Skip to main content
Log in

A laser-induced plasma analysis based on the inversion of Abel transformation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A numerical method for the inverse Abel transformation that can reconstruct plasma emissivity from a projected intensity profile is proposed. After calculating the derivatives of the projected intensity profile using a Volterra integral equation of the first kind, we approximate the derivative function in the Abel inversion transform using discrete least-squares approximation, and then, we obtain the emissivity profile using a numerical integral formula. It is shown that this process is numerically stable and efficient, and it is also resistant to noise when applied to experimental data, as demonstrated by our numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data sets generated during the current study are available from the corresponding author on reasonable request.]

References

  1. L.-B. Guo, D. Zhang, L.-X. Sun, S.-C. Yao, L. Zhang, Z.-Z. Wang, Q.-Q. Wang, H.-B. Ding, Y. Lu, Z.-Y. Hou, Z. Wang, Development in the application of laser-induced breakdown spectroscopy in recent years: A review. Front. Phys. (2021). https://doi.org/10.1007/s11467-020-1007-z

    Article  Google Scholar 

  2. V.I. Babushok, F.C. DeLucia, J.L. Gottfried, C.A. Munson, A.W. Miziolek, Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement. Spectrochim. Acta, Part B 61(9), 999–1014 (2006). https://doi.org/10.1016/j.sab.2006.09.003

    Article  ADS  Google Scholar 

  3. N. Jedlinszki, G. Galbács, An evaluation of the analytical performance of collinear multi-pulse laser induced breakdown spectroscopy. Microchem. J. 97(2), 255–263 (2011). https://doi.org/10.1016/j.microc.2010.09.009

    Article  Google Scholar 

  4. A.M. Popov, F. Colao, R. Fantoni, Enhancement of libs signal by spatially confining the laser-induced plasma. J. Anal. At. Spectrom. 24, 602–604 (2009). https://doi.org/10.1039/B818849A

    Article  Google Scholar 

  5. Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, X. Zeng, Sensitivity improvement in the detection of v and mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement. J. Anal. At. Spectrom. 29, 2309–2314 (2014). https://doi.org/10.1039/C4JA00144C

    Article  Google Scholar 

  6. A. Nakimana, H. Tao, X. Gao, Z. Hao, J. Lin, Effects of ambient conditions on femtosecond laser-induced breakdown spectroscopy of al. J. Phys. D Appl. Phys. 46(28), 285204 (2013). https://doi.org/10.1088/0022-3727/46/28/285204

    Article  Google Scholar 

  7. D.A. Rusak, T.P. Anthony, Z.T. Bell, Note: A novel technique for analysis of aqueous solutions by laser-induced breakdown spectroscopy. Rev. Sci. Instrum. 86(11), 116106 (2015). https://doi.org/10.1063/1.4935829

    Article  ADS  Google Scholar 

  8. O.A. Nassef, H.E. Elsayed-Ali, Spark discharge assisted laser induced breakdown spectroscopy. Spectrochim. Acta, Part B 60(12), 1564–1572 (2005). https://doi.org/10.1016/j.sab.2005.10.010

    Article  ADS  Google Scholar 

  9. H. Yuan, W. Ke, J.Q. Liu, M.Y. Chen, X.H. Wang, A.J. Yang, J.F. Chu, D.X. Liu, M.Z. Rong, Radial characteristics of laser-induced plasma under the influence of air pressure. J. Phys. D Appl. Phys. (2023). https://doi.org/10.1088/1361-6463/ace197

    Article  Google Scholar 

  10. Y. Huang, S.S. Harilal, A. Bais, A.E. Hussein, Progress toward machine learning methodologies for laser-induced breakdown spectroscopy with an emphasis on soil analysis. IEEE Trans. Plasma Sci. (2023). https://doi.org/10.1109/TPS.2022.3231985

    Article  Google Scholar 

  11. E. Kepes, J. Vrabel, T. Brazdil, P. Holub, P. Porizka, J. Kaiser, Interpreting convolutional neural network classifiers applied to laser-induced breakdown optical emission spectra. TALANTA (2024). https://doi.org/10.1016/j.talanta.2023.124946

    Article  Google Scholar 

  12. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, Laser-induced breakdown spectrometry - applications for production control and quality assurance in the steel industry. Spectrochimica Acta Part B Atomic Spectrosc. 56(6), 637–649 (2001). https://doi.org/10.1016/S0584-8547(01)00214-2

    Article  ADS  Google Scholar 

  13. J. Moros, J. Laserna, Laser-induced breakdown spectroscopy (libs) of organic compounds: A review. Appl. Spectrosc. 73(9), 963–1011 (2019)

    Article  ADS  Google Scholar 

  14. P.S. Hsu, M. Gragston, Y. Wu, Z. Zhang, A.K. Patnaik, J. Kiefer, S. Roy, J.R. Gord, Sensitivity, stability, and precision of quantitative ns-libs-based fuel-air-ratio measurements for methane-air flames at 1–11 bar. Appl. Opt. 55(28), 8042–8048 (2016). https://doi.org/10.1364/AO.55.008042

    Article  ADS  Google Scholar 

  15. Y. Dixit, M.P. Casado-Gavalda, R. Cama-Moncunill, X. Cama-Moncunill, M. Markiewicz-Keszycka, P.J. Cullen, C. Sullivan, Laser induced breakdown spectroscopy for quantification of sodium and potassium in minced beef: a potential technique for detecting beef kidney adulteration. Anal. Methods 9, 3314–3322 (2017). https://doi.org/10.1039/C7AY00757D

    Article  Google Scholar 

  16. H.K. Sanghapi, K.K. Ayyalasomayajula, F.Y. Yueh, J.P. Singh, D.L. McIntyre, J.C. Jain, J. Nakano, Analysis of slags using laser-induced breakdown spectroscopy. Spectrochim. Acta, Part B 115, 40–45 (2016). https://doi.org/10.1016/j.sab.2015.10.009

    Article  ADS  Google Scholar 

  17. P. Mishra, R. Kumar, A.K. Rai, Development and optimization of experimental parameters for the detection of trace of heavy metal (cr) in liquid samples using laser-induced breakdown spectroscopy technique. J. Laser Appl. 35(2), 022021 (2023). https://doi.org/10.2351/7.0000959

    Article  ADS  Google Scholar 

  18. X. Yang, R. Yi, X. Li, Z. Cui, Y. Lu, Z. Hao, J. Huang, Z. Zhou, G. Yao, W. Huang, Spreading a water droplet through filter paper on the metal substrate for surface-enhanced laser-induced breakdown spectroscopy. Opt. Express 26(23), 30456–30465 (2018). https://doi.org/10.1364/OE.26.030456

    Article  ADS  Google Scholar 

  19. Y. Qu, Q. Zhang, W. Yin, Y. Hu, Y. Liu, Real-time in situ detection of the local air pollution with laser-induced breakdown spectroscopy. Opt. Express 27(12), 790–799 (2019). https://doi.org/10.1364/OE.27.00A790

    Article  ADS  Google Scholar 

  20. N. Hausmann, H.K. Robson, C. Hunt, Annual growth patterns and interspecimen variability in mg/ca records of archaeological ostrea edulis (european oyster) from the late mesolithic site of conors island. Open Quat. 5(1), 9 (2019). https://doi.org/10.5334/oq.59

    Article  Google Scholar 

  21. D. Woodbury, R.M. Schwartz, H.M. Milchberg, Measurement of ultralow radiation-induced charge densities using picosecond mid-ir laser-induced breakdown. Optica 6(6), 811–820 (2019). https://doi.org/10.1364/OPTICA.6.000811

    Article  ADS  Google Scholar 

  22. N. Killiny, E. Etxeberria, A.P. Flores, P.G. Blanco, T.F. Reyes, L.P. Cabrera, Laser-induced breakdown spectroscopy (LIBS) as a novel technique for detecting bacterial infection in insects. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-39164-8

    Article  Google Scholar 

  23. L. Ghervase, I.M. Cortea, Lighting up the heritage sciences: The past and future of laser-induced fluorescence spectroscopy in the field of cultural goods. Chemosensors (2023). https://doi.org/10.3390/chemosensors11020100

    Article  Google Scholar 

  24. C. Wang, M. Fomovsky, G. Miao, M. Zyablitskaya, S. Vukelic, Femtosecond laser crosslinking of the cornea for non-invasive vision correction. Nat. Photon. 12(7), 416–422 (2018). https://doi.org/10.1038/s41566-018-0174-8

    Article  ADS  Google Scholar 

  25. S. Mittelmann, K. Touchet, X. Mao, M. Park, S. Brezinsek, G. Pretzler, V. Zorba, Hydrogen isotope analysis in w-tiles using fs-libs. Sci. Rep. 13, 2285 (2023)

    Article  ADS  Google Scholar 

  26. J. Ding, T. Zhang, H. Li, Recent advances in laser-induced breakdown spectroscopy for explosive analysis. Trac-trends Anal. Chem. (2023). https://doi.org/10.1016/j.trac.2023.117197

    Article  Google Scholar 

  27. L.J. Radziemski, T.R. Loree, D.A. Cremers, N.M. Hoffman, Time-resolved laser-induced breakdown spectrometry of aerosols. Anal. Chem. 55(8), 1246–1252 (1983). https://doi.org/10.1021/ac00259a016

    Article  Google Scholar 

  28. M. Sabsabi, P. Cielo, Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization. Appl. Spectrosc. 49(4), 499–507 (1995). https://doi.org/10.1366/0003702953964408

    Article  ADS  Google Scholar 

  29. F.G. Tricomi, Integral Equations (Dover Publications, New York, 1985)

    Google Scholar 

  30. M. Hanke, O. Scherzer, Inverse problems light: Numerical differentiation. Am. Math. Mon. 108(6), 512–521 (2001). https://doi.org/10.1080/00029890.2001.11919778

    Article  MathSciNet  Google Scholar 

  31. Z. Zhao, Z. Meng, G. He, A new approach to numerical differentiation. J. Comput. Appl. Math. 232(2), 227–239 (2009). https://doi.org/10.1016/j.cam.2009.06.001

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Deutsch, I. Beniaminy, Derivative-free inversion of abel’s integral equation. Appl. Phys. Lett. 41(1), 27–28 (1982). https://doi.org/10.1063/1.93309

    Article  ADS  Google Scholar 

  33. S. Gueron, M. Deutsch, A fast abel inversion algorithm. J. Appl. Phys. 75(9), 4313–4318 (1994). https://doi.org/10.1063/1.355973

    Article  ADS  Google Scholar 

  34. M. Deutsch, I. Beniaminy, Inversion of abel’s integral equation for experimental data. J. Appl. Phys. 54(1), 137–143 (1983). https://doi.org/10.1063/1.331739

    Article  ADS  Google Scholar 

  35. H. Edels, K. Hearne, A. Young, Numerical solutions of the abel integral equation. J. Math. Phys. (1962). https://doi.org/10.1002/sapm196241162

    Article  MathSciNet  Google Scholar 

  36. M.P. Freeman, S. Katz, Determination of the radial distribution of brightness in a cylindrical luminous medium with self-absorption. J. Opt. Soc. Am. 50(8), 826–830 (1960). https://doi.org/10.1364/JOSA.50.000826

    Article  ADS  MathSciNet  Google Scholar 

  37. C.J. Cremers, R.C. Birkebak, Application of the abel integral equation to spectrographic data. Appl. Opt. 5(6), 1057–1064 (1966). https://doi.org/10.1364/AO.5.001057

    Article  ADS  Google Scholar 

  38. V. Dribinski, A. Ossadtchi, V.A. Mandelshtam, H. Reisler, Reconstruction of abel-transformable images: The gaussian basis-set expansion abel transform method. Rev. Sci. Instrum. 73(7), 2634–2642 (2002). https://doi.org/10.1063/1.1482156

    Article  ADS  Google Scholar 

  39. G. Minerbo, M. Levy, Inversion of abel’s integral equation by means of orthogonal polynomials. SIAM J. Numer. Anal. 6(4), 598–616 (1969). https://doi.org/10.1137/0706055

    Article  ADS  MathSciNet  Google Scholar 

  40. E.L. Kosarev, Spatial distribution of flare stars in the Pleiades derived by the orthogonal expansion method. Peremennye Zvezdy 21, 321–363 (1980)

    ADS  Google Scholar 

  41. S. Ma, H. Gao, G. Zhang, L. Wu, Abel inversion using legendre wavelets expansion. J. Quant. Spectrosc. Radiat. Transfer 107(1), 61–71 (2007). https://doi.org/10.1016/j.jqsrt.2007.01.054

    Article  ADS  Google Scholar 

  42. H. Ruan, B. Wan, A new method for asymmetrical abel inversion using fourier-bessel expansions. Int. J. Infrared Millimeter Waves 21(12), 1973–1987 (2000). https://doi.org/10.1023/A:1006724218429

    Article  Google Scholar 

  43. N. Gottardi, Evaluation of electron density profiles in plasmas from integrated measurements. J. Appl. Phys. 50(4), 2647–2651 (1979). https://doi.org/10.1063/1.326221

    Article  ADS  Google Scholar 

  44. J.H. Ha, Y.U. Nam, M.S. Cheon, Y.S. Hwang, An improved abel inversion method modified for tangential interferometry in tokamak. Rev. Sci. Instrum. 75(10), 3408–3410 (2004). https://doi.org/10.1063/1.1788891

    Article  ADS  Google Scholar 

  45. M. Deutsch, Abel inversion with a simple analytic representation for experimental data. Appl. Phys. Lett. 42(3), 237–239 (1983). https://doi.org/10.1063/1.93892

    Article  ADS  Google Scholar 

  46. X.-F. Li, L. Huang, Y. Huang, A new abel inversion by means of the integrals of an input function with noise. J. Phys. A: Math. Theor. 40(2), 347–360 (2006). https://doi.org/10.1088/1751-8113/40/2/012

    Article  ADS  MathSciNet  Google Scholar 

  47. K. Sadri, A. Amini, C. Cheng, A new operational method to solve abel’s and generalized abel’s integral equations. Appl. Math. Comput. 317, 49–67 (2018). https://doi.org/10.1016/j.amc.2017.08.060

    Article  MathSciNet  Google Scholar 

  48. R.K. Pandey, S. Suman, K.K. Singh, O.P. Singh, An approximate method for abel inversion using chebyshev polynomials. Appl. Math. Comput. 237, 120–132 (2014). https://doi.org/10.1016/j.amc.2014.03.043

    Article  MathSciNet  Google Scholar 

  49. P.A. Vicharelli, W.P. Lapatovich, Iterative method for computing the inverse abel transform. Appl. Phys. Lett. 50(10), 557–559 (1987). https://doi.org/10.1063/1.98133

    Article  ADS  Google Scholar 

  50. S.A. Yousefi, Numerical solution of abel’s integral equation by using legendre wavelets. Appl. Math. Comput. 175(1), 574–580 (2006). https://doi.org/10.1016/j.amc.2005.07.032

    Article  MathSciNet  Google Scholar 

  51. O.P. Singh, V.K. Singh, R.K. Pandey, A stable numerical inversion of abel’s integral equation using almost bernstein operational matrix. J. Quant. Spectrosc. Radiat. Transfer 111(1), 245–252 (2010). https://doi.org/10.1016/j.jqsrt.2009.07.007

    Article  ADS  Google Scholar 

  52. V. Singh, R. Pandey, O. Singh, New stable numerical solutions of singular integral equations of abel type by using normalized bernstein polynomials. Appl. Math. Sci. 3(5–8), 241–255 (2009)

    MathSciNet  Google Scholar 

  53. L. Huang, Y. Huang, X.-F. Li, Approximate solution of abel integral equation. Comput. Math. Appl. 56(7), 1748–1757 (2008). https://doi.org/10.1016/j.camwa.2008.04.003

    Article  MathSciNet  Google Scholar 

  54. J. Wu, Y. Zhou, C. Hang, A singularity free and derivative free approach for abel integral equation in analyzing the laser-induced breakdown spectroscopy. Spectrochimica Acta Part B Atomic Spectrosc. (2020). https://doi.org/10.1016/j.sab.2020.105791

    Article  Google Scholar 

Download references

Funding

This work is supported by National Science Foundation of China (NSFC) Grant No. 11804396. XH is supported by Marie Curie Fellowship HADG-101027463 agreed between QMUL and the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhou.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Luo, W., Song, W.G. et al. A laser-induced plasma analysis based on the inversion of Abel transformation. Eur. Phys. J. Plus 139, 89 (2024). https://doi.org/10.1140/epjp/s13360-024-04866-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04866-0

Navigation