Skip to main content
Log in

Wavelet transform-based multi-scale analysis of ring-like and jet-like events in relativistic heavy-ion collisions

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We use wavelet transform-based multi-scale analysis to identify localized structures in pseudorapidity space in high-energy nuclear collisions of \(^{16}\)O–Ag/Br and \(^{32}\)S–Ag/Br at 60A GeV and 200A GeV, respectively. Our analysis specifically focuses on ring-like and jet-like events and incorporate simulation models such as FRITIOF, UrQMD, and AMPT. Comparing experimental and simulated data, it is evidently found that the data obtained through different models reproduce the coarse features of the high-energy experiments but with minute differences. The absence of certain irregularities in the simulated data may be due to higher statistics in the simulations resulting in smoother distributions. We also observed distinct differences between experimentally observed ring-like and jet-like events, confirming their different origins. Our findings suggest that this approach is one of the most promising way to investigate the complex dynamics of high-energy nuclear collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: In this paper, the simulated data have been generated using the FRITIOF model, the UrQMD model, and AMPT model simulation method. All data generated or analyzed during this study are included in this article. The experimental data used in the present study were published by EPL [42, 62] and is available at, https://doi.org/10.1209/0295-5075/80/22003, and https://doi.org/10.1209/epl/i2003-10104-5.]

References

  1. G. Roland, K. Šafařík, P. Steinberg, Heavy-ion collisions at the LHC. Prog. Part. Nucl. Phys. 77, 70–127 (2014)

    Article  ADS  Google Scholar 

  2. J. Adams et al., Experimental and theoretical challenges in the search for the quark-gluon plasma: the STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757(1–2), 102–183 (2005)

    Article  ADS  Google Scholar 

  3. K. Adcox et al., Formation of dense partonic matter in relativistic nucleus–nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 757, 184–283 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.086. arXiv:arXiv:nucl-ex/0410003 [nucl-ex]

  4. M. Gyulassy, L. McLerran, New forms of QCD matter discovered at RHIC. Nucl. Phys. A 750(1), 30–63 (2005)

    Article  ADS  Google Scholar 

  5. I. Dremin, Ring-like events: Cherenkov gluons or Mach waves? Nucl. Phys. A 767, 233–247 (2006)

    Article  ADS  Google Scholar 

  6. D. Ghosh, A. Deb, P.K. Haldar, S. Guptaroy, Azimuthal pion fluctuation and phase transition in ultra-relativistic ring-like and jet-like events. Indian J. Phys. 80, 807–813 (2006)

    Google Scholar 

  7. B. Ali, S. Singh, A. Chandra, S. Ahmad, Event-by-event multiplicity fluctuations and correlations in ring-like and jet-like events in 197Au-AgBr collisions at 11.6 A GeV/C. Int. J. Mod. Phys. E 32(03n04), 2350018 (2023). https://doi.org/10.1142/S0218301323500180

    Article  ADS  Google Scholar 

  8. P.K. Haldar, S.K. Manna, P. Saha, D. Ghosh, Non-statistical fluctuations of pions for ring-and jet-like events at CERN SPS energy—an in-depth analysis with factorial correlator. Int. J. Mod. Phys. E 20(09), 2027–2038 (2011)

    Article  ADS  Google Scholar 

  9. D. Ghosh, A. Deb, P.K. Haldar, S. Guptaroy, Fluctuation and fractal characteristics of ring like and jet like events produced at SPS energies. Indian J. Phys. 82, 1339–1371 (2008)

    Google Scholar 

  10. D. Ghosh et al., Ring type events and nuclear collision at SPS energies and nuclear refractive index. Acta Phys. Pol. B 40(8), 2355–2361 (2009)

    ADS  Google Scholar 

  11. M. Ghosha, P. Haldarb, S. Mannab, A. Mukhopadhyaya, G. Singhc, Ring and jet-like structures and two-dimensional intermittency in nucleus–nucleus collisions at 200 AGeV/C. Nucl. Phys. A 858, 67–85 (2011)

    Article  ADS  Google Scholar 

  12. J. Takahashi et al., Topology studies of hydrodynamics using two-particle correlation analysis. Phys. Rev. Lett. 103(24), 242301 (2009)

    Article  ADS  Google Scholar 

  13. J. Casalderrey-Solana et al., Angular structure of jet quenching within a hybrid strong/weak coupling model. J. High Energy Phys. 2017(3), 1–69 (2017)

    Article  MathSciNet  Google Scholar 

  14. H. Appelshäuser et al., Event-by-event fluctuations of average transverse momentum in central Pb+ Pb collisions at 158 GeV per nucleon. Phys. Lett. B 459(4), 679–686 (1999)

    Article  ADS  Google Scholar 

  15. F. Sikler et al., Hadron production in nuclear collisions from the NA49 experiment at 158 GeV/C A. Nucl. Phys. A 661(1–4), 45–54 (1999)

    Article  ADS  Google Scholar 

  16. C. Roland, N. Collaboration et al., Event-by-event fluctuations of particle ratios in central Pb+ Pb collisions at 20–158 A GeV. J. Phys. G Nucl. Part. Phys. 30(8), 1381 (2004)

    Article  Google Scholar 

  17. M. Cherry et al., Event-by-event analysis of high multiplicity Pb (158 GeV/nucleon)-Ag/Br collisions. Acta Phys. Pol. Ser. B 29, 2129–2146 (1998)

    ADS  Google Scholar 

  18. W.M. Alberico, A. Lavagno, P. Quarati, Non-extensive statistics, fluctuations and correlations in high-energy nuclear collisions. Eur. Phys. J. C Part. Fields 12, 499–506 (2000)

    Article  ADS  Google Scholar 

  19. C. Bignamini, F. Becattini, F. Piccinini, A Monte-Carlo generator for statistical hadronization in high energy e+ e− collisions. Eur. Phys. J. C 72, 1–18 (2012)

    Article  Google Scholar 

  20. Y. Yariv, Z. Fraenkel, Intranuclear cascade calculation of high energy heavy ion collisions: effect of interactions between cascade particles. Phys. Rev. C 24(2), 488 (1981)

    Article  ADS  Google Scholar 

  21. G. Bertsch, J. Cugnon, Entropy production in high energy collisions. Phys. Rev. C 24(6), 2514 (1981)

    Article  ADS  Google Scholar 

  22. S.A. Voloshin, Transverse radial expansion in nuclear collisions and two particle correlations. Phys. Lett. B 632(4), 490–494 (2006)

    Article  ADS  Google Scholar 

  23. A. Dumitru, J. Jalilian-Marian, Two-particle correlations in high-energy collisions and the gluon four-point function. Phys. Rev. D 81(9), 094015 (2010)

    Article  ADS  Google Scholar 

  24. S. Catani et al., Longitudinally-invariant k-clustering algorithms for hadron–hadron collisions. Nucl. Phys. B 406(1–2), 187–224 (1993)

    Article  ADS  Google Scholar 

  25. I. Daubechies, J.C. Lagarias, Two-scale difference equations II. Local regularity, infinite products of matrices and fractals. SIAM J. Math. Anal. 23(4), 1031–1079 (1992)

    Article  MathSciNet  Google Scholar 

  26. Y. Meyer, Progress in wavelet analysis and applications, wavelets: their past and their future. Prog. Wavel. Anal. Appl. 11, 9–18 (1993)

    ADS  Google Scholar 

  27. N. Astaf’Eva, Wavelet analysis: basic theory and some applications. Phys. USPEKHI 39(11), 1085 (1996)

    Article  ADS  Google Scholar 

  28. I.M. Dremin, O.V. Ivanov, V.A. Nechitailo, Wavelets and their uses. Phys. USPEKHI 44(5), 447 (2001)

    Article  ADS  Google Scholar 

  29. J. van den Berg, Wavelets in physics provided by the SAO/NASA astrophysics data system (2004)

  30. A. Kumar, M.H. Kolekar, Machine learning approach for epileptic seizure detection using wavelet analysis of EEG signals, in 2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems (MedCom) (IEEE, 2014), pp. 412–416

  31. P. Kumar, E. Foufoula-Georgiou, Wavelet analysis for geophysical applications. Rev. Geophys. 35(4), 385–412 (1997)

    Article  ADS  Google Scholar 

  32. W. Greiner, H. Stöcker, A. Gallmann, Hot and Dense Nuclear Matter 335 (2012)

  33. P. Lipa, M. Greiner, P. Carruthers, Wavelet analysis of multiparticle correlations, in Soft Physics and Fluctuations-Proceedings of the Cracow Workshop on Multiparticle Production (World Scientific, 1994), p. 105

  34. M. Greiner et al., Wavelet correlations in hierarchical branching processes. Z. Phys. C Part. Fields 69, 305–321 (1995)

    Article  Google Scholar 

  35. N. Suzuki, M. Biyajima, A. Ohsawa, Wavelet spectra of JACEE events. Prog. Theor. Phys. 94(1), 91–103 (1995)

    Article  ADS  Google Scholar 

  36. D.-W. Huang, Wavelet analysis in multiplicity fluctuations. Phys. Rev. D 56(7), 3961 (1997)

    Article  ADS  Google Scholar 

  37. Z. Huang et al., Domain structure of a disoriented chiral condensate from a wavelet perspective. Phys. Rev. D 54(1), 750 (1996)

    Article  ADS  Google Scholar 

  38. I.M. Dremin, Long-range particle correlations and wavelets. Phys. USPEKHI 43(11), 1137 (2000)

    Article  ADS  Google Scholar 

  39. I. Dremin et al., Wavelet patterns in nucleus–nucleus collisions at 158A GeV. Phys. Lett. B 499(1–2), 97–103 (2001)

    Article  ADS  Google Scholar 

  40. V. Uzhinsky et al., Wavelet analysis of angular distributions of secondary particles in high-energy nucleus–nucleus interactions: irregularity of particle pseudorapidity distributions. Phys. At. Nuclei 67, 156–162 (2004)

    Article  ADS  Google Scholar 

  41. J. Fedorišin, S. Vokál, Wavelet analysis of multiparticle correlations. FIZIKA B 17(2), 273–278 (2008)

    ADS  Google Scholar 

  42. D. Ghosh, A. Deb, P. Haldar, S. Sahoo, D. Maity, Validity of the negative binomial multiplicity distribution in case of ultra-relativistic nucleus–nucleus interaction in different azimuthal bins. Europhys. Lett. 65(3), 311 (2004)

    Article  ADS  Google Scholar 

  43. M. Adamovich et al., On the jet-like and ring-like substructure in distributions of produced particles in central heavy-ion collisions at ultra-relativistic energies. J. Phys. G 19(LUNFD–6–NFFK–713), 2035–2044 (1993)

    Google Scholar 

  44. D. Ghosh, A. Deb, A. Dhar, R. Saha, D. Bhattacharya, P.K. Haldar, Levy index analysis for a multifractality and phase transition study of target fragments in ring-like and jet-like events. Phys. Scr. 82(4), 045201 (2010)

    Article  ADS  Google Scholar 

  45. M. Ghosh, P. Haldar, S. Manna, A. Mukhopadhyay, G. Singh, Ring and jet-like structures and two-dimensional intermittency in nucleus–nucleus collisions at 200 AGeV/C. Nucl. Phys. A 858(1), 67–85 (2011)

    Article  ADS  Google Scholar 

  46. I. Dremin, Coherent hadron radiation at extremely high energies. ZhETF Pisma Redaktsiiu 30, 152–156 (1979)

    ADS  Google Scholar 

  47. I. Dremin, L. Sarycheva, K.Y. Teplov, High energy Cherenkov gluons at RHIC and LHC. Eur. Phys. J. C Part. Fields 46, 429–432 (2006)

    Article  ADS  Google Scholar 

  48. I. Dremin, L. Sarycheva, K.Y. Teplov, The background for Cherenkov gluons at RHIC and LHC energies (2005). arXiv preprint arXiv:hep-ph/0510248

  49. J. Adams et al., Distributions of charged hadrons associated with high transverse momentum particles in pp and Au + Au collisions at S(NN)**(1/2) = 200-GeV. Phys. Rev. Lett. 95, 152301 (2005). https://doi.org/10.1103/PhysRevLett.95.152301. arXiv:arXiv:nucl-ex/0501016

  50. S.S. Adler et al., Dense-medium modifications to jet-induced hadron pair distributions in Au + Au collisions at S(NN)**(1/2) = 200-GeV. Phys. Rev. Lett. 97, 052301 (2006). https://doi.org/10.1103/PhysRevLett.97.052301. arXiv:arXiv:nucl-ex/0507004

  51. B.I. Abelev et al., Indications of conical emission of charged hadrons at RHIC. Phys. Rev. Lett. 102, 052302 (2009). https://doi.org/10.1103/PhysRevLett.102.052302. arXiv:arXiv:0805.0622 [nucl-ex]

  52. J. Adams et al., Azimuthal anisotropy in Au+ Au collisions at S(NN) = 200 GeV. Phys. Rev. C 72(1), 014904 (2005)

    Article  ADS  Google Scholar 

  53. S.S. Adler et al., Systematic studies of the centrality and s NN dependence of the dET/dη and dNch/dη in heavy ion collisions at midrapidity. Phys. Rev. C 71(3), 034908 (2005)

    Article  ADS  Google Scholar 

  54. S. Adler et al., J/ψ production from proton–proton collisions at s= 200 GeV. Phys. Rev. Lett. 92(5), 051802 (2004)

    Article  ADS  Google Scholar 

  55. B. Abelev et al., Centrality dependence of charged hadron and strange hadron elliptic flow from s NN = 200 GeV Au+ Au collisions. Phys. Rev. C 77(5), 054901 (2008)

    Article  ADS  Google Scholar 

  56. J. Adams et al., Event-wise< p t> fluctuations in Au–Au collisions at s NN = 130 GeV. Phys. Rev. C 71(6), 064906 (2005)

    Article  ADS  Google Scholar 

  57. S. Adler et al., Centrality dependence of charm production from a measurement of single electrons in Au+ Au collisions at s NN = 200 GeV. Phys. Rev. Lett. 94(8), 082301 (2005)

    Article  ADS  Google Scholar 

  58. B.I. Abelev, Charge independent (CI) and charge dependent (CD) correlations vs. centrality from ΔΔϕη charged pairs in minimum bias Au + Au collisions at 200 GeV (2008)

  59. J. Fedorisin, S. Vokál, Search for the ring-like structures in the emission of secondary particles in central 197 Au collisions with emulsion nuclei at 11.6 A GeV/c. Technical report, Veksler and Baldin Laboratory of High Energies (2008)

  60. J. Fedorisin, S. Vokal, Wavelet analysis of angular spectra of relativistic particles in 208 Pb induced collisions with emulsion nuclei at 158A GeV/c. Technical report, Veksler and Baldin Laboratory of High Energies (2008)

  61. I. Dremin, From e+e to Heavy Ion Collisions-Proceedings of the Xxx International Symposium on Multiparticle Dynamics, Status of Ring-like Correlations and Wavelets (World Scientific, 2001)

  62. D. Ghosh, A. Deb, P.K. Haldar, A. Dhar, Pronounced pionic self-similarity in ring-like events in 16O–AgBr interactions. Europhys. Lett. 80(2), 22003 (2007)

    Article  ADS  Google Scholar 

  63. P.K. Haldar, S.K. Manna, Factorial correlators and oscillatory multiplicity moments at the CERN SPS energy for ring-like and jet-like events. Chin. Phys. Lett. 28(1), 012502 (2011)

    Article  Google Scholar 

  64. N. Subba, A. Ahmed, P.K. Haldar, A.N. Tawfik, Pronounced fluctuations of pions in ring-like events in 16O–Ag/Br interactions at 60 A GeV/C in the framework of complex network analysis. Int. J. Mod. Phys. E 30(01), 2150002 (2021)

    Article  ADS  Google Scholar 

  65. M. Gyulassy, L. McLerran, New forms of QCD matter discovered at RHIC. Nucl. Phys. A 750, 30–63 (2005). https://doi.org/10.1016/j.nuclphysa.2004.10.034. arXiv:arXiv:nucl-th/0405013 [nucl-th]

  66. P. Jacobs, X.-N. Wang, Matter in extremis: ultrarelativistic nuclear collisions at RHIC. Prog. Part. Nucl. Phys. 54, 443–534 (2005). https://doi.org/10.1016/j.ppnp.2004.09.001. arXiv:arXiv:hep-ph/0405125 [hep-ph]

  67. F. Wang, Novel phenomena in particle correlations in relativistic heavy-ion collisions. Prog. Part. Nucl. Phys. 74, 35–54 (2014). https://doi.org/10.1016/j.ppnp.2013.10.002. arXiv:arXiv:1311.4444 [nucl-ex]

  68. U. Heinz, R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions. Annu. Rev. Nucl. Part. Sci. 63, 123–151 (2013)

    Article  ADS  Google Scholar 

  69. J.-Y. Ollitrault, Anisotropy as a signature of transverse collective flow. Phys. Rev. D 46(1), 229 (1992)

    Article  ADS  Google Scholar 

  70. M. Connors, C. Nattrass, R. Reed, S. Salur, Jet measurements in heavy ion physics. Rev. Mod. Phys. 90(2), 025005 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  71. T. Sjostrand, The FRITIOF model for very high-energy hadronic collisions. Comput. Phys. Commun. 43(3), 367–389 (1987)

    ADS  Google Scholar 

  72. S.A. Bass et al., Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part. Nucl. Phys. 41, 255–369 (1998)

    Article  ADS  Google Scholar 

  73. M. Bleicher et al., Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model. J. Phys. G Nucl. Part. Phys. 25(9), 1859 (1999)

    Article  ADS  Google Scholar 

  74. Z.-W. Lin, C.M. Ko, B.-A. Li, B. Zhang, S. Pal, Multiphase transport model for relativistic heavy ion collisions. Phys. Rev. C 72(6), 064901 (2005)

    Article  ADS  Google Scholar 

  75. P.D. Lett, R.N. Watts, C.I. Westbrook, W.D. Phillips, P.L. Gould, H.J. Metcalf, Observation of atoms laser cooled below the doppler limit. Phys. Rev. Lett. 61(2), 169 (1988)

    Article  ADS  Google Scholar 

  76. K. Sengupta, P. Jain, G. Singh, S. Kim, Intermittency in multiparticle production at ultra-relativistic heavy ion collisions. Phys. Lett. B 236(2), 219–223 (1990)

    Article  ADS  Google Scholar 

  77. D. Ghosh et al., Signature of void probability scaling in jet-like events in 16o-AgBr interactions at 60 GeV/N. Astropart. Phys. 27(2–3), 127–133 (2007)

    Article  ADS  Google Scholar 

  78. P.K. Haldar, S.K. Manna, P. Saha, D. Ghosh, Multidimensional intermittency study of target fragments at CERN SPS energies. Astropart. Phys. 42, 76–85 (2013)

    Article  ADS  Google Scholar 

  79. S. Bhattacharyya, M. Haiduc, A.T. Neagu, E. Firu, Different aspects of multiplicity distribution of shower particles in central collisions with AgBr target. Int. J. Mod. Phys. E 26(04), 1750016 (2017)

    Article  ADS  Google Scholar 

  80. S. Bhattacharyya, M. Haiduc, A.T. Neagu, E. Firu, Target dependence of clan model parameters at Dubna energy-chaotic pion production. J. Phys. G Nucl. Part. Phys. 40(2), 025105 (2013)

    Article  ADS  Google Scholar 

  81. C.F. Powell, P.H. Fowler, D.H. Perkins, The study of elementary particles by the photographic method: an account of the principal techniques and discoveries illustrated by an atlas of photomicrographs (1959)

  82. B. Andersson, G. Gustafson, G. Ingelman, T. Sjöstrand, Parton fragmentation and string dynamics. Phys. Rep. 97(2–3), 31–145 (1983)

    Article  ADS  Google Scholar 

  83. B. Andersson, G. Gustafson, B. Nilsson-Almqvist, A model for low-Pt hadronic reactions with generalizations to hadron–nucleus and nucleus–nucleus collisions. Nucl. Phys. B 281(1–2), 289–309 (1987)

    Article  ADS  Google Scholar 

  84. B. Nilsson-Almqvist, E. Stenlund, Interactions between hadrons and nuclei: the Lund Monte Carlo-FRITIOF version 16. Comput. Phys. Commun. 43(3), 387–397 (1987)

    Article  ADS  Google Scholar 

  85. H.-U. Bengtsson, T. Sjöstrand, The Lund Monte Carlo for hadronic processes-Pythia version 4.8. Technical report (Dept. of Theoretical Physics, Lund Univ.(Sweden), 1987)

  86. F. Dominguez, J.-W. Qiu, B.-W. Xiao, F. Yuan, Linearly polarized gluon distributions in the color dipole model. Phys. Rev. D 85(4), 045003 (2012)

    Article  ADS  Google Scholar 

  87. X.-N. Wang, M. Gyulassy, Hijing: A Monte Carlo model for multiple jet production in pp, pA, and AA collisions. Phys. Rev. D 44(11), 3501 (1991)

    Article  ADS  Google Scholar 

  88. B. Zhang, C.M. Ko, B.-A. Li, Z. Lin, Multiphase transport model for relativistic nuclear collisions. Phys. Rev. C 61(6), 067901 (2000)

    Article  ADS  Google Scholar 

  89. Z.-W. Lin, S. Pal, C.M. Ko, B.-A. Li, B. Zhang, Charged particle rapidity distributions at relativistic energies. Phys. Rev. C 64(1), 011902 (2001)

    Article  ADS  Google Scholar 

  90. S. Sarkar, P. Mali, A. Mukhopadhyay, Azimuthal anisotropy in particle distribution in a multiphase transport model. Phys. Rev. C 96(2), 024913 (2017)

    Article  ADS  Google Scholar 

  91. G. Bhoumik, A. Deb, S. Bhattacharyya, D. Ghosh, A continuous wavelet transform analysis of multiparticle emission data at SPS energies. Int. J. Mod. Phys. E 28(3), 1950016 (2019)

    Article  ADS  Google Scholar 

  92. L. Zheng, G.-H. Zhang, Y.-F. Liu, Z.-W. Lin, Q.-Y. Shou, Z.-B. Yin, Investigating high energy proton proton collisions with a multi-phase transport model approach based on pythia8 initial conditions. Eur. Phys. J. C 81(8), 755 (2021)

    Article  ADS  Google Scholar 

  93. N. Subba et al., R/S analysis on multiparticle production process in nucleus–nucleus collisions at different SPS energies. Bulg. J. Phys. 20(2023), 1–14 (2023)

    Google Scholar 

  94. P. Mali, S. Manna, P. Haldar, A. Mukhopadhyay, G. Singh, Detrended analysis of shower track distribution in nucleus–nucleus interactions at CERN SPS energy. Chaos Solitons Fractals 94, 86–94 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  95. D. Ghosh, A. Deb, S. Sarkar, P.K. Haldar, Strong self-similar fluctuations of target fragments in ring-like events in ultra-relativistic nuclear collision. Chin. Phys. Lett. 23(11), 2944 (2006)

    Article  Google Scholar 

  96. I. Daubechies, Ten lectures on wavelets (1992) https://epubs.siam.org/doi/pdf/10.1137/1.9781611970104. https://doi.org/10.1137/1.9781611970104

  97. P. Saha, N. Subba, A. Ahmed, P.K. Haldar, Wavelet analysis of produced pions in 24 mg-Ag/Br interactions at 4.5 A GeV/c. Braz. J. Phys. 50, 105–111 (2020)

    Article  ADS  Google Scholar 

  98. X. Mi, H. Ren, Z. Ouyang, W. Wei, K. Ma, The use of the Mexican hat and the Morlet wavelets for detection of ecological patterns. Plant Ecol. 179, 1–19 (2005)

    Article  Google Scholar 

  99. C. Torrence, G.P. Compo, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79(1), 61–78 (1998)

    Article  ADS  Google Scholar 

  100. P. Mali, A. Mukhopadhyay, S. Sarkar, G. Singh, Azimuthal structure of charged particle emission in 28 Si–Ag/Br interaction at 14.5 A GeV and 32 S–Ag/Br interaction at 200A GeV. Int. J. Mod. Phys. E 23(05), 1450027 (2014)

    Article  ADS  Google Scholar 

  101. G. Kestin, U. Heinz, Hydrodynamic radial and elliptic flow in heavy-ion collisions from AGS to LHC energies. Eur. Phys. J. C 61, 545–552 (2009)

    Article  ADS  Google Scholar 

  102. C. Shen, U. Heinz, Collision energy dependence of viscous hydrodynamic flow in relativistic heavy-ion collisions. Phys. Rev. C 85(5), 054902 (2012)

    Article  ADS  Google Scholar 

  103. X.-Y. Wu, L.-G. Pang, G.-Y. Qin, X.-N. Wang, Longitudinal fluctuations and decorrelations of anisotropic flows at energies available at the CERN large hadron collider and at the BNL relativistic heavy ion collider. Phys. Rev. C 98(2), 024913 (2018)

    Article  ADS  Google Scholar 

  104. B. Alver et al., Charged-particle multiplicity and pseudorapidity distributions measured with the PHOBOS detector in Au + Au, Cu+ Cu, d+ Au, and p+ p collisions at ultrarelativistic energies. Phys. Rev. C 83(2), 024913 (2011)

    Article  ADS  Google Scholar 

  105. M. Gyulassy, The QGP discovered at RHIC, in Structure and Dynamics of Elementary Matter, vol. 166, ed. by W. Greiner, M.G. Itkis, J. Reinhardt, M.C. Güçlü (Springer, Dordrecht, 2004), pp.159–182

    Chapter  Google Scholar 

  106. P.F. Kolb, U. Heinz, Hydrodynamic description of ultrarelativistic heavy-ion collisions (2004), pp. 634–714

  107. X.-N. Wang, Why the observed jet quenching at RHIC is due to parton energy loss. Phys. Lett. B 579(3–4), 299–308 (2004)

    Article  ADS  Google Scholar 

  108. T. Falter, U. Mosel, Hadron formation in high energy photonuclear reactions. Phys. Rev. C 66(2), 024608 (2002)

    Article  ADS  Google Scholar 

  109. W. Cassing, K. Gallmeister, C. Greiner, Suppression of high transverse momentum hadrons at RHIC by (pre-) hadronic final state interactions. Nucl. Phys. A 735(1–2), 277–299 (2004)

    Article  ADS  Google Scholar 

  110. X.-N. Wang, Discovery of jet quenching and beyond. Nucl. Phys. A 750(1), 98–120 (2005)

    Article  ADS  Google Scholar 

  111. D. Enterria, B. Betz, High-pT hadron suppression and jet quenching, in The Physics of the Quark-Gluon Plasma: Introductory Lectures. ed. by S. Sarkar, H. Satz, B. Sinha (Springer, Berlin, Heidelberg, 2010), pp.285–339. https://doi.org/10.1007/978-3-642-02286-9_9

    Chapter  Google Scholar 

  112. K. Gallmeister, C. Greiner, Z. Xu, Quenching of high p hadron spectra by hadronic interactions in heavy ion collisions at relativistic energies. Phys. Rev. C 67(4), 044905 (2003)

    Article  ADS  Google Scholar 

  113. I. Dremin, G.K. Eyyubova, V. Korotkikh, L. Sarycheva, Two-dimensional discrete wavelet analysis of multiparticle event topology in heavy-ion collisions. J. Phys. G Nucl. Part. Phys. 35(9), 095106 (2008)

    Article  ADS  Google Scholar 

  114. I. Dremin, G.K. Eyyubova, V. Korotkikh, L. Sarycheva, Two-dimensional discrete wavelet analysis of multiparticle event topology in heavy ion collisions. Indian J. Phys. 85, 39–44 (2011)

    Article  ADS  Google Scholar 

  115. J. Adams et al., Minijet deformation and charge-independent angular correlations on momentum subspace (η, ϕ) in au-au collisions at s nn= 130 gev. Phys. Rev. C 73(6), 064907 (2006)

    Article  ADS  Google Scholar 

  116. L. Adamczyk et al., Jet-like correlations with direct-photon and neutral-pion triggers at SNN= 200 GeV. Phys. Lett. B 760, 689–696 (2016)

    Article  ADS  Google Scholar 

  117. D. Adamova et al., Modification of jet-like correlations in Pb–Au collisions at 158A GeV/C. Phys. Lett. B 678(3), 259–263 (2009)

    Article  ADS  Google Scholar 

  118. H. Caines, for the STARA Collaboration, et al., Jet and jet-like correlations studies from star. J. Phys. G Nucl. Part. Phys. 38(12), 124019 (2011)

  119. PHENIX Collaboration, A SICKLES, Jet correlations with identified particles from phenix: methods and results. Int. J. Mod. Phys. E 16(10), 3160–3167 (2007)

    Article  Google Scholar 

  120. N. Agababyan et al., Self-affine fractality in π+ p and k+ p collisions at 250 GeV/C. Phys. Lett. B 382(3), 305–311 (1996)

    Article  ADS  Google Scholar 

  121. I. Ajinenko et al., Intermittency patterns in π+ p and k+ p collisions at 250 GeV/C. Phys. Lett. B 222(2), 306–310 (1989)

    Article  ADS  Google Scholar 

  122. D. Ghosh et al., Genuine pion–pion correlations in heavy-ion collisions. J. Phys. G Nucl. Part. Phys. 39(10), 105101 (2012)

    Article  ADS  Google Scholar 

  123. N. Subba et al., Degree of multifractality and correlations in framework of multi-dimensional complex network analysis for 16O–Ag/Br interactions at 60 a GeV. Eur. Phys. J. Plus 136(8), 1–13 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. P. L. Jain, State University of Buffalo, Buffalo, NY, US, for providing the exposed and developed emulsion plates used for this analysis. One of the authors, P. K. Haldar, gratefully acknowledges his joint supervisor and expresses the utmost thanks to emeritus Prof. D. Ghosh and Prof. Argha Deb of Jadavpur University in Kolkata, India, for all kind of supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabir Kumar Haldar.

Ethics declarations

Conflict of interest

The authors affirm that they do not have any conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subba, N., Haldar, P.K. Wavelet transform-based multi-scale analysis of ring-like and jet-like events in relativistic heavy-ion collisions. Eur. Phys. J. Plus 138, 1128 (2023). https://doi.org/10.1140/epjp/s13360-023-04757-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04757-w

Navigation