Skip to main content
Log in

Influence of P2O5 addition on glass structure and luminescent properties of Eu3+ ions in SiO2–CaO particles of bioactive glass

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

A Correction to this article was published on 03 June 2024

This article has been updated

Abstract

Phosphorous compounds are essential for living organisms, specifically as building blocks for hard tissues such as bones. Therefore, it is an important (although not necessary) component of bioactive glass used in regenerative medicine. Hereby, the influence of \({\text{PO}}_{{4}}^{{{3} - }}\) on the properties of silica–calcia glass was studied. Europium(III) ions, as a luminescent probe, have been incorporated into bioactive glass hosts of both binary (SiO2–CaO) and ternary (SiO2–CaO–P2O5) systems obtained via sol–gel technique. The fabricated glasses consisted of spherical particles with an average diameter close to 100 nm. The energy dispersive X-ray analysis confirmed the presence of silicon, calcium, phosphorous, and europium ions, although with different ratios than assumed during the synthesis process. The lower amount of calcium oxide was detected mainly in the silica–calcia composition (16 wt.% instead of 35 wt.%). The presence of phosphate groups in the glass allowed for the maintenance of a higher CaO concentration (23 wt.%), but partial crystallization of the material occurred, which was not observed in the binary system. Investigation of the photoluminescent properties showed that Eu3+ emission had higher intensity and longer decay times when samples were annealed at higher temperatures (the tested temperature range was 600–800 °C), indicating reduced hydroxyl quenching. The addition of phosphate groups resulted in shorter luminescence lifetimes in comparison to the SiO2–CaO samples due to the modified environment of europium ions caused by partial crystallization.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The authors declare that the data supporting the findings of this study are available within the paper. Should any raw data files be needed they are available from the corresponding authors upon reasonable request.]

Change history

References

  1. M.H. Kaou, M. Furkó, K. Balázsi, C. Balázsi, Nanomaterials 13, 2287 (2023)

    Article  Google Scholar 

  2. A. Hoppe, N.S. Güldal, A.R. Boccaccini, Biomaterials 32, 2757–2774 (2011). https://doi.org/10.1016/j.biomaterials.2011.01.004

    Article  Google Scholar 

  3. M. Dong, G. Jiao, H. Liu, W. Wu, S. Li, Q. Wang, D. Xu, X. Li, Y. Huan Liu, Biol. Trace Elem. Res. 173, 306–315 (2016). https://doi.org/10.1007/s12011-016-0686-3

    Article  Google Scholar 

  4. H. Zhou, G. Jiao, M. Dong, H. Chi, H. Wang, W. Wu, H. Liu, S. Ren, M. Kong, C. Li, L. Zhang, Y. Chen, Biol. Trace Elem. Res. 190, 327–335 (2019). https://doi.org/10.1007/s12011-018-1574-9

    Article  Google Scholar 

  5. P. Saravanapavan, J.R. Jones, R.S. Pryce, L.L. Hench, J. Biomed. Mater. Res. 66A, 110 (2003). https://doi.org/10.1002/jbm.a.10532

    Article  Google Scholar 

  6. X. Wang, X. Li, A. Ito, Y. Sogo, Acta Biomater. 7, 3638–3644 (2011). https://doi.org/10.1016/j.actbio.2011.06.029

    Article  Google Scholar 

  7. L.-C. Gerhardt, A.R. Boccaccini, Materials 3, 3867–3910 (2010). https://doi.org/10.3390/ma3073867

    Article  ADS  Google Scholar 

  8. S. Labbaf, O. Tsigkou, K.H. Müller, M.M. Stevens, A.E. Porter, J.R. Jones, Biomaterials 32, 1010–1018 (2011). https://doi.org/10.1016/j.biomaterials.2010.08.082

    Article  Google Scholar 

  9. M. Vallet-Regí, C.V. Ragel, A.J. Salinas, Glasses with medical applications. Eur. J. Inorg. Chem. 2003, 1029–1042 (2003). https://doi.org/10.1002/ejic.200390134

    Article  Google Scholar 

  10. A. Martínez, I. Izquierdo-Barba, M. Vallet-Regí, Chem. Mater. 12, 3080–3088 (2000). https://doi.org/10.1021/cm001107o

    Article  Google Scholar 

  11. J.R. Jones, O. Tsigkou, E.E. Coates, M.M. Stevens, J.M. Polak, L.L. Hench, Biomaterials 28, 1653–1663 (2007). https://doi.org/10.1016/j.biomaterials.2006.11.022

    Article  Google Scholar 

  12. R.G. Hill, D.S. Brauer, J. Non-Cryst, Solids 357, 3884–3887 (2011). https://doi.org/10.1016/j.jnoncrysol.2011.07.025

    Article  Google Scholar 

  13. A.J. Salinas, S. Shruti, G. Malavasi, L. Menabue, M. Vallet-Regí, Acta Biomater. 7, 3452–3458 (2011). https://doi.org/10.1016/j.actbio.2011.05.033

    Article  Google Scholar 

  14. A. Hoppe, A. Brandl, O. Bleiziffer, A. Arkudas, R.E. Horch, B. Jokic, D. Janackovic, A.R. Boccaccini, Mater. Sci. Eng. C 57, 157–163 (2015). https://doi.org/10.1016/j.msec.2015.07.014

    Article  Google Scholar 

  15. J. Lao, E. Jallot, J.-M. Nedelec, J. Mater. Chem. 19, 2940–2949 (2009). https://doi.org/10.1039/b822214b

    Article  Google Scholar 

  16. M. Bellantone, H.D. Williams, L.L. Hench, Antimicrob. Agents Chemother. 46, 1940–1945 (2002). https://doi.org/10.1128/AAC.46.6.1940-1945.2002

    Article  Google Scholar 

  17. A.C.M. Renno, P.S. Bossini, M.C. Crovace, A.C.M. Rodrigues, E.D. Zanotto, N.A. Parizotto, BioMed. Res. Int. 2013, 141427 (2013). https://doi.org/10.1155/2013/141427

    Article  Google Scholar 

  18. M. Brink, T. Turunen, R.P. Haponnen, A. Yli-Urpo, J. Biomed. Mater. Res. 37, 114–121 (1997)

    Article  Google Scholar 

  19. J.R. Jones, J. Eur. Ceram. Soc. 29, 1275–1281 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.08.003

    Article  Google Scholar 

  20. R. Reisfeld, E. Zigansky, M. Gaft, Mol. Phys. 102, 1319–1330 (2004). https://doi.org/10.1080/00268970410001728609

    Article  ADS  Google Scholar 

  21. V.C. Costa, M.J. Lochhead, K.L. Bray, Chem. Mater. 8, 783–790 (1996). https://doi.org/10.1021/cm9504910

    Article  Google Scholar 

  22. E.J. Nassar, K.J. Ciuffi, P.S. Calefi, L.L. Avila, L.C. Bandeira, A. Cestari, E.H. de Faria, A.L. Marçal, M.G. Matos, Europium III: Different emission spectra in different matrices, the same element, In: Europium: Compounds, Production and Applications, ed. by L.M. Moreno, (Nova Science Publishers Inc., New York, 2009)

  23. Ch.S. Rao, K.U. Kumar, C.K. Jayasankar, Solid State Sci. 13, 1309–1314 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.03.027

    Article  ADS  Google Scholar 

  24. G. Li, G. Liang, S. Zhao, K. Ma, W. Feng, D. Zhou, X. Liu, Adv. Appl. Ceram. 114, 164–174 (2015). https://doi.org/10.1179/1743676114Y.0000000210

    Article  ADS  Google Scholar 

  25. Y. Fan, P. Yang, S. Huang, J. Jiang, H. Lian, J. Lin, J. Phys. Chem. C 113, 7826–7830 (2009). https://doi.org/10.1021/jp900515x

    Article  Google Scholar 

  26. C. Wu, L. Xia, P. Han, L. Mao, J. Wang, D. Zhai, B. Fang, J. Chang, Y. Xiao, A.C.S. Appl, Mater. Interfaces 8, 11342–11354 (2016). https://doi.org/10.1021/acsami.6b03100

    Article  Google Scholar 

  27. S. Huang, X. Kang, Z. Cheng, P. Ma, Y. Jia, J. Lin, J. Colloid Interface Sci. 387, 285–291 (2012). https://doi.org/10.1016/j.jcis.2012.08.004

    Article  ADS  Google Scholar 

  28. A. Baranowska, M. Kochanowicz, J. Żmojda, P. Miluski, M. Leśniak, D. Dorosz, Proc SPIE 11045. Opt. Fibers Appl. 2018, 1104505 (2019). https://doi.org/10.1117/12.2522250

    Article  Google Scholar 

  29. Y. Xue, Y. Du, J. Yan, Z. Liu, P.X. Ma, X. Chen, B. Lei, J. Mater. Chem. B 3, 3831–3839 (2015). https://doi.org/10.1039/C5TB00204D

    Article  Google Scholar 

  30. J.K. Krebs, J.M. Brownstein, J.T. Gibides, J. Lumin. 128, 780–782 (2008). https://doi.org/10.1016/j.jlumin.2007.12.008

    Article  Google Scholar 

  31. A.M. Deliormanlı, S. Oguzlar, M. Zeyrek Ongun, J. Mater. Res. 37, 622–635 (2022). https://doi.org/10.1557/s43578-021-00461-6

    Article  ADS  Google Scholar 

  32. A.M. Deliormanl, B. Rahman, S. Oguzlar, M. Zeyrek Ongun, J. Alloys. Compd. 944, 169153 (2023). https://doi.org/10.1016/j.jallcom.2023.169153

    Article  Google Scholar 

  33. A.M.B. Silva, L.S. Jesus, W. Correa, D.O. Junot, L.V.E. Caldas, N.O. Dantas, D.N. Souza, A.C.A. Silva, Appl. Radiat. Isot. 201, 110997 (2023). https://doi.org/10.1016/j.apradiso.2023.110997

    Article  Google Scholar 

  34. A. Lukowiak, J. Lao, J. Lacroix, J.-M. Nedelec, Chem. Commun. 49, 6620–6622 (2013). https://doi.org/10.1039/c3cc00003f

    Article  Google Scholar 

  35. B. Borak, J. Krzak, M. Ptak, W. Strek, A. Lukowiak, J. Mol. Struct. 1166, 48–53 (2018). https://doi.org/10.1016/j.molstruc.2018.04.019

    Article  ADS  Google Scholar 

  36. S. Murakami, M. Herren, D. Rau, M. Morita, Inorg. Chim. Acta 300–302, 1014–1021 (2000). https://doi.org/10.1016/S0020-1693(00)00008-6

    Article  Google Scholar 

  37. Z. Hong, R.L. Reis, J.F. Mano, J. Biomed. Mater. Res. A 88, 304–313 (2009). https://doi.org/10.1002/jbm.a.31848

    Article  Google Scholar 

  38. O. Cristini-Robbe, K. Raulin, F. Dubart, R. Bernard, C. Kinowski, N. Damene, I. El Yazidi, A. Boed, S. Turrell, J. Mol. Struct. 1050, 232–237 (2013). https://doi.org/10.1016/j.molstruc.2013.06.063

    Article  ADS  Google Scholar 

  39. M. Wang, J. Cheng, M. Li, F. He, Phys. B 406, 3865–3869 (2011). https://doi.org/10.1016/j.physb.2011.07.014

    Article  ADS  Google Scholar 

  40. D. Bellucci, G. Bolelli, V. Cannillo, A. Cattini, A. Sola, Mater. Charact. 62, 1021–1028 (2011). https://doi.org/10.1016/j.matchar.2011.07.008

    Article  Google Scholar 

  41. A. Antonakos, E. Liarokapis, T. Leventouri, Biomaterials 28, 3043–3054 (2007). https://doi.org/10.1016/j.biomaterials.2007.02.028

    Article  Google Scholar 

  42. F. Errassifi, S. Sarda, A. Barroug, A. Legrouri, H. Sfihi, C. Rey, J. Colloid Interface Sci. 420, 101–111 (2014). https://doi.org/10.1016/j.jcis.2014.01.017

    Article  ADS  Google Scholar 

  43. A.K. Yadav, P. Singh, RSC Adv. 5, 67583–67609 (2015). https://doi.org/10.1039/c5ra13043c

    Article  ADS  Google Scholar 

  44. A. Lucas-Girot, F.Z. Mezahi, M. Mami, H. Oudadesse, A. Harabi, M.L. Floch, J. Non-Cryst, Solids 357, 3322–3327 (2011). https://doi.org/10.1016/j.jnoncrysol.2011.06.002

    Article  Google Scholar 

  45. A. Pedone, T. Charpentier, G. Malavasi, M.C. Menziani, Chem. Mater. 22, 5644–5652 (2010). https://doi.org/10.1021/cm102089c

    Article  Google Scholar 

  46. H. Fneich, N. Gaumer, S. Chaussedent, W. Blanc, A. Mehdi, Molecules 23, 1768 (2018). https://doi.org/10.3390/molecules23071768

    Article  Google Scholar 

  47. K. Binnemans, Interpretation of europium(III) spectra. Coord. Chem. Rev. 295, 1–45 (2015). https://doi.org/10.1016/j.ccr.2015.02.015

    Article  Google Scholar 

  48. S. Han, Y. Du, J. Yuan, Y. Tao, Y. Wang, S. Yan, D. Chen, J. Non-Cryst, Solids 532, 119894 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.119894

    Article  Google Scholar 

  49. A. Baranowska, M. Leśniak, M. Kochanowicz, J. Żmojda, P. Miluski, D. Dorosz, Materials 13, 1281 (2020). https://doi.org/10.3390/ma13061281

    Article  ADS  Google Scholar 

  50. A. Isobe, S. Takeshita, T. Isobe, Langmuir 31, 1811–1819 (2015). https://doi.org/10.1021/la503652w

    Article  Google Scholar 

  51. T.A.R.M. Lima, M.E.G. Valerio, J. Lumin. 201, 70–76 (2018). https://doi.org/10.1016/j.jlumin.2018.04.043

    Article  Google Scholar 

  52. M. Long, F. Hong, W. Li, F. Li, H. Zhao, Y. Lv, H. Li, F. Hu, L. Sun, C. Yan, Z. Wei, J. Lumin. 128, 428–436 (2008). https://doi.org/10.1016/j.jlumin.2007.09.012

    Article  Google Scholar 

  53. Y. Zhu, C. Tong, R. Dai, C. Xu, L. Yang, Y. Li, Mater. Lett. 213, 245–248 (2018). https://doi.org/10.1016/j.matlet.2017.11.082

    Article  Google Scholar 

  54. P. Luo, P. Huang, J. Wang, C. Yao, Y. Zhao, B. Zhou, Q. Zheng, X. Zhang, W. Jiang, L. Wang, J. Am. Ceram. Soc. 103, 3089–3096 (2020). https://doi.org/10.1111/jace.17021

    Article  Google Scholar 

  55. R. Campostrini, G. Carturan, M. Ferrari, M. Montagna, O. Pilla, J. Mater. Res. 7, 745–753 (1992). https://doi.org/10.1557/JMR.1992.0745

    Article  ADS  Google Scholar 

  56. A. Doat, F. Pelle, N. Gardant, A. Lebugle, J. Solid State Chem. 177, 1179–1187 (2004). https://doi.org/10.1016/j.jssc.2003.10.023

    Article  ADS  Google Scholar 

  57. A. Monteil, S. Chaussedent, G. Alombert-Goget, N. Gaumer, J. Obriot, S.J.L. Ribeiro, Y. Messaddeq, A. Chiasera, M. Ferrari, J. Non-Crystal, Solids 348, 44 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.08.124

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge I. Jakobowska, E. Bukowska, D. Szymanski, and A. Baszczuk for their help in experiments and measurements.

Funding

This work was supported by the National Science Centre (G. No. 2016/22/E/ST5/00530).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Beata Borak or Anna Lukowiak.

Ethics declarations

Conflicts of interests

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borak, B., Szczurek, J., Halubek-Gluchowska, K. et al. Influence of P2O5 addition on glass structure and luminescent properties of Eu3+ ions in SiO2–CaO particles of bioactive glass. Eur. Phys. J. Plus 139, 56 (2024). https://doi.org/10.1140/epjp/s13360-023-04849-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04849-7

Navigation