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Abstract In this study, we explore the emergence of amplitude-modulated bursting in a multi-frequency excited Liénard system.
Our investigation reveals that the system exhibits distinct patterns of amplitude-modulated bursting for a lower damping value
and varying forcing frequencies of the system. Conversely, for a higher damping value with distinct system frequencies, the system
exhibits intricate amplitude-modulated bursting accompanied by a variety of bursting oscillations. The discrete patterns of amplitude-
modulated bursting arise as a consequence of the dynamic interplay with slowly varying multiple frequency forcing within the system.
To gain a deeper understanding of these dynamics, we conduct a comprehensive stability bifurcation analysis. Furthermore, to validate
our findings, we perform numerical simulations and corroborate our results through a real-time hardware circuit experiment. This
interdisciplinary approach provides valuable insights into the behavior of the Liénard system under multi-frequency excitation,
shedding light on its complex dynamical characteristics.

1 Introduction

In the past few decades, the emergence of distinct nontrivial bursting dynamics has been explored in numerous models [1–6]. In
particular, the electrophysiology activities, bifurcation structures, and important computational effects of neurons are discussed in
detail (See. [1, 2] and the references therein). The detailed review of discrete bifurcation mechanisms and their intrinsic relation
with various forms of neuronal dynamics were reported in Ref. [3]. The occurrence of different forms of spiking trains, periodic
and chaotic bursting oscillations, mixed-mode oscillations, and their transitions were explored in detail with the numerical and
experimental studies [4–6]. The general characteristic feature of bursting dynamics is the recurrent appearance of active phases of
continuous action potential interspersed by quiescence states. The Seminal theoretical work of Rinzel [7] encouraged the researchers
to uncover various complex neuronal dynamics. There exist ample numbers of bursting patterns in different nonlinear dynamical
systems, that have been illustrated in the literature via different dynamical processes, namely double Hopf bifurcation with slow-
varying parametric excitations [8], saddle-node bifurcation via asymmetric and pitchfork or fold bifurcation through symmetric
bursting oscillation [9], the coexistence of multiple bursting dynamics in a modified van der Pol-Duffing system [10], various
compound bursting using slow-fast analysis [11], and to name a few. In recent years, the complex electrical activity of distinct
neuronal dynamics was explored using multiple time-scale systems elaborated in different disciplines [12–16]. The detailed stability
analysis and bifurcation structures of discrete bursting dynamics, ranging from simple slow-fast dynamical systems to complex
models with various applications, have been explored using a multiple time-scale approach [12]. Advantages of converting the
existing slow-fast variable in a parametrically and externally excited system into a single slow variable to uncover the complicated
bifurcation structures of mixed-mode oscillations presented in a Duffing and van der Pol oscillator [13]. The emergence of different
clusters of compound bursting and multi-frequency bursting oscillations has been found in different classes of multi-scale systems
[15, 16].

Recently, a special type of bursting dynamics in the multiple time-scale system, known as amplitude-modulated bursting (AMB),
has garnered significant interest in the research community. Indeed, the regular busting oscillation exhibits the alternate appearance
of firing and rest states. However, in the case of amplitude-modulation bursting dynamics, there exist distinct envelopes in the active
phase of busting (firing state) followed by the rest states.

a e-mails: kingston.cnld@gmail.com; leo.sahaya-tharsis@p.lodz.pl (corresponding author)
b e-mail: dineshvijays@citchennai.net
c e-mail: ksuresh@citchennai.net
d e-mail: tomasz.kapitaniak@p.lodz.pl

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-023-04749-w&domain=pdf
http://orcid.org/0000-0002-6418-5273
mailto:kingston.cnld@gmail.com
mailto:leo.sahaya-tharsis@p.lodz.pl
mailto:dineshvijays@citchennai.net
mailto:ksuresh@citchennai.net
mailto:tomasz.kapitaniak@p.lodz.pl


 1116 Page 2 of 8 Eur. Phys. J. Plus        (2023) 138:1116 

Fig. 1 Stability bifurcation
diagram in the (δ − x) plane of
Eq. (1) for fixed system
parameters α � 0.02, β � 0.5,
and γ � −0.5. Red, green, and
blue circles signify the stable
focus (SF), unstable focus (UF),
and saddle (Sd) equilibrium
points, respectively. Closed
Magenta circles denote limit
points (LP1 and LP2)
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Vo et al. [17] ascertain the emergence of amplitude-modulated bursting while illustrating the dynamical process of intracellular
calcium dynamics. Later, Han et al. explored the appearance of AMB dynamics in distinct model systems using time-dependent
slow parametric modulation [14]. The simplest chemical reaction model with multi-frequency slow-parametric excitations is capable
of exhibiting AMB dynamics [18]. Further, the amplitude-modulation in spiking dynamics has been identified in a Butera model
[19], a modified form of coupled conductance-based biophysical model [20], and three coupled forced LCR oscillator with common
sharing nonlinear element [21].

In most of the earlier reports which elucidate the appearance of AMB dynamics owing to torus canard dynamics [19–23]. On
the other hand, Han et al. reported that AMB can also appear due to multi-frequency slow parametric modulation process [14],
and they used a specific modulation term λ � α + A1 cos(ω1t) + A2 cos(ω2t), which contains a combination of control parameter
α and two slow parametric excitations. Similarly, in the chemical reaction system multiple frequency forcing plays a key role in
the formation of AMB dynamics [18]. Noteworthy, in the aforesaid reports [14, 18], authors used multiple-frequency forcing as a
time-varying parameter to obtain the AMB. It is well known that time-varying parameter-based models provide more insight into
exploring various complex dynamical patterns. However, the experimental realization of time-varying parameters in a real-time
electronics experiment is still challenging task. To conquer such difficulties, in this study, we have used only a slow parametric or
multiple-frequency forcing as an external excitation in the Liénard system to elucidate the AMB dynamics in both numerical and
experiment realizations. Additionally, to the best of the authors’ knowledge, the experimental observation of AMB dynamics has
not yet been reported.

The rest of this paper is organized as follows: Sect. 2 explains the details of the model system and its distinct stability with the
response of system parameters. The appearance of different patterns of amplitude-modulated busting and its emerging mechanism
is explored in Sect. 3. The real-time electronic experimental results of AMB are delineated in Sect. 4. The emergence of distinct
complex patterns of AMB dynamics is presented in Sect. 5. In the final section, we presented the overall summary of our results.

2 Multi-frequency excited Liénard system

In order to illustrate the distinct formation of amplitude-modulated bursting oscillations, we have considered a paradigmatic model of
the Liénard system which manifests a rich variety of complex dynamics such as spiking trains, bursting and mixed-mode oscillations,
extreme events, and critical transient dynamics, to name a few [4, 9, 24–26]. This choice of model enables us to delve into the intricate
behavior of the system and explore its amplitude-modulated bursting oscillations in a comprehensive manner. In this study, our focus
is on a multi-frequency excited Liénard system, described by the following set of differential equations:

ẋ �y

ẏ � − αxy − βx3 − γ x + A1 sin(ω1t) + A2 sin(ω2t). (1)

Here, the parameters α, β, γ represent the nonlinear damping coefficient, strength of nonlinearity, and natural frequency of the
system, respectively. A1, A2, and ω1, ω2 are the amplitudes and frequencies of external periodic forcing. In the context of this study,
we maintain fixed values for various system parameters, namely α, β, γ , A1, A2, and ω1, while systematically altering the external
forcing frequency ω2. Within this parameter space, the system exhibits discrete bursting oscillations, which include the intriguing
dynamics of amplitude-modulated bursting. Further elaboration on these dynamics will be provided in the forthcoming section.

2.1 Stability analysis

We begin to analyze the system by finding its stability (Eq. 1). For the fixed system parameters value of α � 0.02, β � 0.5, and
γ � −0.5, the model system exhibits three different equilibria such as stable focus at (1,0), saddle at (0, 0), and unstable focus
at (−1, 0). We have depicted the stability bifurcation of the system in Fig. 1, while considering various amplitudes of the external
forcing. To comprehensively explore the potential stability configurations within the system, we aggregate the amplitudes of the
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Fig. 2 Stability phase diagram in
the (δ − α) plane: the existence of
distinct stability a for (1, 0) and
(−1, 0) fixed points of the system.
Different stability regions, namely
stable focus (SF), unstable focus
(UF), stable node (SN), unstable
node (UN), and saddle (Sd), are
presented as red, green, magenta,
cyan, and blue colors, respectively

two external forces into a single parameter denoted as δ. This approach enables us to investigate the full spectrum of stability states
present in the system. We have used the continuation software XPPAUT AUTO [27] to calculate the distinct stability of the system.
In the S-shaped bifurcation plot of Fig. 1, the stable focus (SF), unstable focus (UF), and saddle (Sd) equilibriums are illustrated as
red, green, and blue circles, respectively. The system exchanges its stability at the limit points LP1 and LP2 which are depicted by
the magenta color points.

Significantly, the nonlinear damping parameter α in the Liénard system plays a vital role in shaping the distinctive patterns of
amplitude-modulated bursting dynamics. Consequently, we have presented a stability phase diagram within the δ versus α plane,
focusing on the fixed points (1, 0) and (−1, 0), as confirmed in Fig. 2a and b. This phase diagram reveals various stability regions,
denoted by colors such as red for stable focus (SF), green for unstable focus (UF), magenta for stable node (SN), cyan for unstable
node (UN), and blue for saddle (Sd), as depicted in Fig. 2a and b. Furthermore, when considering the (0, 0) fixed point, the system
consistently demonstrates a saddle equilibrium across a wide range of δ and nonlinear damping parameter values.

3 Amplitude-modulated bursting oscillations

To elucidate the various forms of amplitude-modulated bursting dynamics in the slowly varying, multi-frequency excited Liénard
system, we employed numerical solutions of the model equations. These equations were solved using the fourth-order Runge–Kutta
(RK4) method with a step size of 0.01 and we have taken the initial conditions (x0, y0) as (0.5, −0.5). The transient dynamics have
been removed wherever necessary. The results obtained were then visualized as a series of temporal plots, presented in Fig. 3a–f.
During the investigation, we kept the system parameters fixed at α � 0.02, β � 0.5, γ � −0.5, A1 � 0.1, A2 � 0.2, ω1 � 0.001,
while allowing ω2 to vary within the range of (0.001, 0.006). Within this parameter space, the Liénard system exhibited diverse
patterns of amplitude-modulated bursting dynamics.

For ω2 � 0.001 (Fig. 3a), the system displayed regular bursting dynamics characterized by the alternation between resting and
firing states. Notably, in this case, there was no modulation evident in the firing states. This absence of modulation was confirmed
by plotting the combination of the two external forcing terms, A1 sin(ω1t) + A2 sin(ω2t), in the upper panel of Fig. 3a. As we
gradually increased the value of ω2 to 0.002, the system began to exhibit amplitude-modulated bursting (cf. Fig. 3b). In this
scenario, modulation became apparent in the action potentials of the firing states, and this modulation was reflected as the presence
of two distinct frequencies within each oscillation period, as shown in the upper panel of Fig. 3b. Continuing to vary the control
parameter ω2 from 0.003 to 0.006, the system demonstrated AMB with three, four, five, and six distinct envelopes in the firing
states, as depicted in Fig. 3c–f, respectively. The combined external forcing terms, plotted in the upper panels of Fig. 3c–f, clearly
illustrated the number of envelopes emerging in the AMB dynamics, which depended on the slowly varying frequency of the external
forcing term.

3.1 Evolution of amplitude-modulated bursting

This subsection elucidates the mechanism underlying the emergence of amplitude-modulated bursting in the slowly varying, multi-
frequency excited Liénard system. We have generated the stability bifurcation diagram of the system, which has been overlaid with
transformed phase portraits depicting regular bursting oscillations in the δ versus x plane, as illustrated in Fig. 4a. In this figure, the
cyan color indicates the absence of modulation in the active states of bursting dynamics. Conversely, the transformed phase portrait
representing AMB dynamics, presented in Fig. 4c, clearly signifies the presence of modulation in the firing state of the system.

For a more insightful interpretation of the dynamical evolution, we have exclusively displayed a front view of the transformed
phase portrait in Fig. 4b. The firing states begin to appear as the system trajectory approaches the limit point LP1 and persist until
the trajectory reaches the subsequent turning point LP2. Notably, as the system approaches LP2, the firing state transitions into
the resting state and then moves toward LP1 through the SF region. This dynamic process continually occurs within the model.
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Fig. 3 Amplitude-modulated
bursting dynamics of
Multi-frequency excited Liénard
system: time series of x(t) signify
a regular bursting for ω2 � 0.001,
b two-envelope AMB for ω2 �
0.002, three-envelope AMB for
ω2 � 0.003, four-envelope AMB
for ω2 � 0.004, five-envelope
AMB for ω2 � 0.005, and
six-envelope AMB for ω2 �
0.006, respectively. Blue lines in
the upper panel of a–f denote
combined external periodic
excitations ( f1(t) + f2(t))
represent slowly varying forcing
frequency in the system. Cyan
color in the temporal evolutions in
a denotes no modulation and
b–f represent the appearance of
distinct modulation in the firing
states
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However, the system eventually reaches a stable state at the point LPi instead of LP2. The time difference (τ ) between the points LPi
and LP2 is known as the bifurcation delay or slow passage effect, which arises during the evolution of bursting oscillation. We have
observed a similar dynamical evolution in the system during the formation of two-envelope AMB dynamics, as confirmed in Fig. 4d.
However, it is important to note that the bifurcation delay time gradually increases with the influence of the control parameter ω2 of
the system.

4 Experimental results

In order to validate the numerical observations of AMB dynamics, we conducted an experimental study using an electronic setup. To
achieve this, we derived an analog circuit based on model Eq. (1), as illustrated in Fig. 5. The circuit comprises operational amplifiers
(UA741), analog device multiplier chips (AD633), resistors (R), capacitors (C), and external sinusoidal waveform generators f1(t)
and f2(t). We obtained the following circuit equations by applying Kirchhoff’s laws at the two nodes of the capacitors C1 and C2:

− C1

(
dv1

dt

)
� −0.1v1v2

R5
+

v2

R6
− 0.01v3

2

R7
+

1

R1
((F1sin	1t) + (F2sin	2t)) (2)

− C2

(
dv2

dt

)
� − v1

R2
. (3)

After rearranging and merging Eqs. (2) and (3), we obtain following circuit equation.

C1C2 R2 R5

(
d2v2

dt2

)
�0.1C2 R2v2

(
dv2

dt

)
+

R5

R6
v2 − 0.01

R5

R7
v3

2
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Fig. 4 a Transformed phase
portrait in the (δ − x) plane for
a ω2 � 0.001 and c ω2 � 0.002.
SF, UF, and Sd denote stable
focus, and unstable focus saddle
equilibria of the system. At the
critical value of δ, the system
changes its stability represented
by limit points (LP1) and (LP2).
Stability bifurcation (S-shaped
curve) is superimposed with the
front view transformed phase
portraits revealing the dynamical
evaluation of bursting oscillation
(b) and amplitude-modulation
dynamics (d). Bifurcation delay
signifies as a term τ
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Fig. 5 Circuit Analog circuit
diagram of the Liénard system
with a pair of external periodic
forcing
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To experimentally observe the AMB as observed in the numerical study, we carefully selected the circuit parameters, such as
resistors and capacitors in Eq. (4). To facilitate parameter comparison, we rescaled the parameters as follows: t → τ � R1C1t , and
x1 � v1, x2 � v2, α � 0.1 R1

R5
, β � 0.01 R1

R7
, and γ � R1

R6
. When we fix the circuit parameter value R1 � R2 � R3 � R4 � 10 K¨,

R5 � 49.87 K¨, R6 � 19.96 K¨, R7 � 220 ¨, C1 � C2 � 10 nF, F1 � 0.110 V, F2 � 0.120 V, 	1 � 100 Hz, and gradually varying
	2 ∈ (100–300 Hz), the Liénard circuit manifests different patterns of amplitude-modulated bursting. The obtained results from
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Fig. 6 a Electronics experimental
setup of Liénard system in the
laboratory. Experimental results of
distinct bursting dynamics:
b regular bursting, c two envelope,
and d three envelope of
amplitude-modulated bursting, for
	2 � 100 Hz, 	2 � 200 Hz, and
	2 � 300 Hz, respectively

the experiment are presented in Fig. 6. The experimental setup for a multi-frequency excited Liénard circuit is depicted in Fig. 6a.
At 	2 � 100 Hz, the system displays bursting dynamics, characterized by alternating periods of firing and rest, as illustrated in
Fig. 6b. Furthermore, when we vary the forcing frequency 	2 to 200 Hz, the system exhibits two envelopes of amplitude-modulation
dynamics, as shown in Fig. 6c. Upon further variation of 	2 to 300 Hz, the Liénard circuit demonstrates three envelopes of AMB,
as demonstrated in Fig. 6d. It is evident from Figs. 6c and d that during the active state of the action potential, the Liénard circuit
exhibits distinct modulation in response to the slowly varying forcing frequency of the circuit.
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Fig. 7 Temporal dynamics of
complex amplitude-modulated
bursting in Liénard system for a
higher damping value: a regular
bursting for ω2 � 0.01, b and
c emergence of six and three
consecutive bursting which is
separated by a long rest state for
ω2 � 0.011 and 0.112. d Intricate
dynamics of two and
three-envelope AMB appearing in
between bursting oscillations for
ω2 � 0.013. e Alternate
manifestation of two-envelope
AMB and bursting oscillations for
ω2 � 0.014. f Recurrent
two-envelope AMB for ω2 �
0.015
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5 Complex amplitude-modulated bursting oscillations

Furthermore, we have identified distinct complex amplitude-modulated bursting in the Liénard system, specifically for a higher
value of damping, α � 0.45, while keeping other parameters fixed at β � 0.5, γ � −0.5, A1 � 0.1, A2 � 0.2, and ω1 � 0.01. For
fine-tuning, we varied ω2 within the range (0.01, 0.015). The observed results are depicted in Fig. 7. Indeed, we obtain the transition
from regular bursting oscillation (for ω2 � 0.01: Fig. 7a) to two-envelope AMB (for ω2 � 0.015: Fig. 7f), however, in-between the
system exhibits more complex bursting dynamics, along with alternating periods of bursting and AMB dynamics. The temporal
evolution of six consecutive bursting oscillations, marked by extended rest states that occur when ω2 � 0.011, is illustrated in Fig. 7b.
Similarly, for ω2 � 0.012, the system displays three successive bursting dynamics separated by long rest states (cf. Fig. 7c). When
we increase ω2 to 0.013, the system exhibits even more complex dynamics, with alternating appearances of two and three-envelope
AMB dynamics occurring intermittently with the bursting oscillations, as shown in Fig. 7d. Furthermore, as we vary the control
parameter to ω2 � 0.014, the two-envelope AMB and three consecutive bursting dynamics recurrently appear in the system, as
depicted in Fig. 7e. Finally, we observe two-envelope AMB dynamics for ω2 � 0.015, as shown in Fig. 7f. It is noteworthy that the
dynamical analysis of complex AMB dynamics follows a similar mechanism as discussed in Sect. 3.1. Hence, we have omitted its
discussion here to avoid repetition.

6 Conclusion

In summary, we have introduced the phenomenon of amplitude modulation bursting (AMB) within a multi-frequency stimulated
Liénard system. This system exhibits a diverse range of complex bursting oscillation patterns and distinctive AMB envelopes,
influenced by both nonlinear damping parameters and external forcing frequencies. The discrete envelopes of AMB dynamics emerge
as a consequence of the slowly varying multi-frequency excitation applied to the Liénard system. Importantly, our experimental
findings closely align with the results obtained from numerical simulations.
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