3 Left—Z4He vs α. The range (34) is reported. The baryon parameter is fixed to η10 � 6 T f � 0.1MeV, and we have taken the temperature T � {1,
10}MeV. Right—ZLi vs α. The experimental bounds (39) are reported. The other values are the same of Left panel

Fig. 4 Left—Z4He vs T . The experimental bounds (34) are reported. Here α � 0.16, the baryon parameter is fixed to η10 � 6, and T f � 0.1 MeV.
Right—ZLi vs T . The experimental bounds (39) are reported. The other values are the same of Left panel

• 7Li abundance—The ratio between the 7Li abundance in GR and the observed is Li |GR
Li |obs ∈ [2.4 − 4.3] [107], the best fit for 7Li

abundance is [108]

yLi � 4.82(1 ± 0.1)

[
η10 − 3(Z − 1)

6

]2

. (38)

The constraints on lithium abundance yLi � 1.6 ± 0.3 [114] imply

Z � 1.960025 ± 0.076675 . (39)

Notice that this value does not overlap with the constraints on 2H and 4He abundance given in Eqs. (37) and (34). Moreover, it
must be mentioned that the 5D BD cosmological model does not allow to solve the the lithium problem [107], related to the fact
that η10 given in (32) allows to successfully fit the abundances of D and 4He, but does not fit the observations of 7Li .

In Fig. 3—Left, we plot the factor Z(T ) given in (28) taking into account the constraints (34). We assume η10 � 6 and T f �
0.1MeV. The plots show the behaviour of the factor ZHe for typical BBN temperatures, T � 1MeV and T � 10MeV. One gets that
ZHe �� 1 for α ranging in the intervals

0.48 � α � 0.51 for T � 1MeV,

0.495 � α � 0.501 for T � 10MeV, (40)

A similar result is inferred for the deuterium using the constraints on Z descending from data on this element Eq. (37).
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In the case of lithium, the plot provided in Fig. 3—Right, using the constraints on Z given by Eq. (39), indicates that ZLi �� 1
for α in the range

0.42 � α � 0.45 for T � 1MeV,

0.46 � α � 0.47 for T � 10MeV. (41)

The results obtained in Eqs. (40) and (41) do not overlap. However, the difference between the different ranges is very tiny, suggesting
that the lithium problem could be ameliorated in the modified cosmology framework.

We finally discuss the case in which the value of the parameter α is fixed to α � 0.16, which is relevant for successful baryogenesis
at a low-energy scale. Figure 4 is reported the behaviour of ZHe and ZLi vsT , for T f � 0.1MeV. As a result, Z (T ) �� 1 in temperature
range of the order T ∈ [0.130, 0.135]MeV for He and T ∈ [0.152, 0.156]MeV for Li.

5 Conclusions

In this paper, we have considered a higher dimensions cosmological model, in particular 5D BD theory. In this context, it is possible
to show that the BD field equations in 5D are equivalent to those of BD in 4D with some new ingredients in the sources side
deriving from higher dimensional counter-terms. In the framework of FRW Universe, field equations lead to different classes of
solutions. In particular, it is possible to obtain a power-law solution a(t) ∼ tα of the scale factor under specific conditions. Such
a power-law solution has been used to investigate the baryon asymmetry in the Universe induced by a gravitational mechanism.
The effective mechanism is the coupling of baryon currents to the Ricci scalar, which induces the CPT symmetry violation since
the Ricci curvature depends on time also in the radiation regime. This class of solutions has been also studied for the formation of
primordial light elements obtaining a constraint on the parameter α that controls the scale factor evolution.

The 5D-modified model opens interesting cosmological scenarios with relevant consequences in different contexts, such as, for
example, the thermal dark matter (DM) freeze-out mechanism, which allows deriving a bound on α from the observed DM relic
abundance (more precisely, the bound on α can be inferred by using the dark matter (DM) annihilation cross-section which enters

the cold DM relic abundance �cdm). By comparing the factor Z(T ) in (28) with that one of Ref. [115], Z (T ) ∼ T
2
n −2, one gets

α � n/2. For DM composed only by weakly interacting massive particles (WIMPs), the DM relic density in modified cosmology
reads [115]

�cdmh
2 
 109

(l̄ + 1)x (l̄+1)
f GeV−1

(h∗/g1/2∗s )MP σ̄
, (42)

where l̄ � l + (2α − 1) (notice that l here is not related to the exponent appearing in (14) but it refers to angular momentum), σ̄ is the
WIMP cross-section, h∗ is the number of relativistic degrees of freedom for entropy density, and x f ≡ m/TF (TF is the freeze-out
temperature) [115, 116]

x f � ln[0.038(l̄ + 1)(g/g1/2∗ )Mpmσ̄ ] − (l̄ + 1) ln[ln[0.038(l̄ + 1)(g/g1/2∗ )Mpmσ̄ ]] , (43)

with g � 2 the spin polarizations of the dark matter particle and m the mass of WIMPs particles. Here4 l̄ � l (α � 1/2)
for GR (l � 0, 1 corresponds to s-wave and p-wave polarizations). Since, cosmological data on cold dark matter density give
�cdmh2 � 0.1198 ± 0.0012 [118, 119], one infers |1 − 2α|� 1.6 × 10−4. Therefore, the DM relic density allows a tiny deviation
from the standard cosmological model as a counter-effect of 5D Brans–Dicke cosmology. Interestingly, this bound is compatible
with the allowed values for α obtained from He during the light element formation and partially from gravitational baryogenesis at
GUT scales (for higher decoupling temperatures the parameter α approaches to 1/2).

In conclusion, modified 5D cosmological models offer interesting possibilities for studying their consequences in different
scenarios. Since the strong analogy between Brans–Dicke models and higher-order theories of gravity, for example, the present
analysis could represent a straightforward check also for such kinds of models. A general analysis from this point of view will be
faced elsewhere.

Funding Open access funding provided by Università degli Studi di Salerno within the CRUI-CARE Agreement.

Data Availability Statement This work does not have associate data.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons

4 We note that in [115], it has been used the parametrization 〈σv〉 � σ0x
−l , where l � 0 corresponds to s-wave annihilation, l � 1 to p-wave annihilation,

and so on. The modification of standard cosmology induces the corrections to the parameter l via l̄. When α � 1/2, hence the evolution of the Universe is
described by the standard cosmological model, one gets l̄ � l, reproducing the standard results.
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Appendix A: 5D Brans–Dicke field equations

The equations for the gravitational field in 5D derived from (1) read

G(5)
AB � R(5)

AB − 1

2
γAB R

(5) � 8π

φ
T (5)
AB +

ω

φ2

[
(∇Aφ)(∇Bφ) − 1

2
γAB

(
∇Cφ

)
(∇Cφ)

]
+

1

φ

(∇A∇Bφ − γAB∇2φ
)
, (A1)

where ∇2 ≡ ∇A∇ A and T (5)
AB represent the energy-momentum tensor (EMT) of matter fields in 5D with trace T (5) � γ ABT (5)

AB . For

the sake of generality of the reduction procedure in this section T (5)
AB �� 0.

The field equation for the scalar field φ is determined by (1) as

2ω

φ
∇2φ − ω

φ2 (∇Aφ)
(
∇ Aφ

)
+ R(5) � 0. (A2)

Taking the trace of (A1), we find

R(5) � −16π

3φ
T (5) +

ω

φ2 (∇Aφ)
(
∇ Aφ

)
+

8

3φ
∇2φ. (A3)

Combining the last two equations, we get

∇2φ � 8π

4 + 3ω
T (5). (A4)

In this work, we use coordinates where the metric in 5D can be written as5

dS2 � γABdx
Adx B � gμν(x , y)dxμdxν + ε
2(x , y)dy2 . (A5)

Conventional 4D spacetime is represented by the hypersurface �y : y � y0 � constant, which is orthogonal, along the extra
dimension, to the 5D unit vector

n̂ A � δA4



, nAn

A � ε, (A6)

the tensor gμν represent ordinary 4D metric.
The effective field equations (FE) in 4D are obtained from the dimensional reduction of (A1) and (A4). In order to achieve this

lower dimensional scheme, we notice that

∇μ∇νφ �DμDνφ +
ε

2
2

∗
gμν

∗
φ,

∇4∇4φ �ε
(Dα
)
(
Dαφ

)
+

∗∗
φ −

∗






∗
φ,

∇2φ �D2φ +
(Dα
)(Dαφ)



+

ε


2

⎡
⎣∗∗

φ +
∗
φ

⎛
⎝gμν

∗
gμν

2
−

∗






⎞
⎠

⎤
⎦, (A7)

here asterisk denotes partial derivative with respect to the extra coordinate (i.e. ∂/∂y � ∗); Dα is the covariant derivative on �y ,
which is calculated with gμν , and D2 ≡ DαDα .

Using these expressions, the 4D spacetime components (A � μ, B � ν) of the 5D field Eq. (A1) can be written as follows:

G(5)
μν � 8π

φ
T (5)

μν +
ω

φ2

[(
Dμφ

)
(Dνφ) − 1

2
gμν(Dαφ)

(
Dαφ

)]
+

1

φ

(
DμDνφ − gμνD

2φ
)

− gμν(Dα
)(Dαφ)


φ
− εgμν

2
2φ

⎡
⎣2

∗∗
φ +

∗
φ

⎛
⎝gαβ

∗
gαβ − 2

∗





+ ω

∗
φ

φ

⎞
⎠

⎤
⎦ +

ε
∗
gμν

∗
φ

2
2φ
. (A8)

5 Notation: xμ � (x0, x1, x2, x3) are the coordinates in 4D, and y is the coordinate along the extra dimension. We use spacetime signature (+, −, −, −),
while ε � ±1 allows for spacelike or timelike extra dimension.
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To construct the Einstein tensor in 4D, we have to express R(5)
αβ and R(5) in terms of the corresponding 4D quantities. The Ricci

tensor R(4)
μν of the metric gμν and the scalar field 
 is related to the Ricci tensor R(5)

AB of γAB by [86]

R(5)
αβ �R(4)

αβ − DαDβ




+

ε

2
2

⎛
⎝

∗



∗
gαβ



− ∗∗

g αβ + gλμ
∗
gαλ

∗
gβμ − gμν

∗
gμν

∗
gαβ

2

⎞
⎠,

R(5)
44 � − ε
D2
 −

∗
g

λβ ∗
gλβ

4
− gλβ

∗∗
g λβ

2
+

∗

gλβ

∗
gλβ

2

. (A9)

From (A1) to (A3) and the second equation in (A9), we obtain

D2




� − (Dα
)(Dαφ)


φ
− ε

2
2

⎡
⎣gλβ

∗∗
g λβ +

∗
g

λβ ∗
gλβ

2
−

∗

gλβ

∗
gλβ




⎤
⎦ − ε


2φ

⎡
⎣∗∗

φ +
∗
φ

⎛
⎝ω

∗
φ

φ
−

∗






⎞
⎠

⎤
⎦

+
8π

φ

[
(ω + 1)T (5)

4 + 3ω
− εT (5)

44


2

]
. (A10)

Substituting this expression into R(5) � γ AB RAB , we find

R(5) � R(4)+
2(Dα
)(Dαφ)


φ
− ε

4
2

[
∗
g

αβ ∗
gαβ +

(
gαβ

∗
gαβ

)2
]

+
2ε


2φ

⎡
⎣∗∗

φ +
∗
φ

⎛
⎝ω

∗
φ

φ
−

∗






⎞
⎠

⎤
⎦

+
16π

φ

[
εT (5)

44


2 − (ω + 1)T (5)

4 + 3ω

]
, (A11)

where R(4) � gαβ R(4)
αβ is the scalar curvature of the spacetime hypersurfaces �y .
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