Skip to main content
Log in

Effect of external excitation on the isolated and collective dynamics of a generic FitzHugh–Rinzel neuron

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This contribution considers the isolated and collective dynamics of a FitzHugh–Rinzel (FHR) neuron obtained by adding a third variable to the generic FitzHugh–Nagumo neural circuit. From the Kirchhoff electrical circuit laws, the state equations of the model are derived; afterward, the stability around a zero time constant is investigated, and the hidden dynamics of the model is revealed. Analytical and theoretical investigation of the energy is done to support the various firing activities, such as bursting and spiking, captured in the model. Using the well-known modulation instability theory, the collective behavior of a network made of 50 neurons is analyzed in a chain configuration. As a result, regular patterns consisting of alternate bright and dark bands that are almost periodic and localized in space and time are found. Also, the brighter regions correspond to the regions where the neurons fire, while in the dark regions, the neurons are quiescent. Finally, the brighter regions could be pictured as individual spikes within a burst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data used to support the findings of this study are available from the corresponding author upon request.]

References

  1. D. Purves, D. et al., Neuroscience; Sinauer: Sunderland, MA, USA (2019).

  2. E.R. Kandel, E.R., et al., Principles of neural science, Vol. 4. (McGraw-Hill, New York, 2000).

  3. G.M. Shepherd, The synaptic organization of the brain. (Oxford University Press, Oxford, 2003).

  4. W. Gerstner, et al., Neuronal dynamics: From single neurons to networks and models of cognition. (Cambridge University Press, Cambridge, 2014).

  5. E.M. Izhikevich, Dynamical systems in neuroscience. (MIT Press, Cambridge, 2007).

  6. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500 (1952)

    Article  Google Scholar 

  7. J. Cronin, Mathematical aspects of Hodgkin-Huxley neural theory. (Cambridge University Press, Cambridge, 1987).

  8. X. Hu, C. Liu, Dynamic property analysis and circuit implementation of simplified memristive Hodgkin-Huxley neuron model. Nonlinear Dyn. 97, 1721–1733 (2019)

    Article  MATH  Google Scholar 

  9. A. Moujahid et al., Energy and information in Hodgkin-Huxley neurons. Phys. Rev. E 83(3), 031912 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  10. Q. Xu et al., Dynamical analysis of an improved FitzHugh-Nagumo neuron model with multiplier-free implementation. Nonlinear Dyn. 111(9), 8737–8749 (2023)

    Article  Google Scholar 

  11. X. Zhang et al., Bifurcation analysis of a modified FitzHugh-Nagumo neuron with electric field. Chaos, Solitons Fractals 170, 113415 (2023)

    Article  MathSciNet  Google Scholar 

  12. X. Chen et al., Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics. Chaos, Solitons Fractals 174, 113836 (2023)

    Article  MathSciNet  Google Scholar 

  13. Z.T. Njitacke et al., An enhanced FitzHugh–Nagumo neuron circuit, microcontroller-based hardware implementation: light illumination and magnetic field effects on information patterns. Chaos, Solitons Fractals 167, 113014 (2023)

    Article  Google Scholar 

  14. B. Ambrosio et al., Non-trivial dynamics in the Fizhugh–Rinzel model and non-homogeneous oscillatory-excitable reaction-diffusions systems. Biology 12(7), 918 (2023)

    Article  Google Scholar 

  15. Z.T. Njitacke et al., Dynamics of a memristive FitzHugh–Rinzel neuron model: application to information patterns. Euro Phys J Plus 138(5), 473 (2023)

    Article  Google Scholar 

  16. Z.N. Tabekoueng, et al., Investigation of an improved FitzHugh–Rinzel neuron and its multiplier-less circuit implementation. Chaos Interdisciplinary J Nonlinear Sci 33(6) (2023).

  17. F.K. Nando Tezoh, A. Dang Koko, and H. Ekobena Fouda, Modes of electrical activities and energy of Hindmarsh–Rose model coupled by memristive synapses. Euro Phys J 138(3), 267 (2023).

  18. Y. Xie et al., Estimate physical reliability in Hindmarsh-Rose neuron. Phys. Lett. A 464, 128693 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Slepukhina, et al., Noise-driven bursting birhythmicity in the Hindmarsh–Rose neuron model. Chaos: An Interdisciplinary J Nonlinear Sci 33(3) (2023).

  20. S.D. Vijay, K. Thamilmaran, A.I. Ahamed, Superextreme spiking oscillations and multistability in a memristor-based Hindmarsh-Rose neuron model. Nonlinear Dyn. 111(1), 789–799 (2023)

    Article  Google Scholar 

  21. Q. Xu et al., Electromagnetic induction effects on electrical activity within a memristive Wilson neuron model. Cogn. Neurodyn. 16(5), 1221–1231 (2022)

    Article  MathSciNet  Google Scholar 

  22. Z. Ju et al., Electromagnetic radiation induced non-chaotic behaviors in a Wilson neuron model. Chin. J. Phys. 77, 214–222 (2022)

    Article  MathSciNet  Google Scholar 

  23. W. Fan et al., Firing patterns and synchronization of Morris-Lecar neuron model with memristive autapse. AEU-Int J Electron Commun 158, 154454 (2023)

    Article  Google Scholar 

  24. X. Yu et al., Energy balance via memristor synapse in Morris-Lecar two-neuron network with FPGA implementation. Chaos, Solitons Fractals 171, 113442 (2023)

    Article  MathSciNet  Google Scholar 

  25. M. Xing et al., Bifurcations and excitability in the temperature-sensitive Morris-Lecar neuron. Nonlinear Dyn. 100, 2687–2698 (2020)

    Article  Google Scholar 

  26. K. Rajagopal et al., Wave propagation in a network of extended Morris-Lecar neurons with electromagnetic induction and its local kinetics. Nonlinear Dyn. 100, 3625–3644 (2020)

    Article  Google Scholar 

  27. M. Ma et al., Dynamic behavior analysis and synchronization of memristor-coupled heterogeneous discrete neural networks. Mathematics 11(2), 375 (2023)

    Article  Google Scholar 

  28. M. Ma et al., Multistability and phase synchronization of Rulkov neurons coupled with a locally active discrete memristor. Fractal and Fractional 7(1), 82 (2023)

    Article  Google Scholar 

  29. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J . 1(6), 445–466 (1961)

    Article  Google Scholar 

  30. E.M. Izhikevich, Simple model of spiking neurons. IEEE Trans. Neural Networks 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  31. E.L. Schwartz, Computational neuroscience. (MIT Press, New York, 1993).

  32. H. Bao et al., Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Trans Neural Netw Learn Syst 31(2), 502–511 (2019)

    Article  Google Scholar 

  33. H. Lin, C. Wang, Y. Tan, Hidden extreme multistability with hyperchaos and transient chaos in a Hopfield neural network affected by electromagnetic radiation. Nonlinear Dyn. 99(3), 2369–2386 (2020)

    Article  MATH  Google Scholar 

  34. Z.T. Njitacke et al., Extremely rich dynamics of coupled heterogeneous neurons through a Josephson junction synapse. Chaos, Solitons Fractals 164, 112717 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  35. Z. Wang et al., Complex dynamics in a discrete adaptive synapse-based neuron model. Euro Phys J Plus 138(6), 545 (2023)

    Article  Google Scholar 

  36. S. Majhi et al., Chimera states in neuronal networks: a review. Phys. Life Rev. 28, 100–121 (2019)

    Article  ADS  Google Scholar 

  37. A. Andreev et al., Chimera state in complex networks of bistable Hodgkin-Huxley neurons. Phys. Rev. E 100(2), 022224 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  38. C.N. Takembo et al., Modulated wave formation in myocardial cells under electromagnetic radiation. Int. J. Mod. Phys. B 32(14), 1850165 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  39. C. Chen et al., Memristive electromagnetic induction effects on Hopfield neural network. Nonlinear Dyn. 106, 2559–2576 (2021)

    Article  Google Scholar 

  40. C. Chen et al., ReLU-type Hopfield neural network with analog hardware implementation. Chaos, Solitons Fractals 167, 113068 (2023)

    Article  Google Scholar 

  41. C. Chen et al., Analog/digital circuit simplification for Hopfield neural network. Chaos, Solitons Fractals 173, 113727 (2023)

    Article  Google Scholar 

  42. Y. Yao, J. Ma, Logical stochastic and vibrational resonances induced by periodic force in the FitzHugh–Nagumo neuron. Euro Phys J Plus 137(11), 1–10 (2022)

    Article  Google Scholar 

  43. G. Bary, Analysis of chaos-coherence peculiarities within the chaotic phenomena of fluid at finite temperature. Chaos, Solitons Fractals 164, 112572 (2022)

    Article  MathSciNet  Google Scholar 

  44. G. Bary et al., A new analytical approach to study chaos fraction characterization by using intensity interferometry. Chaos, Solitons Fractals 152, 111414 (2021)

    Article  MATH  Google Scholar 

  45. Z. T. Njitacke, et al., Novel extreme multistable tabu learning neuron: circuit implementation and application to cryptography. IEEE Trans. Ind. Inform. 19(8), 8943–8952 (2023).

  46. C.N. Takembo, Information pattern stability in memristive Izhikevich neural networks. Mod. Phys. Lett. B 36(12), 2250021 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  47. C.N. Takembo et al., Effect of electromagnetic radiation on the dynamics of spatiotemporal patterns in memristor-based neuronal network. Nonlinear Dyn. 95, 1067–1078 (2019)

    Article  MATH  Google Scholar 

  48. A. Mvogo et al., Pattern formation in diffusive excitable systems under magnetic flow effects. Phys. Lett. A 381(28), 2264–2271 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially funded by Centre for Nonlinear Systems, Chennai Institute of Technology, India, vide Funding Number CIT/CNS/2023/RP/005. Jan Awrejcewicz has been supported by the Polish National Science Centre under the Grant OPUS 18No.2019/35/B/ST8/00980.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally to this manuscript.

Corresponding author

Correspondence to Zeric Tabekoueng Njitacke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramadoss, J., Takembo, C.N., Karthikeyan, A. et al. Effect of external excitation on the isolated and collective dynamics of a generic FitzHugh–Rinzel neuron. Eur. Phys. J. Plus 138, 962 (2023). https://doi.org/10.1140/epjp/s13360-023-04620-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04620-y

Navigation